
Abstract 

Singularities in the outer part of the 

laminar boundary layer on pointed 

conical bodies and flow structure 

generated by them near a sink plane are 

studied. Asymptotic solutions of 

boundary-layer equations and 

singularity types are obtained in explicit 

form. It is shown that in the singularity 

vicinity the boundary region is formed, in 

which reduced Navier-Stokes equations 

describe the flow; regular analytical 

solutions of these equations are obtained 

to match with boundary-layer solutions. 

Two-layer flow model  is derived for the 

region, in which the effect of viscous-

inviscid interaction is important. 

Analysis of equations shows that the 

interaction weakens the singularity, its 

type becomes a function of the distance 

from the nose but this effect does not 

eliminate the singularity totally. 

Introduction 

The flow over conical bodies is a simplest and 

well-studied problem of 3D laminar boundary 

layer theory. However singularities, which 

arise in this flow and have direct relation to 

such problems, as boundary-layer solution 

unique existence, and 3D separation do not 

explained until now. Moreover the exact 

singularity type is not known.  Analyses of 

flows over simple bodies such as round or 

elliptic cones shown that there are many self-

similar solutions in the symmetry plane, and in 

the sink plane a solution does not exist at some 

incidence range depending on wall 

temperature, surface shape, Mach and Prandtl 

numbers [1-7]. It was assumed that such 

solution behavior is related with violation of 

self-similarity in the sink plane. However 

calculations shown that a non-self-similar 

solution exist only at well defined blowing 

velocities [8,9].  These results shown that in 

the range of the solution nonexistence 

qualitative flow structure changes are arisen 

near the wall; however a nature of these 

changes is not known. Another possible 

singularity reason is the principle of 

dependence and influence violation [1,4,6,11].  

Numerical integration of self-similar equations 

in transversal direction reveals the single 

singularity that is the violation of symmetry 

conditions in the form of finite transversal 

velocity in the sink plane [9-12]. Calculations 

[10,11] point to essential disagreements  with 

experimental data long before the separation 

appearance. Numerical solutions being in well 

agreement with data have been obtained on the 

base of Navier-Stokes equations [8,13]. For a 

slender round cone singularities in the sink 

plane have been studied on the base of the 

explicit asymptotic solution for outer 

boundary-layer part [14]. For arbitrary conical 

bodies such analysis is presented in the 

reference [15,16] and present work. Also the 

asymptotic analysis of the Navier-Stokes 

equations is carried out, and the flow structure 

near a sink plane is studied.  
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1. Singularities of boundary-layer

equations 

The laminar boundary layer on a conical 

surface at Pr 1    in the orthogonal 

coordinate system xy  (Fig. 1) is described by 

the equations [1] 
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Fig. 1. Flow Scheme and Coordinates 

Here x  is the distance from the body nose 

along generator referenced to the body length 

l ,   is transversal coordinate (Fig. 1), Pr  is 

Prandtl number,  ,f y  ,  ,g y   and  ,v y 

are flow functions and transformed normal 

velocity, y   is referenced to  l  normal to the 

body,   R   is metric coefficient, asterisks

denote the differentiation with respect to 

argument, indexes x ,   and y denote the  

differentiation with respect to these variables. 

The density  , enthalpy h , viscosity  , 

longitudinal and transversal velocities ( u  and 

w ) are referenced to them values at the outer

boundary, 1h  .  The flow function on the 

outer boundary-layer edge indexed by “ e ” are 

normalized to their values in the freestream 

indexed by “ ”; they are functions of   only. 

The transversal velocity on outer boundary-

layer edge 0ew  in the initial value plane 

0   (  0 0K  ), and in the sink plane 1   

(  1 0K k    ), in which two boundary layer 

parts came from different sides of the source 

plane are collided. 

Eqs. (1.1) are simplified for slender bodies 

since in this case (1)A O , 1 1A  , 

1e e eu     . In this case the enthalpy 

equation (1.1) allows the Crocco integral 

21 1
0 02 2

, 1w r r wh h h u M u h h M      .  (1.2) 

We consider the asymptotic form of Eqs. (1.1) 

at 1y  , so that the flow functions are 

represented as 
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Equations (1.3) have the solution 
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To extract singularities in the sink plane we 

represent solutions for the functions  a   and

 b   in the form of quadratures using the

integration by parts 
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 (1.5)                    

The constant  1C k  is calculated from

matching condition with a numerical solution 

inside the boundary layer. At 1n   and 1m   

Eqs. (1.5) satisfy to the initial conditions at 

0   for regular at (0) 0K   solution 

branch [14],  the expressions  for 1n m   

are true at 0  only. Near the sink plane 

1 1      and (1.5) are represented as 
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 1 11: 2ln , .n a a n N          (1.6) 

The coefficients na  and mb  are determined by 

integrals (1.5) with 1  . For a slender round 

cone they are expressed in explicit form [14]. 

The formulas (1.6) are true for non-slender 

bodies also since in this case 2

1 ( )A O  . 

The results obtained show that in the sink plane 

two singularity types are in the outer boundary 

layer part. For 1k   the function  ,U  

exists at 0   but it reaches this limit 

irregularly, the behavior of this function is 

studied in details for the slender round cone 

[14]. For 1k   the function  ,U    is

singular at 0  , at these parameter values the 

boundary layer infinitely growths as  a  ;

at 1k   the singularity is of logarithmic type. 

At 1k   the flow separation is observed in 

experimental and numerical studies, this 

phenomenon leads to change not only the outer 

part but also the inner boundary-layer structure. 

Therefore the above analysis is not enough to 

describe the total flow structure however the 

obtained results have an interest since give an 

insight to a new possible singularity type in the 

3D boundary layer.  

 The function  ,W    is irregular at 0  ; it

has finite limit in this plane at 1 3k   and is 

singular at 1 3k  ; for 1 3k   the singularity 

is of logarithmic type. The 3D boundary-layer 

singularity in the sink plane at 1 3 1k   is 

related with the behavior of transversal flow 

only. This singularity leads to the longitudinal 

vortex component strengthening in the outer 

part of the viscous region. We note that the 

singularity takes place as at negative ( 2 3k  ) 

and positive ( 2 3k  ) pressure gradient; hence 

this effect is not determinative, the singularity 

is formed under action of inertia and 

centrifugal forces. The critical value 1 3ck   is 

undependable on Mach number and wall 

temperature. However at specific conditions if 

the numerical value  , 1 3c wk h M   [1-7] the 
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flow structure is determined in particular by the 

singularity in the outer boundary layer part and 

the presented analysis has actual interest. 

2. Boundary-region flow

The singularity of the boundary-layer equations 

leads to vortex boundary region formation in 

the sink-plane vicinity with the transversal 

dimension of the order of boundary layer 

thickness. In this region, the transverse 

diffusion is the effect of the first order, and to 

describe it we introduce the variables  

   , , , , ,z kxR u u y z h h y z   

   
1
23

12
, , Re .w w y z  



      

Using these variables and Eqs. (1.3) in Navier-

Stokes equations [13] at 1  , 0  , and 

1y   we obtain the self-similar equations for 

the outer part of the boundary region in the 

form  
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  2
13
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z

k m W pU
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 1 0.yy zz y zU kU k yU kzU        (2.1) 

For 1k   these equations has the solution 

      1, 1 2 2 ,U y z C erfc y k erf z   
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 ( ) 2 .F z erf z             (2.2)

The function  B z  is expressed  by Kummer

function  , ,a b x  [16]
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Here 0 ( )B z  is particular solution of 

inhomogeneous equation (2.2). The coefficient 

mB  is determined from matching condition of 

(2.3) with (1.6). In the particular case 1m  , 

Eq. (2.2) is integrated in the explicit form  

 1 1 12B B p F z  , 

  1 1 1 2ln ln 2 1 ,B b p R kx C      
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where C  is Euler constant.  The number 1 in 

Fig. 2 denotes the function  1F z ; the number 2 

denotes its asymptote at 1z  , ln 0.54z  , 

corresponding to the boundary-layer solution 

(1.6). Another explicit solution corresponds to 

1/ 2m  , 

 
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1/2

12
1
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2 ( ) 2 1 .

B z B F z z

p F z e z z



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The numbers 3 and 4 in Fig. 2, respectively, 

denote the function ( )F z z  and its boundary-

layer asymptote 1 z . 

Fig. 2. Navier-Stokes and Boundary-Layer Equations 

Solutions 

Therefore, at 1/ 3k  in the boundary layer 

near the sink plane the vortex region is formed; 

in this region, reduced set of Navier-Stokes 

equations describe the flow. Obtained solutions 
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are regular and matched with solutions of the 

boundary-layer equations. 

3. Viscous-inviscid interaction

Another effect generated by the singularities in 

the sink plane at  1 3k   is the boundary layer 

growth at 0   and appearance of the 

viscous-inviscid interaction. From (1.4) and 

(1.6) the estimations for the boundary-layer 

thickness    can be obtained

 

     

2

2

1 3: ~ ln ln 1 ;

1 3 1: ~ 1 ln 1 1 ;

k

k m k





 

    

 1 21: ~ ln 1 ;nk                                  

 21: ~ ln 1 .k   (3.1) 

In order to the viscous-inviscid interaction 

effect would be of principal order the 

transversal velocity ew  from (1.1) would be of 

the order of the velocity eiw  induced by the 

boundary-layer growth. This condition allows 

estimating the transverse dimension of the 

interaction region   as   

1 1
4 4~ ~ , ~ ~ ,e ei em x w w kRu m x   

 
  

3
2

2
~ ~ ,e

ei e e

u
w w kRu

R x


 




 


    (3.2) 

a) Top View ; b) Back View

Fig. 3. Flow Structure Near the Sink Plane 

In the boundary-layer region 1 (see Fig. 3) 

~1y , ~z z x     ; to describe the flow in 

this region we introduce the new variables and 

obtain the equations: 

s R  , 

       1 1,e e e eu u O h h O      

 3
2

, , ,e e e e esw u W x s A W K W  

     1 1, ,A O R R O    

     , , , , , , , , ,u u x y s h h x y s w w x y s  

2
3

,s xv f Kg Ag xf     

2
3

,yy e s y xu W wu vu xuu  

 

 

2
3

2 2
3 3

,

yy e s y es
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w W ww vw w u W w

h W xuw

    

  

2 2
0 3

.yy e s y y xh W wh vh M u xuh      (3.3) 

The boundary conditions for Eqs. (3.3) have 

the form (1.1), and the enthalpy equations is 

integrated in the form (1.2). Solutions of Eqs. 

(3.3) will be matched with (1.6) at s . 

Initial conditions are needed also for Eqs. (3.3) 

an some 0x x , which can be obtained from a 

solution of the Navier-Stokes equations in the 

body nose vicinity; this feature peculiar to 3D 

equations does the problem more complicated. 

In the region 2 in Fig. 3  ( ~ ~y z z   ), the 

flow is inviscid and is determined by 

interaction due to growth of the displacement 

thickness  ,x s   . At moderate 

supersonic Mach numbers the flow in this 

region is nonvortical and we introduce the flow 

potential   and local variables as 

, ,Y y Z z     

   , , , ,ex y z u x x Y Z       

2 2
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,
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Y Z
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Y Z
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

 

   
 

 

 


 

    
    

    

Using the local symmetry property, 

   , ,x x     , on the body surface we

obtain:  
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
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 

   , 1 ,esW x k q   

 
 

2 2

0

,4
, .

t

s
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q x s r
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




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In the outer boundary layer part at 1y  the 

solution of (3.3) has the form 

   

 

, , 1 , , ,

1 , ,

t y d x s u U x t s

w c x s U

  

 

 1 1v y k r     ,  3 1
0 02 2

1wp M h  

  2
3

1 0tt t s xU tU k r dsU dxU     , 

 1 2 ,U C erfc t  

   1 2 2 1 2 ,s xr sd mxd n q d n        

   

 1 0

1 2 2 1

2

s xr sc mxc m q c

m p qp

     

  

Along characteristics  ,x s const  , which

are streamlines of the inviscid flow, the 

equations for  ,d d s  and  ,c c s are

reduced to the equations similar to (1.4) 

 1 2 0s xr s mx    , 

   , , , ,r r s q q s    

   1 2 1 2sr sd n q d n      , 

     1 01 2 1 2sr sc m q c m p qp      

The solutions of these equations are 

represented by the quadratures: 

 1 1 1 1

2 2 2, ,L L L

t

s

c CE s Q s s E Q E t dt


        

 2 , exp lnt

s

E s L tdt
 

  
 
 , 

 1 0
,

1

m p p q
Q

m q




 
  

1
, ,

1

m q
L s

r


 



 

 

1 1
1 1 3

3 3 2
,

1 1

I
I I t

s

q E t dtn
d DE s ns E

n q n q

  
   

   
  

 3 , exp ln ,t

s

E s I tdt
 

  
 


 
1

, .
1

n q
I s

r


 



 (3.5) 

At s  the interaction is became weaker, 

0r   и 0q  , and the integrals in Eqs. (3.5) 

tend to zero. Comparing the limit expressions 

for d  and c  with Eqs. (1.6) for a  and  b  we 

find:  

1 1,m n

m nC b D a    . 

The functions  ,c s  и  ,d s  have infinite

values at the points  ,0c and  ,0d , in 

which  ,0 0cL    and  ,0 0dI   ; in both

points the singularities are of the logarithmic 

type and near these points the functions  ,c s

and  ,d s  are expressed by equations that are

similar to (1.5) and (1.6) for 1m n  . At 

 ,0 0L    and  ,0 0I    the singularity is

of power type. If the boundary layer thickness 

growth at 0s   along the streamline 

const   than 0q r   and the viscous-

inviscid interaction does the singularity 

weaker. The singularity appearance depends on 

the longitudinal coordinate, in the nose region 

the interaction is stronger and the singularity 

cannot arise however it can arise downstream 

where the interaction is weaker. 

4. Conclusions

Solutions of equations for the outer part of the 

boundary layer on slender conical bodies  are 

obtained in the form of quadratures; its  

asymptotic expressions near a sink plane are 

true for non-slender bodies.   The singularity of 

the solutions leads to formation of multi-layer 

flow structure near the sink plane that is shown 

in Fig. 3. In the boundary region 3 of the 

dimension  ~z y O x    the flow is

described by reduced Navier-Stokes equations 
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with the constant pressure gradient. The 

obtained solutions of these equations are 

regular and matched with solutions of boundary 

layer equations. In the region 2 

(  
3
4~z y O x   ), the flow is inviscid and 

determined by interaction with boundary layer. 

The 3D interacting boundary layer lies at the 

bottom of the region 2 (the region 

1:  y O x  ,  
3
4z O x  ). In the whole 

singular region including regions 1, 2, and 3, 

the flow is described by parabolized Navier-

Stokes equations, which are composite 

equations from the point of view of asymptotic 

theory.  Although in this work the conical 

bodies are considered results of item 3 show 

that singularities of regarded type can occur in 

solutions of the 3D boundary layer equations 

on arbitrary bodies. 
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