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Abstract  

The objective of this paper is to stress that the 
size of a Linear Fractional Representation 
(LFR) significantly depends on the way tabulated 
or irrational data are approximated during the 
prior modeling process. It is notably shown that 
rational approximants can result in much 
smaller LFR than polynomial ones. Accor-
dingly, 2 new methods are proposed to generate 
sparse rational models, which avoid data 
overfitting and lead to simple yet accurate LFR. 
The 1st one builds a parsimonious modeling 
based on surrogate models and a new powerful 
global optimization method, and then translates 
the result into a fractional form. The 2nd one 
looks for a rational approximant in a single step 
thanks to a symbolic regression technique, and 
relies on Genetic Programming to select sparse 
monomials. This work takes place in a more 
general project led by ONERA/DCSD and aimed 
at developing a Systems Modeling, Analysis and 
Control Toolbox (SMAC) for Matlab©. 

1  General Introduction 

A Linear Fractional Representation (LFR) is a 
model where all known and fixed dynamics of a 
given system are put together in a linear time-
invariant plant M, while the uncertain and 
varying parameters are stored in a perturbation 
matrix ∆  (Fig. 1). LFR modeling is a widely 
spread and a very efficient tool in the fields of 
system analysis and control design. It notably 
allows the robustness properties of uncertain 
closed-loop plants to be evaluated (e.g. using µ-
analysis or Lyapunov-based methods), and to 
design robust control laws (especially using H∞ 
approaches) or gain-scheduled controllers [40]. 
But the efficiency of those analysis and 
synthesis techniques strongly depends on the 

complexity of the considered LFR, which is 
measured in terms of both the size of the matrix 
∆  and the order of the plant M. An increase in 
complexity is usually source of conservatism, 
and can even lead to numerical intractability. 
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Fig. 1. Linear Fractional Representation 

In most industrial applications, physical 
systems are described using a mix of nonlinear 
analytical expressions and tabulated data. 
Therefore, a two-step procedure has to be 
implemented to obtain a suitable LFR: a linear 
model with a rational dependence on the system 
parameters is first generated, and then converted 
into a linear fractional form. Several techniques 
such as object-oriented realization exist to 
perform the latter transformation. Although the 
minimality of the resulting LFR cannot be 
guaranteed, symbolic preprocessing techniques, 
as well as numerical reduction, usually permit to 
overcome complexity. Efficient software such 
as the LFR Toolbox for Matlab© is also 
available (see [21] and references therein for a 
comprehensive overview of LFR modeling). On 
the other hand, the preliminary issue of 
converting the tabulated or irrational data into 
simple yet accurate rational expressions has 
been paid much less attention, although it is of 
significant practical importance. In the aero-
nautic field for example, most aircraft models 
include tabulated aerodynamic coefficients 
determined by CFD, wind tunnel experiments or 
flight tests, and several controller gains depend 
on the flight parameters in a tabulated fashion. 

The motivations for addressing the issue of 
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tabulated data approximation in this paper are 
twofold. The first one is of physical nature. 
Computing rational expressions with sparse 
structure, for which the number of terms in the 
numerator and denominator is as low as 
possible, is a natural way to prevent data 
overfitting and to ensure a smooth behavior of 
the model between the points used for 
approximation. On the other hand, building an 
LFR from a polynomial or a rational expression 

),,( 1 nxxf K  results in a block diagonal matrix 
],,[diag

1
1

np
n

p IxIx K=∆ . The number jp  of 
repetitions of each parameter jx  in ∆  is 
strongly linked to the number of occurrences of 

jx  in f. Indeed, although this is not an exact 
rule, the trend is as follows: the fewer the 
occurrences of jx  in ),,( 1 nxxf K , the smaller 
the size of ∆ . In other words, no matter how 
efficient the LFR generation tools can be, they 
are of little help if the rational expressions to be 
converted are unnecessarily complex. Hence, 
the need to get tractable LFR for analysis and 
design purposes is another strong motivation for 
generating sparse rational expressions. 

For a given accuracy, an intuitive idea is to 
determine a rational function for which the 
numerator P and denominator Q are two poly-
nomials of the lowest possible degrees. This 
fairly simple strategy is followed by most 
existing methods. A classical linear least-
squares (LS) technique is notably implemented 
in the LFR Toolbox [21] in case the rational 
function is restricted to be polynomial. In the 
general case, a nonlinear LS technique, 
implemented for example in the Curve Fitting 
Toolbox of Matlab©, tries to minimize the 
approximation error, whereas a Quadratic 
Programming problem solved by [5] ensures 
that the resulting rational function intersects a 
set of intervals containing the data. But all these 
techniques suffer from the same drawback: all 
admissible monomials of P and Q are usually 
nonzero, regardless of their real ability to model 
the data. More generally, the question of which 
terms should be included in the model is often 
addressed by trial-and-error, or even ignored in 
practice. A way to deal with this question is to 
use Orthogonal LS (OLS), which allows to 
evaluate the ability of each monomial to 
efficiently model the data and therefore to select 
only the most relevant ones, leading to sparse 
expressions. This approach was applied by [24] 
to model aeronautical data with polynomials, 

but practical methods leading to rational 
expressions are still missing. Yet, the additional 
degrees of freedom offered by such expressions 
could lead to simpler expressions and thus to 
smaller LFR. 

In this context, the main contribution of 
this paper is to propose 2 new methods to 
compute rational expressions with sparse 
structure and as few monomials in P and Q as 
possible. The 1st method relies on an indirect 
approach that builds a sparse model based on 
neural networks at first, before translating the 
result into the final fractional form. A stepwise 
selection algorithm is used, combining the 
benefits of forward OLS to estimate the 
regression parameters with a new powerful 
global optimization algorithm to determine the 
best location of the regressors. The 2nd method 
performs the data approximation by building a 
sparse modeling in a single step thanks to a 
symbolic regression technique. A recent 
evolutionary algorithm, Genetic Programming 
(GP), is used to select monomials, and is 
coupled with a nonlinear iterative procedure to 
estimate the coefficients of the rational function. 
Besides, the resulting LFR must be well-defined 
in order to be used for analysis or control [40]. 
To ensure that its denominator has no roots in 
the parametric domain, a computationally effi-
cient method based on µ-analysis is presented, 
which is an additional contribution of this paper. 

The paper is organized as follows. The 
polynomial/rational approximation problem is 
first stated in §2 and the main existing solutions 
are briefly recalled. The new methods are then 
described in §3-4, as well as the algorithm permit-
ting to check the non singularity of the resulting 
rational functions in §5. A real aeronautical 
example is finally presented in §6, where the 
new methods are compared to the existing ones 
w.r.t. both the accuracy and LFR complexity. 

2  Problem Statement and Baseline Solutions 

Let }{ ],1[, Nkyk ∈  be a set of samples (measu-
rements, tabulated data...) corresponding to 
several parametric configurations }{ ],1[, Nkkx ∈  
of a given system. More precisely, each 

n
R∈= ],,[ 1 n

kkk xxx K  contains the values of the n 
explanatory variables for which the sample 

R∈ky  is obtained. The objective of this paper 
is to compute a rational function RR

n →:f  of 
reasonable complexity which approximates these 
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data, i.e. such that )( kxf  is close to ky  for all 
],1[ Nk ∈  in the sense of a certain criterion (see 

below). The main existing approaches are 
briefly recalled below and will be referred to as 
the baseline solutions (BS) in the sequel. 
Remarks: The case where an analytical 
expression RR

n →:Af  is available instead of N 
samples of )( 1+n -tuples }{ ),,...,,( 21

k
n
kkk yxxx  is 

not considered here (see e.g. [27]). Moreover, 
this paper only deals with approximation (or 
regression) and not with interpolation, which 
would aim at finding a rational function f such 
that the equalities kk yxf =)(  are strictly 
satisfied for a large number N of samples (see 
[13] and references therein). 

The most common approach consists in 
restricting f  to be a polynomial one, that is: 

∑
=

==
Pn

i
ii xraxPxf

0

)()()(                                     (1) 

where }{ ],0[, Pi nir ∈  are polynomial regressors 
and }{ ],0[, Pi nia ∈  are coefficients to be 
determined. The issue is then to solve a linear 
LS problem with respect to these coefficients 
[21], i.e. to minimize the following criterion: 

∑
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−=
N

k
kk xPyC

1

2)]([                                          (2) 

A well-known improvement to this 
approach relies on a preliminary orthogonali-
zation process to decouple the regressors. As a 
result, the ability of each new regressor to 
reduce the criterion C can be evaluated 
regardless of those already selected. Hence, 
only the most relevant ones can be considered, 
which amounts to a certain extent to minimize 
the complexity of the approximation (1) while 
still guaranteeing a low approximation error. 
This method was successfully applied by [24]. It 
was later improved, allowing a sparse poly-
nomial approximant to be computed satisfying 
the following global and local constraints: 





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≤
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                          (3) 

where 1ε  and 2ε  are some user-defined positive 
values [10,29]. The more general case where f is 
extended to become a rational function is now 
considered: 
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A first method consists in solving a nonlinear 
LS problem with respect to the coefficients 

}{ ],0[, Pniai ∈  and }{ ],0[, Qnibi ∈ , that is to 
minimize the following criterion: 

∑
=
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                                       (5) 

This is notably implemented in the Curve 
Fitting Toolbox of Matlab© [37], where several 
optimization tools can be used to compute a 
solution (Levenberg-Marquardt algorithms, 
trust-region methods...). One of its major 
drawbacks is that several local minima may 
exist due to the non-convexity. Hence, the 
results strongly depend on the initialization, 
which is not a trivial issue. A 2nd method was 
introduced by [22] in the context of polynomial 
approximation and then generalized by [5] to 
the rational case. Firstly, an uncertainty interval 

][ , kk
yy  is defined around each ky . A rational 

function is then determined that intersects all 
these intervals: ],1[ Nk ∈∀ kkkk

yxQxPy ≤≤ )()( . 
This can be achieved by solving a Quadratic 
Programming problem in the coefficients 

}{ ],0[, Pniai ∈  and }{ ],0[, Qnibi ∈  with a strictly 
convex objective function. It will be denoted by 
the QP approach in the sequel. 
Remark: It is usually desirable that the 
denominator of f  has no roots in the considered 
parametric domain, so as to ensure that f  has a 
smooth behaviour and that well-posed LFR are 
obtained [40]. Unfortunately, none of the afore-
mentioned techniques can guarantee this. 

3  Indirect Approach for Rational Modeling 

Beyond the polynomial/rational expressions, the 
use of Surrogate Modeling becomes widespread 
among many scientific domains to replace the 
system or the reference model when this one is 
too restrictive for achieving some tasks like 
optimization, modeling, parameter identification 
[4,35]... Hence, a wide range of methods has 
been developed for building surrogate models 
efficiently, i.e. with both accuracy and parsi-
mony. For example, Neural Networks (NN) are 
recognized nowadays as an efficient alternative 
for representing complex nonlinear systems, and 
tools are available to model static nonlinearities 
such as the ones encountered when formulating 
a problem in LFR form. The underlying idea for 
solving the considered approximation problem 
via an indirect approach consists in using such 
methods to derive a rational model. The tool 
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used in the sequel was developed by ONERA for 
A/C modeling and identification purposes and is 
named KOALA  (Kernel Optimization Algorithm 
for Local Approximation). Due to space 
constraints, only its main features will be out-
lined in this paper (cf. [4,35] for more details). 

At first, it is noteworthy that a nonlinear 
model can be either linear, nonlinear, or both in 
regard to its internal parameters. For NN, the 
latter corresponds to Multi-Layer Perceptrons 
[17], but also to Radial Basis Function 
Networks (RBFN) when the centers and the 
radii of the radial units are optimized [14]. 
However, the joint optimization of the whole set 
of model parameters (linear and nonlinear) 
practically results in ill-posed problems, and 
consequently in convergence and regularization 
issues. That is why Linear-in-their-Parameters 
models (LP) are often adopted, allowing more 
simple and robust algorithms. By taking 
advantage of their features, structural identifi-
cation, i.e. determining the best set of regressors 
from the available data only, becomes possible 
in addition to parametric estimation. 

To choose the unknown regressors, KOALA  
is based on forward selection, starting with an 
empty subset and adding them one at a time in 
order to gradually improve the approximation. 
To speed up that constructive process, a 
preliminary orthogonalization technique is used, 
permitting the individual regressors to be 
evaluated regardless of those previously 
recruited for the modeling [6]. In the case of 
local models like RBFN, choosing each 
regressor amounts to optimizing the kernel 
functions in the input space. To implement this 
optimization step, a global method is the best 
suited, and KOALA  uses a new evolutionary 
metaheuristic known as Particle Swarm Optimi-
zation (PSO) [8]. The performance of this 
approach is strongly dependent on the algo-
rithms added to the basic version of PSO (e.g., 
[7] uses a standard and very simple version of 
PSO). After a thorough literature analysis, the 
most promising techniques have been selected 
and implemented in the part of the KOALA  code 
used to optimize the regressors' positioning. 

Without going into details, a brief survey 
of the main functionalities is given below: fixed 
and adaptive topologies → from static (star, 
ring, Von Neumann) to dynamic ones (e.g. 
Delaunay neighboring) [19]; particle's displa-
cement → standard, with constriction factor, 

FIPS and weighted FIPS versions of the velocity 
update laws [23]; hybrid local/global method 
→ to speed up the convergence with direct 
search (improved Nelder-Mead, Delaunay 
tessellation for the initial simplex); multiswarm 
strategies → for competing swarms or for parti-
tioning the search domain into several sub-
regions [38]; diversity analysis → to provide 
information about the swarm dispersion and to 
refine the convergence tests [26]; swarm 
initialization → from random to low discre-
pancy sequences (centroidal Voronoï diagram, 
Hammersley) [9]; competitive multirun → to 
benefit from several topologies, algorithm 
variants and tuning; charged vs neutral 
particles → cooperation of particles with dif-
ferent physical properties [1].  

The coupling of that PSO algorithm with 
the constructive technique detailed in [35] 
allows structural and parametric optimizations 
to be jointly performed for different types of 
regressors with local basis. In the case of 
KOALA , it is applied to RBFN but also to Local 
Linear Models (LLM) after some adjustments of 
the OLS method. LLM networks generalize 
RBFN [25], but are also related to other local 
models like Fuzzy Inference Systems. They are 
derived by replacing the RBF linear weightings 
(denoted by w  in the sequel) by an affine 
expression depending on the model inputs. It is 
thus expected that fewer kernels will be required 
to achieve the same accuracy in most 
applications. For LLM, the generic formulation 
used to represent LP models is: 

)6()()(][)(ˆ #

11 0
kl

mmn

l
lkj
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j

i
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n

i
jikk xrwxrxwxfy ∑∑ ∑
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== =
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where )( kj xr  represents the kernel value of the 
j th regressor function, and with 10 =kx  to include 
the constant terms of the affine modeling into 
the second sum. This relationship permits to 
recover a standard LP formulation with an 
extended set of regressors #

lr . To adapt the 
constructive algorithms to the kernel functions 

#
lr , the group of regressors sharing the same 

kernel jr  needs to be considered as a whole 
when adding or subtracting terms, and no more 
separately as it was the case for RBFN or 
polynomials [6,24]. 

KOALA  aims at gradually selecting a series 
of regressors by optimizing their kernel 
parameters, i.e. the ellipsoid centers c and radii 
σ  related to the radial unit (see (7) hereafter). 
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At each step of the process, the PSO particles 
are associated with vectors of 2nR  gathering 
these parameters for the n explanatory variables. 
To sum up, the global performance of KOALA  
algorithm results from two complementary 
aspects: applying efficient OLS-based forward 
selection and Separable Nonlinear Least 
Squares optimization to powerful modeling 
(LLM) and, on the other hand, implementing a 
new PSO algorithm which outperforms the 
standard ones [35]. To give a rough idea, the use 
of KOALA  results in a model comprising only 5 
radial units in the benchmark case of §6 (for a 
global quadratic error 3105.2 −≈C ), whereas a 
more standard algorithm, e.g. the one of [7], 
requires not less than 15 RBF units to achieve 
the same level of approximation. According to 
what is explained below, the (maximum) degree 
of the rational approximant can be reduced from 
30 to 10 and the LFR size from 60 to 20. 

Back to rational modeling, a first idea for 
an indirect approach capitalizing on KOALA  
results is to convert equation (6) a posteriori 
into a rational form. By choosing Gaussian 
radial functions, this regression expresses as the 
sum of m terms, the j th one being for any x: 
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Therefore, it is possible to use Pade appro-
ximants of the exponential function, so as to 
replace it by a rational function in reduced form 

],[exp qp . The latter expresses as the quotient of 
two polynomials of the thp  and thq  degrees, 
and the corresponding approximant to )(xf j  
becomes a rational function of the th)( 12 +p  and 

th2q  degrees for every explanatory variable ix . 
However, getting high quality approximants 
(e.g. decreasing rapidly to 0 as ix  increases) 
requires large values for q (with 2>− pq  or 3). 
Hence, the degree of the resulting rational 
function is penalized, with no guarantee about 
the accuracy of the global regression )(xf .  

Consequently, a more relevant approach 
consists in replacing the exponential function 
straight away by such an approximant, and then 
to proceed to the optimization of the regression 
with this new kernel function. The simplest 
transform corresponds to the reduced form 

]1,0[exp , i.e. to the sum of m components like: 

)()(
1

22
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/)(1)( ∑∑
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n

i
jiji

ii
n

i
jij cxxwxf σ     (8) 

This solution is preferred here and is used 
for the comparisons shown in §6. Hence, 
another class of models is added to the 
RBF/LLM kernels proposed by KOALA , based 
on the Pade approximant ]1,0[exp . It must also be 
mentioned to conclude that the post-processing 
of the resulting regression, prior to the 
derivation of the LFR, makes use of the Matlab© 
Symbolic Toolbox. Again, several options can 
be considered for gathering the m components 

)(xf j  into a single rational function: global 
expansions of numerator and denominator, 
factorization of the denominator, sum of 
elementary rational terms. The latter appears to 
be the most relevant since it favors some simpli-
fications when building the final LFR. A factor 
of 2 can usually be gained in the final LFR size. 

4  Direct Approach for Rational Modeling 

When the model structure has to be determined 
as a whole (numerator-denominator degrees, 
number and type of monomials), the approxi-
mation problem cannot generally be solved by 
means of classical techniques. Over a few expla-
natory variables, a sequential and systematic 
exploration of the terms cannot reasonably be 
expected owing to the curse of dimension-
nality. For example, with 2 variables and a 
maximum degree of 10, there are not less than 
1015 rational candidates available! Moreover, 
this dual-purpose optimization (model structure 
&  parameters) is complicated by the fact that a 
rational model is no more a Linear-in-its-
Parameters one (LP). Fortunately, several 
promising techniques have recently appeared for 
global optimization, with the purpose of solving 
symbolic regression problems close to this one. 
This is the case of Genetic Programming, and 
after a short description of its main principles, 
the way it can be adapted to the approximation 
of a rational function will be examined. 

GP is part of the evolutionary family, as 
Genetic Algorithms are (GA). It uses the same 
principles inspired by those of natural evolution 
to evolve a population of individuals randomly 
created, until a satisfactory solution is found. 
Opposite to GA, it is not based on a binary 
coding of information but uses a structured 
representation instead, as syntax trees. These 
parse trees appear more suited to solve 
structural or symbolic optimization problems, 
since they can have different sizes and shapes. 
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The alphabet used to create these models is also 
flexible enough to cope with different types of 
problems. So, it can be used to encode 
mathematical equations, behavior models, or 
computer programs. First works date back to the 
early 60s, but GP was really implemented and 
brought up to date only in the early 90s by [18], 
thanks also to an increase of computing power. 
He was able to prove the interest of GP in many 
application fields, and laid the foundations of a 
standard paradigm which did not evolve much 
since then. The iterative process breeds a 
population and transforms the individuals 
generation after generation by applying 
Darwinian mechanisms: reproduction, mutation, 
crossover, but also gene duplication or deletion. 
They are applied to the hierarchically structured 
trees of the individuals, comprising a set of 
nodes which fall into 2 categories: the set F of 
internal nodes called functions or operators, and 
the set T of tree's leaves called terminals. 

All types of functions are acceptable: from 
mathematical operators ( ÷×−+ ,,, , ,exp...), to 
logical, conditional (tests) or user-defined. The 
terminals correspond to the function arguments 
but can also include some internal parameters or 
predefined constants. The content of T is a 
central issue for the problem of a joint 
structural/parameter optimization. That requires 
the best functional structure to be discovered by 
choosing and arranging relevant operators from 
F, but also to rule the coefficients involved in 
this functional structure by adapting the 
numerical values of the parameters included in 
T. Such a symbolic regression extends the 
notion of numerical regression. To be able to 
discover the right parameter values, an extra 
mechanism must be added to the GP algorithm 
[18]. It relies on introducing ephemeral random 
constants in T and applying evolution mecha-
nisms to those new kinds of terminals. Though 
consistent with the GP formalism, this constant 
creation is not efficient since tuning a single 
parameter mobilizes many subtrees and raises 
the nodes number and the tree depth conside-
rably. With LP models, it is wiser to simplify 
this formulation by taking the regression 
parameters away and including only the 
explanatory variables ix  and possibly some 
predefined constants in T. Hence, the 
individuals are just mobilized to represent the 
functional relationships between the ix . At 
every GP iteration, the regressor functions jr  

(and their number QP nnm +≤ ) are derived from 
the trees corresponding to any individual by 
analyzing the tree structure from its root. The 
numerical value of the regression parameters 

),( jj ba  can then be adapted afterwards, by 
applying any minimization technique to the 
squared error. Moreover, coupling GP with an 
OLS algorithm allows to solve the optimization 
of the ),( jj ba  very efficiently [20]. 

It is also noteworthy that GP permits to 
produce polynomials by setting F= },{ ×+  and 
T= },,,,1{ 210 nxxxx K= , hence restricting the 
regressors to simple monomials. The modeling 
complexity can also be controlled by penalizing 
some internal GP parameters like the tree depth, 
the number of branches/leaves, or by favoring 
the selection of the simplest operators. 
Practically, this can be achieved thanks to the 
fitness function which is used to handle the GP 
mechanisms of evolution. Similarly to what is 
done in ridge regression, a penalty component 
can be added to the fitness function to favor the 
simplest models and to prevent overfitting. In 
the framework of LP models and OLS 
algorithms, more elaborated regularization 
strategies can be implemented, e.g. using Leave-
One-Out validation errors [35]. 

The interest in combining orthogo-
nalization methods with symbolic optimization 
of the kernel functions has already been studied 
some years ago and has resulted in the Matlab© 

code GP-OLS [20]. More recently, a Toolbox has 
been developed (GPTIPS), permitting to encode 
and to adapt a LP model in a multigene 
symbolic regression form [33]. However, none 
of these tools is suitable for synthetizing a 
rational modeling directly, especially because 
the parameter optimization becomes a nonlinear 
process then. Consequently, the direct approach 
proposed here is somewhat different and is 
dedicated to the rational case. It is issued from 
several considerations: � the rational case 
extends the polynomial one (structured model 
expressed as the quotient of two polynomials) 
� GP is fully justified since there is no other 
classical option available for jointly optimizing 
the structure of numerator and denominator (e.g. 
the brute-force search of the BS does not mini-
mize the number of monomials) � numerator 
and denominator remain LP when considered 
separately, and it would be a pity not to take 
advantage of that. Hence, GP is clearly a 
promising alternative for rational modeling, but 
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a prior adaptation of the method is required to 
use it with maximum efficiency. A tool named 
TRACKER (Toolbox for Rational Approximation 
Computed by Knowing Evolutionary Research) 
was thus developed from scratch by ONERA for 
rational modeling, and is described below. 

Each component of the rational function 
(numerator and denominator) is represented by 
a single separate chromosome which comes in a 
syntax tree form as usual, and a priori includes 
several genes. The sets T and F are chosen as 
for the polynomial case, and a peculiar syntax 
rule is defined to ensure that all the non terminal 
nodes located below a ''× -type node are also 

''× -type nodes. This trick avoids creating 
useless branching which could result in splitting 
and multiplying some monomials. Thanks to 
this architecture, a gene appears as a subtree 
linked to the root node of its chromosome 
through one or several ''+ -type nodes. A parse 
analysis of the different genes composing a 
chromosome also permits to avoid the creation 
of spurious genes by identifying and grouping 
them if any. Fig. 2 depicts a tree's architecture 
corresponding to a simple )(xf  example. Five 
genes related to the different monomials are 
highlighted by colors (except from constants 

0a , 0b  which are integral part of the structure). 
To solve the parametric optimization, i.e. 

to estimate the regression coefficients ),( jj ba  of 
any created tree, it is suitable to implement a 
well-known technique, in use for identifying 
transfer functions in the frequency domain [30]. 
It consists in iteratively linearizing the expres-
sion of the quadratic cost function as: 
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where the approximation of kε  comes from the 
replacement of the parameters jb  by their most 
recent estimates jb̂  at the running iteration, and 
the denominator is arbitrarily normalized by 
choosing 10 =b . By denoting the corresponding 
estimate of the denominator, for any sample kx : 

)(ˆ1)(ˆ
1

kj

n

j
jk xrbxD Q

Q

∑
=

+=                                   (10) 

the method relies on the fact that the approxima-
tion )(ˆ)( kk xDxD ≈  becomes fully justified when 
the iterative process has converged. The vector 

of normalized outputs can then be written as 
T

NN xDyxDyy )](ˆ/)(ˆ/[ 11
* L= , and the kth row 
kR  of the regression matrix follows =kk RxD )(ˆ  

][ )()()()(1 11 knkkkknk xryxryxrxr Q

Q

QP

P

P −− LL . 
Finally, the parameters to be determined 

T
nn QP

bbaaaw ][ 110 LL=  are a solution of the 
linearized LS problem *1)(ˆ yRRRw TT −= . 

2
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xf
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Fig. 2. Ex. of TRACKER parse tree for rational modeling 

In practice, 2 or 3 iterations are usually 
sufficient to ensure the convergence of this 
process, conveniently initialized by choosing 

1)(ˆ =kxD  at the first iteration. In case of ill-
conditioning, a few iterations of Levenberg-
Marquardt optimization are used to recover a 
satisfactory result. Introduced into the selection 
process, that technique enables to evaluate the 
performance of every individual very easily, by 
coming down to a short series of ordinary LS. 
The overcost remains limited because the major 
part of the computations required by matrix R 
can be stored and reused through the loop. 

5  Algorithmic Aspects 

An important issue is now to check that the 
denominator Q has no roots in the parametric 
domain, i.e. 0)( ≠xQ  for all D∈x . Such a 
requirement is actually a prerequisite to build a 
well-defined LFR. Unfortunately, checking 
whether a multivariate polynomial of degree 4 
or higher with real coefficients has a real zero is 
NP-hard in the general case [2]. A classical 
strategy is therefore to focus on sufficient 
conditions, and some methods based on 
parameter-dependent slack variables [32] or 
sum-of-squares [36] have been recently intro-
duced. They give quite accurate results, but can 
become computationally demanding if some 
multivariate polynomials of high degrees are 
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considered. An efficient alternative based on µ-
analysis is proposed here. 

)(xQ  is firstly converted into an LFR 
according to Fig. 1, where 1)(1)( +×+∈ ppM R  is a 
fixed matrix and pp

R
×∈= ],,[diag

1

1
np

n
p IxIx K∆ . 

By breaking M  up into a block form ]2,1[,)( ∈jiijM  
according to this interconnection, the relation 

12
1

112122 )()( MMIMMxQ p
−−+= ∆∆  holds. It is 

also considered without loss of generality that 

D  corresponds to the unit hypercube, i.e. 
],[ 11 +−∈ix  for all ],[1 ni ∈ , an assumption which 

can always be achieved using a suitable affine 
transformation. The following technical lemma 
is then introduced, noting that )0(22 QM =  is 
nonzero (otherwise, it could be directly 
concluded that Q has a real zero in D ). 
Lemma: Let 21

1
221211 MMMMX −−= . Then, for 

all D∈x : 0)(0)( det ≠−⇔≠ ∆XIxQ p . 
This result shows that the considered non 

singularity check is strongly linked to the notion 
of structured singular value (see [12] and 
references therein), the definition of which is 
recalled below. 
Definition: Let ∆  denote the set of all real 

pp×  matrices with the same block-diagonal 
structure as ∆ . If no matrix ∆∈D  renders the 
matrix XDI p −  singular, then the structured 
singular value )(X

∆
µ  is equal to 0. Otherwise, 

it is defined as the inverse of the size of the 
smallest ∆∈D  satisfying 0)(det =− XDI p : 

{ }
1

0)(),( detmin)(
−

∈ 










=−= XDIDX p

D
σµ

∆

∆
   (11) 

where (.)σ  denotes the largest singular value. 
Computing the exact value of )(X

∆
µ  is 

NP-hard, but polynomial-time algorithms allow 
both an upper bound )(X

∆
µ  [39] and a lower 

bound )(X
∆

µ  [34] to be computed. The 
following algorithm can then be derived: 
� If 1)( >X

∆
µ , a value D∈x~  has been 

computed for which 0)~( =xQ . 
� If 1)( <X

∆
µ , it can be concluded that 

D∈∀≠ xxQ ,0)( . 
� Otherwise, nothing can be assessed. A strategy 

is then to recursively divide D , and to apply 
the procedure again on each subdomain until 
either a µ  lower bound becomes larger than 1, 
or the maximal µ  upper bound on all 
subdomains becomes smaller than 1. 

Such a procedure is only heuristic, but its 
convergence properties appear quite good in 
practice. Actually, it can usually be observed 
that the smaller a sub-domain, the smaller the 

gap between the bounds (see [28] for a detailed 
study of such a behavior). A conclusion is thus 
usually obtained after only a few iterations, 
sometimes even after a single one. 

If a worst-case value D∈x~  is identified, 
for which 0)~( =xQ , the algorithms presented in 
§2 and §4 are applied again with the additional 
constraint 0)~( >≥ εxQ , where ε is a user-
defined tolerance. The trick is to repeat the 
whole procedure until a nonsingular rational 
function is computed (or a maximum number of 
iterations is reached). Once a suitable rational 
function is obtained, with no poles in the 
considered domain, it is finally converted into 
an LFR. Finding a minimal order representation 
(i.e. for which the size of ∆  is minimum) 
remains an open problem. Yet, efficient 
techniques exist to compute a reasonably low-
order one, and an extra numerical reduction can 
be applied without altering the accuracy. All 
these computations can be performed using the 
LFR toolbox for Matlab© [21]. 

6  Comparison of the methods and results 

Equations (12) describe the longitudinal motion 
of a rigid A/C [3], in body axis (x forwards and 
z downwards): 













++=

−−=

engDLMyy

engL

Fz+αsinCαcosCxLC
ρSV

qI

γcosmg+αsinFC
ρSV

mVqmV

δδ

α

][

)12(

)(
2

2
2

2

&

&

 

The flight parameters are the Angle of 
Attack α  (AoA), the pitch rate q, the airspeed V, 
and the flight path angle γ. The constants are 
denoted by g (gravity), ρ (air density), m (A/C 
mass), S (reference surface), yyI  (lateral y-axis 
inertia), and L (mean aerodynamic chord). engF  
is the thrust, whereas cgref xxx −=δ  and 

refeng zzz −=δ  represent the distances between 
the aerodynamic reference point and the centre 
of gravity x-location or the engine z-location.  

MDL CCC ,,  represent the aerodynamic 
coefficients relative to the lift, drag and pitching 
moments. They are usually obtained as 
nonlinear look-up tables during wind tunnel 
tests [4]. In order to translate equations (12) in 
fractional form, these tabulated data have to be 
replaced by polynomial or rational expressions, 
which can theoretically be achieved using any 
of the previous approximation methods. This is 
illustrated in the sequel for the drag coefficient 
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DC  of a generic fighter aircraft model [10]. The 
reference data depend on both Mach number 
Ma  and AoA α   (in radians), and are depicted 
on a fine 50x90 grid in Fig. 3 which is used as a 
validation set to evaluate the approximation 
results achieved with a rougher 40x60 grid of 
learning data. 

 

Fig. 3. Drag coefficient displayed on the validation grid 

The two approaches proposed for rational 
approximation are compared with the Quadratic 
Programming based approach of §2 (QP), that 
gave the best results so far amongst the so-
called baseline solutions. All results are 
gathered in Table 1, and some are also displayed 
in Fig. 4-5. For the Surrogate Modeling based 
algorithm of §3 (SM), the number of monomials 
is given both for the factorized expression 
directly obtained with KOALA  (without 
brackets) and for the underlying expanded form 
(between brackets). 

GP has the advantage that rational 
approximants with sparse structures are 
obtained. Only a few monomials are actually 
nonzero, which results in low-order LFR. 
Moreover, good numerical properties are 
observed, and significantly higher degrees can 
be considered than with QP. For a given degree, 
SM and QP give quite similar results regarding 
the number of monomials. Indeed, both methods 
generate rational functions for which the 
numerator/denominator are composed of almost 
all admissible monomials when written in 
expanded form. But SM offers two major pros. 
First, the size of the resulting LFR is smaller, 
since the symbolic expression does not appear 
as a single expanded rational function but is 
already factorized as a sum of elementary 
components. Besides, SM is numerically much 
more efficient and allows higher degree appro-
ximations to be computed very quickly (some 
seconds) and easily. This is not possible with 
QP, since numerical troubles appear for degrees 

larger than 10, thus leading to poor results. 
GP and SM thus appear to be the most 

promising methods on this example. Moreover, 
these methods prove quite complementary, as 
far as the trade-off between parsimony and 
accuracy is considered. SM provides very 
accurate approximations, which do not have a 
sparse structure but are directly factorized in a 
compact form resulting in low order LFR. On 
the other hand, GP directly selects the most 
relevant monomials to generate very sparse 
symbolic expressions. It also appears that GP is 
more accurate for low degree approximations, 
while SM gives better results for degrees larger 
than 10. Actually, at lower degrees, the number 
of radial units used by SM (half the required 
degree) is not sufficient to represent the shape 
of the reference data accurately enough. Hence, 
a minimum number of radial basis functions is 
required to get the most out of this method. 

Method Degree Monomials RMSE Max error LFR size 

6 56 9.73 10-4 1.91 10-3 17 

8 90 5.80 10-4 1.27 10-3 23 

10 132 4.57 10-4 1.22 10-3 29 
QP 

12 182 4.56 10-4 1.21 10-3 35 

6 34 9.46 10-4 4.86 10-3 15 

8 31 7.85 10-4 4.47 10-3 17 

10 29 6.92 10-4 3.47 10-3 21 

12 36 6.61 10-4 3.23 10-3 26 

GP 

14 43 6.53 10-4 3.05 10-3 28 

6 18 (47) 1.27 10-3 6.24 10-3 12 

8 24 (79) 7.87 10-4 5.12 10-3 16 

10 30 (119) 6.74 10-4 3.46 10-3 20 

12 36 (167) 5.44 10-4 2.56 10-3 24 

14 42 (223) 4.10 10-4 2.12 10-3 28 

16 48 (287) 2.81 10-4 1.38 10-3 32 

SM 

24 72 (623) 1.83 10-4 1.07 10-3 48 

Table 1. Comparison of results with different approaches 

Finally, it is worth noting that the compu-
tational cost is strongly in favour of SM and QP. 
As the degree of the rational function increases, 
the Darwinian mechanisms of evolution 
involved by Genetic Programming require more 
generations to produce very accurate solutions, 
and the CPU time is seriously impaired. 
Nevertheless, a parallel implementation will be 
provided with the next release of the 
SMAC/APRICOT library to address this issue 
when using multicore computers. 
Remark: It is worth emphasizing that the non 
singularity of the rational functions is 
guaranteed in all cases thanks to the µ-analysis 
based test proposed in §5. 
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7  Conclusion and prospects 

This work takes place in the framework of a 
more general project aimed at developing a 
Systems Modeling, Analysis and Control 
(SMAC) Toolbox. This Matlab/Simulink©-based 
library is being developed by ONERA to provide 
both researchers and control engineers with a 
complete set of tools for making the design, 
tuning and validation of control laws easier. 
More precisely, the purposes of the SMAC 
project are to control aeronautical vehicles 
throughout their whole flight domain in the 
presence of nonlinearities, uncertainties, 
external disturbances and imperfectly measured 
or estimated data, while obtaining strong 
guarantees w.r.t. the stability margins and the 
performance levels. A free (limited) version of 
SMAC can be downloaded at w3.onera.fr/smac, 
that includes 3 kinds of tools: 
� modeling tools allowing the considered 

physical systems (usually represented in 
industrial context using a mix of nonlinear 
analytical expressions and tabulated data) to 
be described as a single parameterized model 
(typically a LFR), 

� design tools combining robustified nonlinear 
dynamic inversion techniques, structured H∞ 
synthesis and anti-windup compensation, so as 
to produce simple yet powerful controllers, 
which can be easily implemented but do not 
require any interpolation as this is the case 
with classical gain-scheduled techniques, 

� analysis and validation tools permitting the 
robustness properties of the resulting closed-
loop systems to be evaluated in the presence 
of model uncertainties (µ-analysis), but also of 
time-varying parameters and hard non-
linearities such as magnitude and rate 
saturations (IQC-based analysis). 

Accordingly, the methods described in this 
paper belong to the 1st group of modeling tools, 
and are aimed at creating accurate LFR with 
sizes as reduced as possible in order to facilitate 
the subsequent use of the design and analysis 
tools belonging to the 2nd or 3rd group. They are 
implemented in the APRICOT library (Approxi-
mation of Polynomial and Rational-type for 
Indeterminate Coefficients via Optimization 
Tools) of the SMAC toolbox that includes a set 
of optimization tools to convert numerical data 
into simple yet accurate polynomial or rational 
expressions. A limited version is available at 

w3.onera.fr/smac/apricot. It can be applied to 
any sampled data with 2≤n  explanatory 
variables and 100≤N  samples. The full version 
has been tested on much more complicated 
benchmarks and has proved successful in 
several real-world applications. It can be 
obtained in the context of a close cooperation 
with ONERA/DSCD. 

More generally, the SMAC toolbox contains 
a new release of the LFR toolbox [21], that 
implements a more powerful lfr  object as well 
as additional modeling tools. It also provides the 
SMART library (Skew-Mu Analysis based 
Robustness Tools) [30], which collects most of 
the µ-analysis based algorithms developed at 
ONERA/DCSD during the last decade. Finally, 
some routines dedicated to robustness analysis 
in the presence of time-varying parameters and 
nonlinearities, as well as control-oriented tools, 
will also be included soon. 
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Fig. 4. Approximated coefficients of degree 8 and approximation errors (top=QP, middle=GP, bottom=SM) 

0
0.2

0.4
0.6

0.8 −0.2
0

0.2
0.4

−0.06

−0.04

−0.02

0

0.02

αMa

C
D

 0
0.2

0.4
0.6

0.8 −0.2
0

0.2
0.4

−2

0

2

4

x 10
−3

αMa

e
r
r
o
r

 
Fig. 5. Approximated coefficient of degree 24 and approximation error (SM) 


