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Abstract

Singularities in the outer part of the
laminar boundary layer on pointed
conical bodies and flow structure
generated by them near a sink plane are
studied.  Asymptotic  solutions  of
boundary-layer equations and
singularity types are obtained in explicit
form. It is shown that in the singularity
vicinity the boundary region is formed, in
which reduced Navier-Stokes equations
describe the flow; regular analytical
solutions of these equations are obtained
to match with boundary-layer solutions.
Two-layer flow model is derived for the
region, in which the effect of viscous-
inviscid  interaction is  important.
Analysis of equations shows that the
interaction weakens the singularity, its
type becomes a function of the distance
from the nose but this effect does not
eliminate the singularity totally.

Introduction

The flow over conical bodies is a simplest and
well-studied problem of 3D laminar boundary
layer theory. However singularities, which
arise in this flow and have direct relation to
such problems, as boundary-layer solution
unique existence, and 3D separation do not
explained until now. Moreover the exact
singularity type is not known. Analyses of
flows over simple bodies such as round or
elliptic cones shown that there are many self-

similar solutions in the symmetry plane, and in
the sink plane a solution does not exist at some
incidence range depending on wall
temperature, surface shape, Mach and Prandtl
numbers [1-7]. It was assumed that such
solution behavior is related with violation of
self-similarity in the sink plane. However
calculations shown that a non-self-similar
solution exist only at well defined blowing
velocities [8,9]. These results shown that in
the range of the solution nonexistence
qualitative flow structure changes are arisen
near the wall; however a nature of these
changes is not known. Another possible
singularity reason is the principle of
dependence and influence violation [1,4,6,11].
Numerical integration of self-similar equations
in transversal direction reveals the single
singularity that is the violation of symmetry
conditions in the form of finite transversal
velocity in the sink plane [9-12]. Calculations
[10,11] point to essential disagreements with
experimental data long before the separation
appearance. Numerical solutions being in well
agreement with data have been obtained on the
base of Navier-Stokes equations [8,13]. For a
slender round cone singularities in the sink
plane have been studied on the base of the
explicit asymptotic solution for outer
boundary-layer part [14]. For arbitrary conical
bodies such analysis is presented in the
reference [15,16] and present work. Also the
asymptotic analysis of the Navier-Stokes
equations is carried out, and the flow structure
near a sink plane is studied.



1. Singularities of boundary-layer
equations

The laminar boundary layer on a conical
surface at pu=Pr=1 in the orthogonal

coordinate system xye (Fig. 1) is described by
the equations [1]
w,, = Aww, —W,, +W(2u+Kw)—h(2+K),
u,, =Awu, —vu, +AwlU-w),
h, = Awh, —vh —M, (u +3 Aw?),
y=0:u=v=w=0, h=h, (h, =0);
y=w:iu=w=h=1; f =u, g,=w.(1.1)
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Fig. 1. Flow Scheme and Coordinates

Here x is the distance from the body nose
along generator referenced to the body length
I, ¢ is transversal coordinate (Fig. 1), Pr is
Prandtl number, f(y,9), g(y,¢) and v(y,¢)
are flow functions and transformed normal
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velocity, y* is referenced to | normal to the
body, R(¢) is metric coefficient, asterisks

denote the differentiation with respect to
argument, indexes x, ¢ and ydenote the

differentiation with respect to these variables.
The density p, enthalpy h, viscosity u,

longitudinal and transversal velocities (u and
w) are referenced to them values at the outer
boundary, ph=1. The flow function on the

outer boundary-layer edge indexed by “e” are
normalized to their values in the freestream
indexed by “o0”; they are functions of ¢ only.

The transversal velocity on outer boundary-
layer edge w, =0 in the initial value plane

=0 (K(0)>0), and in the sink plane ¢ = ¢,
(K(¢,)=-k <0), in which two boundary layer

parts came from different sides of the source
plane are collided.

Egs. (1.1) are simplified for slender bodies
since in this case A=0(), A <<1,

U, =p, =, =1 In this case the enthalpy
equation (1.1) allows the Crocco integral

h=h, +hu—iMu? h =1-h,+iM,. (1.2)

We consider the asymptotic form of Egs. (1.1)
at y>>1, so that the flow functions are

represented as
u=1+U(n,0), w=1+W (7,9),
H=—-({M,+h,-1)U, v=(1+K)y,
W, 2a[3AW +(1+3K)W + p(@)U |-,

=aAU, -1V, n=y/\[a(p) (13)

Equations (1.3) have the solution
U (n,9) =Ceerfc(n/\2), W (1,¢) =—b(p)U
b'+2(1+M)(Inw,) b=2pM (Inw,)’,
p(p) =1+(1+3K)(:My+h, -1),
a’+2[(N +1)(Inw, )’ —%In(peye/ue)'}a =

=2N(Inw,)’; N(p)=3M (p)=K™ (1.4)



SINGULARITIES IN LAMINAR BOUNDARY LAYER AND FLOW
STRUCTURE NEAR SINK PLANE ON CONICAL BODIES

To extract singularities in the sink plane we
represent solutions for the functions a(¢) and

b(¢) in the form of quadratures using the
integration by parts

m=1:b= Mp _
M +1
_EWe—z(M+1)T p'M(M +1) +2pM ’ WeZ(Mﬂ)d(p,
5 E(M +1)

E= exp{ZJ(: M'(t)Inw, (t)dtJ,

m=1:b=2Mplnw, -

_Z,T( pM ) w, +2(M +1)Mpw,

= WMt Inw,de,

0

nzl:a=

N +1

_ElWe—2(N+1)¢ N’ . Wj(N+l)d(0,
o EL(N+1)

@
E, = exp[zj N'(t)Inw, (t)dt],
0
n=1:a=2NInw, —2Ew*""™.
(L5)

? /
'J‘N'\Ne-i-Z(N +];)NW€ W§N+l|nwed§0.
0 E,(N+1)

The constant C,(k) is calculated from

matching condition with a numerical solution
inside the boundary layer. At n=1 and m=1
Egs. (1.5) satisfy to the initial conditions at
¢=0 for regular at K(0)—0 solution

branch [14], the expressions for n=m=1
are true at @ >0only. Near the sink plane

¢ =¢,—p<<1and (1.5) are represented as

w, =3kRS+0(&?), k=-K(@), R=R(g,),
P, = p((”l):l"‘(l_% )(%Mo"_hw_l);

m#zlib=—"PL_p c2nd.
m-1

m=1:b=-2p,In¢+b, m=M(g,);

n B
nzl:a=——--+a*"";
n-1

n=1:a=-2In{+a, n=-N(¢). (1.6)

The coefficients a, and b are determined by
integrals (1.5) with ¢ = ¢,. For a slender round
cone they are expressed in explicit form [14].
The formulas (1.6) are true for non-slender
bodies also since in this case A =0(<?) .

The results obtained show that in the sink plane
two singularity types are in the outer boundary

layer part. For k<1 the function U(#7,¢)

exists at {=0 but it reaches this limit
irregularly, the behavior of this function is
studied in details for the slender round cone
[14]. For k=1 the function U(n,¢) is

singular at £ =0, at these parameter values the
boundary layer infinitely growths as ,/a(¢);

at k=1 the singularity is of logarithmic type.
At k>1 the flow separation is observed in
experimental and numerical studies, this
phenomenon leads to change not only the outer
part but also the inner boundary-layer structure.
Therefore the above analysis is not enough to
describe the total flow structure however the
obtained results have an interest since give an
insight to a new possible singularity type in the
3D boundary layer.

The function W (#,¢) is irregular at £ —0; it
has finite limit in this plane at k <1/3 and is
singular at k>1/3; for k=1/3 the singularity
is of logarithmic type. The 3D boundary-layer
singularity in the sink plane at 1/3<k <1 is
related with the behavior of transversal flow
only. This singularity leads to the longitudinal
vortex component strengthening in the outer
part of the viscous region. We note that the
singularity takes place as at negative (k <2/3)
and positive (k >2/3) pressure gradient; hence
this effect is not determinative, the singularity
is formed under action of inertia and
centrifugal forces. The critical value k., =1/3 is
undependable on Mach number and wall
temperature. However at specific conditions if
the numerical value k(h,,M)>1/3 [1-7] the



flow structure is determined in particular by the
singularity in the outer boundary layer part and
the presented analysis has actual interest.

2. Boundary-region flow

The singularity of the boundary-layer equations
leads to vortex boundary region formation in
the sink-plane vicinity with the transversal
dimension of the order of boundary layer
thickness. In this region, the transverse
diffusion is the effect of the first order, and to
describe it we introduce the variables

z =JkxR¢ /e, u=u(y,z), h=h(y,z),
w=w(y,z), g:[%Re((pl)]_%

Using these variables and Egs. (1.3) in Navier-
Stokes equations [13] at ¢ > ¢, € >0, and

y >>1 we obtain the self-similar equations for

the outer part of the boundary region in the
form

W,, +(1-k) yW, +kw,, +(§+ szWZ +

+2k(m-1)W +2pU =
U, +kU, +(1-k)yU, +kzU, =0. (2.1)

For k <1 these equations has the solution
U (y,2)=Certe(yTK)/2Jert (2/+2),
W =-B(z)Cerfc(y,1-k)/2),
B, +G+ zj B, —2(m-1) B =-2mp,F(2),
F(2)=erf (2/42). (22)

The function B(z) is expressed by Kummer
function ®(a,b,x) [16]

B =mp,B ()+B D(1- m,g,——zz),
=b (RM/g) . (2.3)

Here B,(z) is particular solution of
inhomogeneous equation (2.2). The coefficient
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., 1s determined from matching condition of

(2.3) with (1.6). In the particular case m=1,
Eq. (2.2) is integrated in the explicit form

B=B,-2pF(2),
B, =b+ p1(2|n(R\/@/e)+C+ln 2—1),

\/_J.e’l(t)lntdt—

—j e (X)X j e(t)F (t)dt,
e(z) =exp(2°/2).

where C is Euler constant. The number 1 in
Fig. 2 denotes the function F,(z) ; the number 2
denotes its asymptote at z>>1, Inz-0.54,
corresponding to the boundary-layer solution

(1.6). Another explicit solution corresponds to
m=1/2,

B(Z): By, F(2)/z—

—2p1{F(z)+2\E[e’1(z)—1}/z}.
The numbers 3 and 4 in Fig. 2, respectively,
denote the functionF(z)/z and its boundary-

layer asymptote 1/z .

F(z)=F(z)(Inz—-%)

14} !
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Fig. 2. Navier-Stokes and Boundary-Layer Equations
Solutions

Therefore, at k>1/3in the boundary layer
near the sink plane the vortex region is formed,;
in this region, reduced set of Navier-Stokes
equations describe the flow. Obtained solutions
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are regular and matched with solutions of the
boundary-layer equations.

3. Viscous-inviscid interaction

Another effect generated by the singularities in
the sink plane at k >1/3 is the boundary layer
growth at £ —0 and appearance of the

viscous-inviscid interaction. From (1.4) and
(1.6) the estimations for the boundary-layer

thickness A(¢) can be obtained

k:y&A~‘Wmﬂﬂ§ﬁ;
]/3<k<1:A~\Ii(l—m)ln(l/g“z)/(l—k);
k>1:A~ " [In(Y/2?);
k=1:A~In(1¢?). (3.1)

In order to the viscous-inviscid interaction
effect would be of principal order the
transversal velocity w, from (1.1) would be of

the order of the velocity w, induced by the

boundary-layer growth. This condition allows
estimating the transverse dimension of the
interaction region Ag as

_1 _1
Ap~ ¢ ~Nmex*, W, ~w,; ~ kRu,vmex*,

W, ~ 26U, . OA _ w, =3kRu,Ap, (3.2)
RYXx~ o<
A Yy
2
&
3 1 .
< Z
5 az -
a) Top View ; b) Back View

Fig. 3. Flow Structure Near the Sink Plane

In the boundary-layer region 1 (see Fig. 3)
y~1, 2" ~ Az=XAg; to describe the flow in

this region we introduce the new variables and
obtain the equations:

s=R¢/\e,
U, =U,(¢)+0(g), h,=h,(¢)+0(¢)
w, = 2u\eW, (x,5), A=W,, K =W,
A =0(¢),R=R(¢)+0(¢),
u=u(xy,s),h=h(xy,s), w=w(xy,s),
v=f +Kg+ Ag, +xf,,
u,, =W,wu, —vu, +Zxuu,,
w,, =W, ww, —vw, +W(2u+W, w)—
—h(2+W,,)+2xuw,,
h,, =W,wh, —vh, —Mu; +2xuh,. (3.3)

The boundary conditions for Egs. (3.3) have
the form (1.1), and the enthalpy equations is
integrated in the form (1.2). Solutions of Egs.
(3.3) will be matched with (1.6) at s— 0.
Initial conditions are needed also for Egs. (3.3)
an some X = X,, which can be obtained from a

solution of the Navier-Stokes equations in the
body nose vicinity; this feature peculiar to 3D
equations does the problem more complicated.

In the region 2 in Fig. 3 (y" ~z" ~Az), the
flow is inviscid and is determined by
interaction due to growth of the displacement

thickness 6" =&d(x,s). At  moderate

supersonic Mach numbers the flow in this
region is nonvortical and we introduce the flow

potential ®* and local variables as

Y=y /Ne, z=2/e,
(%Y, 2")=u,[ x+eD(xY,Z)]
y¢+y@_
ov?: oz®

oo _ 2
oY |,y ox '

[wjzimjz

_— + _—

oY oz )|,
Y +Z° >

Using the local symmetry property,
5(x,¢)=5(x,—¢), on the body surface we
obtain:

0,

-0




o=-12 5(x,t)In|Z —t/dt,

W, (x,s)=—ks[1+r],
4m 0 FS(x,t)dt
r(x,s)=——|———=-—
(x:5) 7 axl s° -t
W, (x.¢)=—k(1-a),
4_mgT5t(x,t)tdt
T oxy s

q(x,s)=-r,=- . (3.4)

s

In the outer boundary layer part at y>>1the
solution of (3.3) has the form

t:y/a/d(x,s), u=1+U(xt,s),
w=1-c(xs)U,
v=y[1-k(1+r)], P, =3(3M,+h,—1)
U, +tU, +k(1+r)dsU, —2dxU, =0,
U :Clerfc(t/\/i),

(1+r)sd, —2mxd, —2(n—-1+q)d =—2n
(1+r)sc, —2mxc, —2(m—-1+q)c =
=-2m(p,~ap,)

Along characteristics &(x,s)=const, which
are streamlines of the inviscid flow, the
equations for d=d(¢,s) and c=c(&,s)are

reduced to the equations similar to (1.4)
(1+r)s& —2mxg, =0,
r=r(&s), a=q(<&:s),
(1+r)sd, —2(n—1+q)d =-2n
(1+r)sc,—2(m-1+q)c=—2m(p,—qp,)

The solutions of these equations are
represented by the quadratures:

c=CE,s"*+Q(¢&,s)+s'E thE L,

Ez(é,s)zexp[—!L[ Intdtj,

m(pl_ poq)
m-1+q

m-1+q
1+r

Q- L(Es)=
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1—1
d=DEs'" "+ —— 'lEj Bt dt
n-1 +q n 1+q
Es(f,s):exp[—jlt IntdtJ,
n-1+q
1(&,s)= : 35
(5 S) 1+r (35)

At s—oo the interaction is became weaker,
r—0 u q—0, and the integrals in Egs. (3.5)
tend to zero. Comparing the limit expressions
for d and c with Egs. (1.6) for a and b we
find:

C=b,e"", D=a,e""

The functions c(&,s) u d(&,s) have infinite
values at the points (£,,0) and (&,,0), in
which L(&,,0)=0 and 1(&,0)=0; in both

points the singularities are of the logarithmic
type and near these points the functions c(&,s)

and d(&,s) are expressed by equations that are
similar to (1.5) and (1.6) for m=n=1. At
L(£,0)<0 and 1(&,0)<0 the singularity is

of power type. If the boundary layer thickness
growth at s—0 along the streamline
&=const than g+r>0 and the viscous-
inviscid interaction does the singularity
weaker. The singularity appearance depends on
the longitudinal coordinate, in the nose region
the interaction is stronger and the singularity
cannot arise however it can arise downstream
where the interaction is weaker.

4. Conclusions

Solutions of equations for the outer part of the
boundary layer on slender conical bodies are
obtained in the form of quadratures; its
asymptotic expressions near a sink plane are
true for non-slender bodies. The singularity of
the solutions leads to formation of multi-layer
flow structure near the sink plane that is shown
in Fig. 3. In the boundary region 3 of the

dimension z" ~y" =O(g«/§) the flow is
described by reduced Navier-Stokes equations
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with the constant pressure gradient. The
obtained solutions of these equations are
regular and matched with solutions of boundary
layer  equations. In  the region 2

(2 ~y' =0(J2x%)), the flow is inviscid and

determined by interaction with boundary layer.
The 3D interacting boundary layer lies at the
bottom of the region 2 (the region

1.y :O(g\/;), z' :O(\/Ex%)). In the whole

singular region including regions 1, 2, and 3,
the flow is described by parabolized Navier-
Stokes equations, which are composite
equations from the point of view of asymptotic
theory. Although in this work the conical
bodies are considered results of item 3 show
that singularities of regarded type can occur in
solutions of the 3D boundary layer equations
on arbitrary bodies.
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