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Abstract complexity of the considered LFR, which is
measured in terms of both the size of the matrix
4 and the order of the plam. An increase in
complexity is usually source of conservatism,
and can even lead to numerical intractability.

The objective of this paper is to stress that the
size of a Linear Fractional Representation
(LFR)significantlydepend®nthewaytabulated

or irrational data are approximated during the

prior modeling process. It is notably shown that
rational approximants can result in much
smaller LFR than polynomial ones. Accor-
dingly, 2 new methods are proposed to generate N

sparse rational models, which avoid data
overfitting and lead to simple yet accurate LFR.
The f' one builds a parsimonious modeling In most industrial applications, physical
based on surrogate models and a new powerful systems are described using a mix of nonlinear
global optimization method, and then translates analytical expressions and tabulated data.
the result into a fractional form. The'2one Therefore, a two-step procedure has to be
looks for a rational approximant in a single step implemented to obtain a suitable LFR: a linear
thanks to a symbolic regression technique, and model with a rational dependence on the system
relies on Genetic Programming to select sparse parameters is first generated, and then converted
monomials. This work takes place in a more into a linear fractional form. Several techniques
general project led bypyNERA/DCSDand aimed such as object-oriented realization exist to

Fig. 1. Linear Fractional Representation

at developing a Systems ModeliAgalysisand perform the latter transformation. Although the

Control Toolbox(SMAC)for Matlab®. minimality of the resulting LFR cannot be
guaranteed, symbolic preprocessing techniques,

1 General Introduction as well as numerical reduction, usually permit to

overcome complexity. Efficient software such
as the LFR Toolbox for Matldb is also
available(see[21] and references therein for a
comprehensive overview of LFR modelin@n

the other hand, the preliminary issue of
converting the tabulated or irrational data into
f simple yet accurate rational expressions has
been paid much less attention, although it is of
significant practical importance. In the aero-
nautic field for example, most aircraft models
include tabulated aerodynamic coefficients
determined by CFD, wind tunnel experiments or

- flight tests, and several controller gains depend
gﬂ;t)rot?](;hez%ﬁ(gir e?]?;/n s(;het?]%lseg C:r? gggiesrs a[lérll?j]' on the flight parameters in a tabulated fashion.

Synthesis techniques Strong|y depends on the The motivations for addl’eSSing the issue of

1

A Linear Fractional Representation (LFR) is a
model where all known and fixed dynamics of a
given system are put together in a linear time-
invariant plant M, while the uncertain and
varying parameters are stored in a perturbation
matrix 4 (Fig. 1). LFR modeling is a widely
spread and a very efficient tool in the fields o
system analysis and control design. It notably
allows the robustness properties of uncertain
closed-loop plants to be evaluated (e.g. uging
analysis or Lyapunov-based methods), and to
design robust control laws (especially ushig



tabulated data approximation in this paper are
twofold. The first one is of physical nature.
Computing rational expressions with sparse
structure, for which the number of terms in the
numerator and denominator is as low as
possible, is a natural way to prevent data
overfitting and to ensure a smooth behavior of
the model between the points used for
approximation. On the other hand, building an
LFR from a polynomial or a rational expression
f(x1,...,x") results in a block diagonal matrix
A=diag[x! ..., x"I, 1. The numberp; of
repetitions of each parametex! in 4 is
strongly linked to the number of occurrences of
x! in f. Indeed, although this is not an exact
rule, the trend is as follows: the fewer the
occurrences of! in f(xi,...,x"), the smaller
the size of4. In other words, no matter how
efficient the LFR generation tools can be, they
are of little help if the rational expressions ® b
converted are unnecessarily complex. Hence,
the need to get tractable LFR for analysis and
design purposes is another strong motivation for
generating sparse rational expressions.

For a given accuracy, an intuitive idea is to
determine a rational function for which the
numeratorP and denominato@ are two poly-
nomials of the lowest possible degrees. This
fairly simple strategy is followed by most
existing methods. A classical linear least-
squares (LS) technique is notably implemented
in the LFR Toolbox [21] in case the rational
function is restricted to be polynomial. In the
general case, a nonlinear LS technique,
implemented for example in the Curve Fitting
Toolbox of Matlaly, tries to minimize the
approximation error, whereas a Quadratic
Programming problem solved by [5] ensures
that the resulting rational function intersects a
set of intervals containing the data. But all these
techniques suffer from the same drawback: all
admissible monomials d? and Q are usually
nonzero, regardless of their real ability to model
the data. More generally, the question of which
terms should be included in the model is often
addressed by trial-and-error, or even ignored in
practice. A way to deal with this question is to
use Orthogonal LS (OLS), which allows to
evaluate the ability of each monomial to
efficiently model the data and therefore to select
only the most relevant ones, leading to sparse
expressions. This approach was applied by [24]
to model aeronautical data with polynomials,
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but practical methods leading to rational
expressions are still missing. Yet, the additional
degrees of freedom offered by such expressions
could lead to simpler expressions and thus to
smaller LFR.

In this context, the main contribution of
this paper is to propose 2 new methods to
compute rational expressions with sparse
structure and as few monomials fnandQ as
possible. The %1 method relies on an indirect
approach that builds a sparse model based on
neural networks at first, before translating the
result into the final fractional form. A stepwise
selection algorithm is used, combining the
benefits of forward OLS to estimate the
regression parameters with a new powerful
global optimization algorithm to determine the
best location of the regressors. TH& @ethod
performs the data approximation by building a
sparse modeling in a single step thanks to a
symbolic regression technique. A recent
evolutionary algorithm, Genetic Programming
(GP), is used to select monomials, and is
coupled with a nonlinear iterative procedure to
estimate the coefficients of the rational function.
Besides, the resulting LFR must be well-defined
in order to be used for analysis or control [40].
To ensure that its denominator has no roots in
the parametric domain, a computationally effi-
cient method based gmanalysis is presented,
which is an additional contribution of this paper.

The paper is organized as follows. The
polynomial/rational approximation problem is
first stated in 82 and the main existing solutions
are briefly recalled. The new methods are then
describedn §3-4,aswell asthealgorithmpermit-
ting to check the non singularity of the resulting
rational functions in 85. A real aeronautical
example is finally presented in 86, where the
new methods are compared to the existing ones
w.r.t. both the accuracy and LFR complexity.

2 Problem Statement and Baseline Solutions

Let {y,kO[LN]} be a set of samples (measu-
rements, tabulated data...) corresponding to
several parametric configuratiogs, ,kO[L,N] }
of a given system. More precisely, each
X =[xt,...,xM]OR" contains the values of time
explanatory variables for which the sample
y O® Is obtained. The objective of this paper
is to compute a rational functioh:®" - ® of
reasonableomplexitywhichapproximateshese
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data, i.e. such that(x) is close toy, for all
kO[4,N] in the sense of a certain criterion (see
below). The main existing approaches are
briefly recalled below and will be referred ds
the baseline solutions (BS) in the sequel.
Remarks The case where an analytical
expressionf,:®" - ® is available instead of
samples of(n+1) -tuples {(x¢,%2,....x7), ¥} is
not considered here (see e.g. [27]). Moreover,
this paper only deals with approximation (or
regression) and not with interpolation, which
would aim at finding a rational functionsuch
that the equalities f(x)=y, are strictly
satisfied for a large numbét of samples (see
[13] and references therein).

The most common approach consists in
restrictingf to be a polynomial one, that is:

Np
F(x)=P() =25 1(x) 1)
i=0

where {r;,i0[0,np] } are polynomial regressors
and {a,i0[0,np]} are coefficients to be

A first method consists in solving a nonlinear
LS problem with respect to the coefficients
{a1 |D[0np]} and {hb, |D[0nQ]} that is to
minimize the foIIowmg criterion:

_ P(%)
C= -—X 5
kzl{Yk Q(Xk)} (5)

This is notably implemented in the Curve
Fitting Toolbox of Matlal§ [37], where several
optimization tools can be used to compute a
solution (Levenberg-Marquardt algorithms,
trust-region methods...). One of its major
drawbacks is that several local minima may
exist due to the non-convexity. Hence, the
results strongly depend on the initialization,
which is not a trivial issue. A"2 method was
introduced by [22] in the context of polynomial
approximation and then generalized by [5] to
the rational case. Firstly, an uncertainty interval
[y, V] is defined around each, . A rational
functlon is then determined that intersects all
thesentervals: Ok O[1, N] Y, < P(x)/Q(%) < Vi -

determined. The issue is then to solve a linear This can be achieved T.)y solving a Quadratic

LS problem with respect to these coefficients
[21], i.e. to minimize the following criterion:

N

C = [V~ P(4)I? (2)
k=1
A well-known improvement to this

approach relies on a preliminary orthogonali-

Programming problem the coefficients
{a,i0[0,n,]} and{b,iO[0,n,]} with a strictly
convex objectlve function. It will be denoted by
the QP approach in the sequel.

Remark: It is usually desirable that the
denominator of has no roots in the considered
parametric domain, so as to ensure thais a

in

zation process to decouple the regressors. As asmooth behaviour and that well-posed LFR are

result, the ability of each new regressor to
reduce the criterionC can be evaluated

regardless of those already selected. Hence,
only the most relevant ones can be considered,

which amounts to a certain extent to minimize
the complexity of the approximation (1) while
still guaranteeing a low approximation error.
This method was successfully applied by [24]. It
was later improved, allowing a sparse poly-
nomial approximant to be computed satisfying
the following global and local constraints:

VCss 3)
i ~PO4)|<&  CKOLLN]

where ¢, and ¢, are some user-defined positive
values [10,29]. The more general case wiiése
extended to become a rational function is now
considered:
f(X) _m =

o0 Zar (x) Zh h2(X)

i=0

(4)

obtained [40]. Unfortunately, none of the afore-
mentioned techniques can guarantee this.

3 Indirect Approach for Rational Modeling

Beyond the polynomial/rational expressions, the
use of Surrogate Modeling becomes widespread
among many scientific domains to replace the
system or the reference model when this one is
too restrictive for achieving some tasks like
optimization, modeling, parameter identification
[4,35]... Hence, a wide range of methods has
been developed for building surrogate models
efficiently, i.e. with both accuracy and parsi-
mony. For example, Neural Networks (NN) are
recognized nowadays as an efficient alternative
for representing complex nonlinear systems, and
tools are available to model static nonlinearities
such as the ones encountered when formulating
a problem in LFR form. The underlying idea for
solving the considered approximation problem
via anindirect approach consists in using such
methods to derive a rational model. The tool

3
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used in the sequel was developeddngERA for FIPS and weighted FIPS versions of the velocity
A/C modeling and identification purposes and is update laws [23]hybrid local/global method
namedkKOALA (Kernel Optimization Algorithm  — to speed up the convergence with direct
for Local Approximation Due to space search (improved Nelder-Mead, Delaunay
constraints, only its main features will be out- tessellation for the initial simplexinultiswarm
lined in this paper (cf. [4,35] for more details). strategies— for competing swarms or for parti-
At first, it is noteworthy that a nonlinear tioning the search domain into several sub-
model can be either linear, nonlinear, or both in regions [38];diversity analysis— to provide
regard to its internal parameters. For NN, the information about the swarm dispersion and to
latter corresponds to Multi-Layer Perceptrons refine the convergence tests [26warm
[17], but also to Radial Basis Function initialization — from random to low discre-
Networks (RBFN) when the centers and the pancy sequences (centroidal Voronoi diagram,
radii of the radial units are optimized [14]. Hammersley) [9];competitive multirun — to
However, the joint optimization of the whole set benefit from several topologies, algorithm
of model parameters (linear and nonlinear) variants and tuning;charged vs neutral
practically results in ill-posed problems, and particles — cooperation of particles with dif-
consequently in convergence and regularization ferent physical properties [1].
issues. That is why Linear-in-their-Parameters The coupling of that PSO algorithm with
models (LP) are often adopted, allowing more the constructive technique detailed in [35]
simple and robust algorithms. By taking allows structural and parametric optimizations
advantage of their features, structural identifi- to be jointly performed for different types of
cation, i.e. determining the best set of regressorsregressors with local basis. In the case of
from the available data only, becomes possible KOALA, it is applied to RBFN but also to Local
in addition to parametric estimation. Linear Models (LLM) after some adjustments of
To choose the unknown regreSs®sALA the OLS method. LLM networks generalize
is based on forward selection, starting with an RBFN [25], but are also related to other local
empty subset and adding them one at a time inmodels like Fuzzy Inference Systems. They are
order to gradually improve the approximation. derived by replacing the RBF linear weightings
To speed up that constructive process, a (denoted byw in the sequel) by an affine
preliminary orthogonalization technique is used, expression depending on the model inputs. It is
permitting the individual regressors to be thus expected that fewer kernels will be required
evaluated regardless of those previously to achieve the same accuracy in most
recruited for the modeling [6]. In the case of applications. For LLM, the generic formulation
local models like RBFN, choosing each used to represent LP models is:
regressor amounts to optimizing the kernel m n i mpkm
functions in the input space. To implement this Y« = F(4) = 212 WX Iri(x) = 2w 1 (%) (6)
optimization step, a global method is the best J=1i=0 =1
suited, andKOALA uses a new evolutionary Wherer;(x) represents the kernel value of the
metaheuristic known as Particle Swarm Optimi- j" regressor function, and wit® =1 to include
zation (PSO) [8]. The performance of this the constant terms of the affine modeling into
approach is strongly dependent on the algo- the second sum. This relationship permits to
rithms added to the basic version of PSO (e.g., recover a standard LP formulation with an
[7] uses a standard and very simple version of extended set of regressorg. To adapt the
PSO). After a thorough literature analysis, the constructive algorithms to the kernel functions
most promising techniques have been selectedr{’, the group of regressors sharing the same
and implemented in the part of tkeALA code kernel r; needs to be considered as a whole

used to optimize the regressors' positioning. when aoJIding or subtracting terms, and no more
Without going into details, a brief survey separately as itvas the case for RBFN or

of the main functionalities is given belofixed polynomials [6,24].

and adaptive topologies» from static (star, KOALA aims at gradually selecting a series

ring, Von Neumann) to dynamic ones (e.g. of regressors by optimizing their kernel

Delaunay neighboring) [19]particle’'s displa- parameters, i.e. the ellipsoid centerand radii

cement — standard, with constriction factor, o related to the radial unit (see (7) hereafter).

4
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At each step of the process, the PSO particles This solution is preferred here and is used
are associated with vectors @&f?" gathering for the comparisons shown in 86. Hence,
these parameters for theexplanatory variables.  another class of models is added to the
To sum up, the global performance KabALA RBF/LLM kernels proposed bgoOALA, based
algorithm results from two complementary on the Pade approximaakpy;, . It must also be
aspects: applying efficient OLS-based forward mentioned to conclude that the post-processing
selection and Separable Nonlinear Least of the resulting regression, prior to the
Squares optimization to powerful modeling derivation of the LFR, makes use of the Matlab
(LLM) and, on the other hand, implementing a Symbolic Toolbox. Again, several options can
new PSO algorithm which outperforms the be considered for gathering the components
standard ones [35]. To give a rough idea, the use f;(x) into a single rational function: global
of KOALA results in a model comprising only 5 expansions of numerator and denominator,
radial units in the benchmark case of 86 (for a factorization of the denominator, sum of
global quadratic errolC = 25103), whereas a  elementary rational terms. The latter appears to
more standard algorithm, e.g. the one of [7], be the most relevant since it favors some simpli-
requires not less than 15 RBF units to achieve fications when building the final LFR. A factor
the same level of approximation. According to of 2 can usually be gained in the final LFR size.
what is explained below, the (maximum) degree

of the rational approximant can be reduced from 4 Direct Approach for Rational Modeling

30 to 10 and the LFR size from 60 to 20.

Back to rational modeling, a first idea for
an indirect approach capitalizing OKOALA
results is to convert equation (&) posteriori
into a rational form. By choosing Gaussian
radial functions, this regression expresses as the
sum ofm terms, thé™ one being for any:

N (x —Cji)2

When the model structure has to be determined
as a whole (numerator-denominator degrees,
number and type of monomials), the approxi-
mation problem cannot generally be solved by
means of classical techniques. Ovés\wa expla-
natory variables, a sequential and systematic
exploration of the terms cannot reasonably be
. . _ ; expected owing to the curse of dimension-
. . 4 0’ - . -
f.(X):[ZW..X']r.(x):[zw__x']e i=L T (7) nality. For example, with 2 variables and a
j it i :

i=0 izo maximum degree of 10, there are not less than
ximants of the exponential function, so as to thiS dual-purpose optimization (model structure
replace it by a rational function in reduced form & parameters) is complicated by the fact that a

exqpq- The latter expresses as the quotient of rational model is no more a Linear-in-its-
two polynomials of thep® and q» degrees, Parameters one (LP). Fortunately, several

and the corresponding approximant f () promising techniques have recently appeared for
becomes a rational function of tiiep +1)* ‘and global optimization, with the purpose of solving
oqn degrees for every explanatory variakde symbolic regression problems close to this one.

However, getting high quality approximants 'NiS is the case of Genetic Programming, and
(e.g. decreasing rapidly to 0 aé increases) after a short description of its main principles,
requires large values fer (with g- p>2 or 3). the way it can be adapted to the approximation
Hence, the degree of the resulting rational of a rational function will be examined.

function is penalized, with no guarantee about GP is part of the evolutionary family, as
the accuracy of the global regressio(x) . Genetic Algorithms are (GA). It uses the same

Consequently, a more relevant approach principles inspired by those of natural evolution
consists in replacing the exponential function t© evolve a population of individuals randomly
straight away by such an approximant, and then created, until a satisfactory solution is found.
to proceed to the optimization of the regression OPPOSite to GA, it is not based on a binary
with this new kernel function. The simplest coding of information but uses a structured

expoy  I-€. to the sum ah components like: parse trees appear more suited to solve
’ structural or symbolic optimization problems,

n X n .
fi (%) :(Z;,)Wji X')/(1+Z(X' —c;)%/0%) (8) since they can have different sizes and shapes.
i= i=1
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The alphabet used to create these models is alsqand their numbems<n, +n, ) are derived from

flexible enough to cope with different types of
problems. So, it can be used to encode
mathematical equations, behavior models, or

the trees corresponding to any individual by
analyzing the tree structure from its root. The
numerical value of the regression parameters

computer programs. First works date back to the (a;,b;) can then be adapted afterwards, by

early 60s, but GP was really implemented and
brought up to date only in the early 90s by [18],

thanks also to an increase of computing power.

applying any minimization technique to the
squared error. Moreover, coupling GP with an
OLS algorithm allows to solve the optimization

He was able to prove the interest of GP in many of the (a;,b;) very efficiently [20].

application fields, and laid the foundations of a
standard paradigm which did not evolve much

It is also noteworthy that GP permits to
produce polynomials by setting={+ x} and

since then. The iterative process breeds aT={x°=1x1,x2,...,x"}, hence restricting the

population and transforms the individuals
generation after generation by applying
Darwinian mechanisms: reproduction, mutation,
crossover, but also gene duplication or deletion.
They are applied to the hierarchically structured
trees of the individuals, comprising a set of
nodes which fall into 2 categories: the Eebf
internal nodes calleflinctionsor operators and
the sefl of tree's leaves callédrminals
All types of functions are acceptable: from

mathematical operators+(-,x, <, ,exp...), to
logical, conditional (tests) or user-defined. The
terminals correspond to the function arguments

regressors to simple monomials. The modeling
complexity can also be controlled by penalizing
some internal GP parameters like the tree depth,
the number of branches/leaves, or by favoring
the selection of the simplest operators.
Practically, this can be achieved thanks to the
fitness function which is used to handle the GP
mechanisms of evolution. Similarly to what is
done in ridge regression, a penalty component
can be added to the fitness function to favor the
simplest models and to prevent overfitting. In
the framework of LP models and OLS
algorithms, more elaborated regularization

but can also include some internal parameters orstrategies can be implemented, e.g. using Leave-

predefined constants. The content Dfis a
central issue for the problem of a joint
structural/parameter optimization. That requires

One-Out validation errors [35].
The interest in combining orthogo-
nalization methods with symbolic optimization

the best functional structure to be discovered by of the kernel functions has already been studied
choosing and arranging relevant operators from some years ago and has resulted in the Matlab

F, but also to rule the coefficients involved in
this functional structure by adapting the
numerical values of the parameters included in
T. Such a symbolic regression extends the
notion of numerical regression. To be able to
discover theright parameter values, an extra

codeGP-0LS[20]. More recently, a Toolbox has
been developedcpTIP9, permitting to encode

and to adapt a LP model in a multigene
symbolic regression form [33]. However, none
of these tools is suitable for synthetizing a
rational modeling directly, especially because

mechanism must be added to the GP algorithm the parameter optimization becomes a nonlinear

[18]. It relies on introducingphemerakandom
constants inT and applying evolution mecha-
nisms to those new kinds of terminals. Though
consistent with the GP formalism, this constant
creation is not efficient since tuning a single

processhen.Consequentlythedirect approach
proposed here is somewhat different and is
dedicated to the rational case. It is issued from
several considerations® the rational case
extends the polynomial one (structured model

parameter mobilizes many subtrees and raisesexpressed as the quotient of two polynomials)
the nodes number and the tree depth conside-® GP is fully justified since there is no other

rably. With LP models, it is wiser to simplify
this formulation by taking the regression
parameters away and including only the
explanatory variablesx' and possibly some
predefined constants iInT. Hence, the
individuals are just mobilized to represent the
functional relationships between the'. At
every GP iteration, the regressor functions

classical option available for jointly optimizing
the structure of numerator and denominator (e.g.
the brute-force search of tiBS doesnot mini-
mize the numberof monomials)® numerator
and denominator remain LP when considered
separately, and it would be a pity not to take
advantage of that. Hence, GP is clearly a
promising alternative for rational modeling, but

6
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a prior adaptation of the method is required to
use it with maximum efficiency. A tool named
TRACKER (Toolbox for Rational Approximation
Computed by Knowing Evolutionary Research
was thus developed from scratch ®yERA for
rational modeling, and is described below.

Each component of the rational function
(numerator and denominator) is represented by
a single separate chromosome which comes in ¢
syntax tree form as usual, and a priori includes
several genes. The selsandF are chosen as
for the polynomial case, and a peculiar syntax
rule is defined to ensure that all the non terminal
nodes located below &'-type node are also
'x'-type nodes. This trick avoids creating
useless branching which could result in splitting
and multiplying some monomials. Thanks to
this architecture, a gene appears as a subtre
linked to the root node of its chromosome
through one or severak'-type nodes. A parse
analysis of the different genes composing a
chromosome also permits to avoid the creation
of spurious genes by identifying and grouping
them if any. Fig. 2 depicts a tree's architecture
corresponding to a simpldé(x) example. Five
genes related to the different monomials are
highlighted by colors (except fromonstants
ay, by whichareintegralpartof the structure).

To solve the parametric optimization,
to estimate the regression coefficieds,b;) of
any created tree, it is suitable to implement a
well-known technique, in use for identifying
transfer functions in the frequency domain [30].
It consists in iteratively linearizing the expres-
sion of the quadratic cost function as:

Np
2.2
j=0

i.e.

o)
ri (X) ‘ij Yi T (%) = Yk

=

©)
1+ ij re(Xy)

where the apprOX|mat|on of, comes from the
replacement of the parameters by their most
recent estlmateb at the running iteration, and
the denomlnator is arbitrarily normalized by
choosingh, =1. By denoting the corresponding
estimate of the denominator, for any samgle

D(Xk) 1+ijr (%)
=1

the method relies on the fact that the approxima-
tion D(x,) = D(x,) becomes fully justified when

(10)

-

of normalized outputs can then be erttaSI
y* =[y1/D(x)-- YN /D(xy)]", and thek™ ro

Rk of theregression matrix fO||OWSD(xk)Rk =

1 - n" (X)) ry (Xk) = Yh® (X)) - —Ykr (x)] -

Finally, the parameters to be Yetermined

w=[ay & --an, by--by " are a solution of the

linearized LS problenw = (RTR) 1R"y" .

A +8,X5 13X X5

f(x)=
) by, +b,x; +b,x7 x5 +b3x,x3

4
4

24
O T NNV e OIS —aa
1% chromosome &

-----------------------------------

gnd chromosome

Fig. 2. Ex. of TRACKER parse tree for rational miaalg

In practice, 2 or 3 iterations are usually
sufficient to ensure the convergence of this
process, conveniently initialized by choosing
D(x,) =1 at the first iteration. In case of ill-
conditioning, a few iterations of Levenberg-
Marquardt optimization are used to recover a
satisfactory result. Introduced into the selection
process, that technique enables to evaluate the
performance of every individual very easily, by
coming down to a short series of ordinary LS.
The overcost remains limited because the major
part of the computations required by matfx
can be stored and reused through the loop.

5 Algorithmic Aspects

An important issue is now to check that the
denominatorQ has no roots in the parametric
domain, i.e. Q(x)#0 for all xO®. Such a
requirement is actually a prerequisite to build a
well-defined LFR. Unfortunately, checking
whether a multivariate polynomial of degree 4
or higher with real coefficients has a real zero is
NP-hard in the general case [2]. A classical
strategy is therefore to focus on sufficient
conditions, and some methods based on
parameter-dependent slack variables [32] or
sum-of- -squares [36] have been recently intro-
duced. They give quite accurate results, but can
become computationally demanding if some

the iterative process has converged. The vectormultivariate polynomials of high degrees are

7
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considered. An efficient alternative baseden gap between the bounds (see [&8]a detailed
analysis is proposed here. study of such a behavior). A conclusion is thus
Q(x) is firstly converted into an LFR wusually obtained after only a few iterations,
according to Fig. 1, whersn Og (P"V*(P*) is 3 sometimes even after a single one.
fixed matrixand 4 = diag[x*I , ,..., X"l pn]DQ{PxP. If a worst-case valu&® is identified,
By breakingM upinto ablockform (M;; ); jouz for which Q(X) =0, the algorithms presented in
according to this interconnection, the relation 82 and 84 are applied agaaith the additional
Q(x)=M22+M21A(IP—M11A)‘1M12 holds. It is constraint Q(x)=z¢>0, where £ is a user-
also considered without loss generality that defined tolerance. The trick is to repeat the
D corresponds to the unit hypercube, i.e. whole procedure until a nonsingular rational
x' O[-1,+1] for all i O[1, n], an assumption which  function is computed (or a maximum number of
can always be achieved using a suitable affine iterations is reached). Once a suitable rational
transformation. The following technical lemma function is obtained, with no poles in the

Is then introduced, noting that,, =Q(0) is considered domain, it is finally converted into
nonzero (otherwise, it could be directly an LFR. Finding a minimal order representation
concluded tha@ has a real zero im). (i.,e. for which the size of4 is minimum)

Lemma Let X =M;;-M;,M3M,,. Then, for remains an open problem. Yet, efficient
all xOD: Q(X)#0 - det(l, —X4) #0. techniques exist to compute a reasonably low-

This result shows that the considered non order one, and an extra numerical reduction can
singularity check is strongly linked to the notion be applied without altering the accuracy. All
of structured singular valugsee [12] and these computations can be performed using the
references therein)the definition of which is  LFR toolbox for Matlal§ [21].
recalled below.

Definition: Let A denote the set of all real 6 Comparison of the methods and results

px p matrices with the same block-diagonal
structure as4. If no matrix DOA renders the
matrix 1,-XD singular, then the structured
singular valuey, (X) is equal to 0. Otherwise, ,
it is defined as the inverse of the sjze of the | mvg = mvg- pSV CL ~ FengSinz+ mgcog (12)
smallestD OA satisfyingdet(l , - XD) = 01. 2

Equations (12) describe the longitudinal motion
of a rigid A/C [3], in body axis (x forwards and
z downwards):

. _ pSV? :
11y (X) =| min{z (D), det(l ,—XD) = 0} (11) IWE pT[LCM +OX(Ccost + Cpsina)] + 0z Feng
DOA
wherez(.) denotes the largest singular value. The flight parameters are the Angle of

Computing the exact value of,(X) is Attack a (AoA), the pitch ratey, the airspeety,
NP-hard, but polynomial-time algorithms allow @nd the flight path anglg: The constantsare
both an upper boungi, (X) [39] and a lower ~ denoted byy (gravity), o (air density),m (A/C
bound g (X) [34] to be computed. The mass),S (reference surface),,, (lateral y-axis

following algorithm can then be derived: inertia), andL (mean aerodynamic chord,,,

«If ux (X)>1, a value XOD has been IS the thrust, whereasodx = Xt = Xeg and
comT)ﬁted for whichQ(X) =0. 0z=12,,,~ Z¢ represent the distances between
»If @(X)<1, it can be concluded that the aerodynamic reference point and the centre

Q(x) % 0,0x0D . of gravity x-location or the engine z-location.

= Otherwise, nothing can be assessed. A strategy  C..Co.Cu  represent the aerodynamic

is then to recursively divide>, and to apply coefficients relative to the lift, drag and pitchin
the procedure again on each subdomain until moments. They are usually obtained as
either ax lower bound becomes larger than 1, nonlinear look-up tables during wind tunnel
or the maximal x4 upper bound on all tests [4]. In order to translate equations (12) in
subdomains becomes smaller than 1. fractional form, these tabulated data have to be
Such a procedure is only heuristic, but its rep_laced by polync_)mlal or ratlo_nal expressions,
convergence properties appear quite good in which can theoretically be achieved using any
practice. Actually, it can usually be observed Of the previous approximation methods. This is
that the smaller a sub-domain, the smaller the illustrated in the sequel for the drag coefficient

8
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C, of a generic fighter aircraft model [10]. The larger than 10, thus leading to poor results.
reference data depend on both Mach number GP and SM thus appear to be the most
Ma and AoA a (in radians), and are depicted promising methods on this example. Moreover,
on a fine 50x90 grid in Fig. 3 which is used as a these methods prove quite complementary, as
validation set to evaluate the approximation far as the trade-off between parsimony and
results achieved with a rougher 40x60 grid of accuracy is considered. SM provides very
learning data. accurate approximations, which do not have a
sparse structure but are directly factorized in a
compact form resulting in low order LFR. On
the other hand, GP directly selects the most
. WW'%%' - relevant monomials to generate very sparse

iy Wiy . . .
oy i .
W##jfﬁ?f%%ﬁﬁfﬁ%%ﬂ%ﬁﬁﬂf symbolic exptresf5|or|15 Itdalso appears t_hattQP IS
Sttty i iy

w0 more accurate for low degree approximations,

]

I
L
L | .
" WWW”%%W%%W | while SM gives better results for degrees larger

il

i

than 10. Actually, at lower degrees, the number
of radial units used by SM (half the required
degree) is not sufficient to represent the shape
of the reference data accurately enough. Hence,
Fig. 3. Drag coefficient displayed on the validatgrid a minimum number of radial basis functions is

approximation are compared with the Quadratic . .
. Method Degreg Monomials| RMSE Max error | LFR size
Programming based approach of 82 (QP), that - = SRR =
gave the best results so far amongst the so- 2010 PR
lled baseline solutions. All results are P > 892 L272 2
ca X ) X 10 132 45710 | 1.2210° 29
gathered in Table 1, and some are also displayed 2 182 | 45610 | 12110 35
in Fig. 4-5. For the Surrogate Modeling based 6 32 94610 | 48610 5
algorithm of 83 (SM), the number of monomials 8 31 78510° | 4.471C° 17
is given both for the factorized expression GP | 10 29 69210 | 3.471C° 21
directly obtained with KOALA  (without 12 36 66110 | 32310 26
brackets) and for the underlying expanded form 14 43 65310 | 30510 28
(between brackets). 6 18(47) | 12718 | 6.2410° 12
GP has the advantage that rational 8 | 24(79 | 787 18: 5.12 132 16
approximants with sparse structures are 10 | 30(119) | 6.7410 | 3461 20
btained. Only a few monomials are actually SV | 12 | S6(167) | 54410 | 25610 24
0 ) . . 14 | 42(223) | 41010° | 2.1210° 28
nonzero, which results in low-order LFR. 16 | 48(287) | 28110° | 13810 | 32
Moreover, good numerical properties are 24 | 72(623)| 18310 | 10710 28

observed, and significantly higher degrees can ) .
be considered than with QP. For a given degree, Table 1. Comparison of results with different agmites

SM and QP give quite similar results regarding Finally, it is worth noting that the compu-
the number of monomials. Indeed, both methods tational cost is strongly in favour of SM and QP.
generate rational functions for which the As the degree of the rational function increases,
numerator/denominator are composed of almostthe Darwinian mechanisms of evolution
all admissible monomials when written in involved by Genetic Programming require more
expanded form. But SM offers two major pros. generations to produce very accurate solutions,
First, the size of the resulting LFR is smaller, and the cpu time is seriously impaired.
since the symbolic expression does not appearNevertheless, a parallel implementation will be
as a single expanded rational function but is provided with the next release of the
already factorized as a sum of elementary smAC/APRICOT library to address this issue
components. Besides, SM is numerically much when using multicore computers.

more efficient and allows higher degree appro- Remark It is worth emphasizing that the non
Ximations to be computed very quickly (some singularity of the rational functions is
seconds) and easily. This is not possible with guaranteed in all cases thanks to hanalysis
QP, since numerical troubles appear for degreesbased test proposed in §5.
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wa3.onera.fr/smac/apricotit can be applied to

This work takes place in the framework of a
more general project aimed at developing a
Systems Modeling, Analysis and Control
(SMAC) Toolbox. This Matlab/Simulinkbased
library is being developed byNERA to provide
both researchers and control engineers with a
complete set of tools for making the design,
tuning and validation of control laws easier.
More precisely, the purposes of th&vAcC
project are to control aeronautical vehicles
throughout their whole flight domain in the
presence of nonlinearities, uncertainties,
external disturbances and imperfectly measured
or estimated data, while obtaining strong
guarantees w.r.t. the stability margiasd the
performancdevels.A free (limited) version of
SMAC can be downloadedat w3.onera.fr/smac
that includes 3 kinds of tools:
» modeling tools allowing the considered
physical systems (usually represented
industrial context using a mix of nonlinear
analytical expressions and tabulated data) to [1]
be described as a single parameterized model
(typically a LFR),
design toolscombining robustified nonlinear
dynamic inversion techniques, structureeb H
synthesis and anti-windup compensation, so as
to produce simple yet powerful controllers,
which can be easily implemented but do not
require any interpolation as this is the case
with classical gain-scheduled techniques,

» analysis and validation toolspermitting the
robustness properties of the resulting closed-
loop systems to be evaluated in the presence[6
of model uncertaintiesifanalysis), but also of
time-varying parameters and hard non-
linearities such as magnitude and rate
saturations (IQC-based analysis). [7]

Accordingly, the methods described in this
paper belong to the™group of modeling tools,

and are aimed at creating accurate LFR with

sizes as reduced as possible in order to facilitate [®!

the subsequent use of the design and analysis[g]
tools belonging to the"2 or 3¢ group. They are
implemented in thePRICOT library (Approxi-
mation of Polynomial and Rational-type for

Indeterminate Coefficients via Optimization

Tool9 of the SMAC toolbox that includes a set

of optimization tools to convert numerical data

into simple yet accurate polynomial or rational
expressions. A limited version is available at

(2]
(3]

(4]

(5]

any sampled data withn<2 explanatory
variables andN <100 samples. The full version
has been tested on much more complicated
benchmarks and has proved successful
several
obtained in the context of a close cooperation
with ONERA/DSCD

in

real-world applications. It can be

More generally, th&MAC toolbox contains

a new release of theFr toolbox [21], that
implements a more powerflir object as well
as additional modeling tools. It also provides the
SMART
Robustness ToqQIl$30], which collects most of
the p-analysis based algorithms developed at
ONERA/DCSD during the last decade. Finally,
some routines dedicated to robustness analysis
in the presence of time-varying parameters and
nonlinearities, as well as control-oriented tools,
will also be included soon.

library (Skew-Mu Analysis based
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