

1

Abstract

The objective of this paper is to stress that the
size of a Linear Fractional Representation
(LFR) significantly depends on the way tabulated
or irrational data are approximated during the
prior modeling process. It is notably shown that
rational approximants can result in much
smaller LFR than polynomial ones. Accor-
dingly, 2 new methods are proposed to generate
sparse rational models, which avoid data
overfitting and lead to simple yet accurate LFR.
The 1st one builds a parsimonious modeling
based on surrogate models and a new powerful
global optimization method, and then translates
the result into a fractional form. The 2nd one
looks for a rational approximant in a single step
thanks to a symbolic regression technique, and
relies on Genetic Programming to select sparse
monomials. This work takes place in a more
general project led by ONERA/DCSD and aimed
at developing a Systems Modeling, Analysis and
Control Toolbox (SMAC) for Matlab©.

1 General Introduction

A Linear Fractional Representation (LFR) is a
model where all known and fixed dynamics of a
given system are put together in a linear time-
invariant plant M, while the uncertain and
varying parameters are stored in a perturbation
matrix ∆ (Fig. 1). LFR modeling is a widely
spread and a very efficient tool in the fields of
system analysis and control design. It notably
allows the robustness properties of uncertain
closed-loop plants to be evaluated (e.g. using µ-
analysis or Lyapunov-based methods), and to
design robust control laws (especially using H∞
approaches) or gain-scheduled controllers [40].
But the efficiency of those analysis and
synthesis techniques strongly depends on the

complexity of the considered LFR, which is
measured in terms of both the size of the matrix
∆ and the order of the plant M. An increase in
complexity is usually source of conservatism,
and can even lead to numerical intractability.

M

∆∆∆∆

MM

∆∆∆∆

Fig. 1. Linear Fractional Representation

In most industrial applications, physical
systems are described using a mix of nonlinear
analytical expressions and tabulated data.
Therefore, a two-step procedure has to be
implemented to obtain a suitable LFR: a linear
model with a rational dependence on the system
parameters is first generated, and then converted
into a linear fractional form. Several techniques
such as object-oriented realization exist to
perform the latter transformation. Although the
minimality of the resulting LFR cannot be
guaranteed, symbolic preprocessing techniques,
as well as numerical reduction, usually permit to
overcome complexity. Efficient software such
as the LFR Toolbox for Matlab© is also
available (see [21] and references therein for a
comprehensive overview of LFR modeling). On
the other hand, the preliminary issue of
converting the tabulated or irrational data into
simple yet accurate rational expressions has
been paid much less attention, although it is of
significant practical importance. In the aero-
nautic field for example, most aircraft models
include tabulated aerodynamic coefficients
determined by CFD, wind tunnel experiments or
flight tests, and several controller gains depend
on the flight parameters in a tabulated fashion.

The motivations for addressing the issue of

A COMPARISON OF TECHNIQUES
TO GET SPARSE RATIONAL APPROXIMATIONS
FOR LINEAR FRACTIONAL REPRESENTATIONS

C. Roos*, G. Hardier*, C. Döll*

*ONERA The French Aerospace Lab, Systems Control and Flight Dynamics Department
Toulouse, France, email: georges.hardier@onera.fr

Keywords: Linear Fractional Representations, Surrogate Models, Evolutionary Algorithms

C. ROOS, G. HARDIER, C. DÖLL

2

tabulated data approximation in this paper are
twofold. The first one is of physical nature.
Computing rational expressions with sparse
structure, for which the number of terms in the
numerator and denominator is as low as
possible, is a natural way to prevent data
overfitting and to ensure a smooth behavior of
the model between the points used for
approximation. On the other hand, building an
LFR from a polynomial or a rational expression

),,(1 nxxf K results in a block diagonal matrix
],,[diag

1
1

np
n

p IxIx K=∆ . The number jp of
repetitions of each parameter jx in ∆ is
strongly linked to the number of occurrences of

jx in f. Indeed, although this is not an exact
rule, the trend is as follows: the fewer the
occurrences of jx in),,(1 nxxf K , the smaller
the size of ∆ . In other words, no matter how
efficient the LFR generation tools can be, they
are of little help if the rational expressions to be
converted are unnecessarily complex. Hence,
the need to get tractable LFR for analysis and
design purposes is another strong motivation for
generating sparse rational expressions.

For a given accuracy, an intuitive idea is to
determine a rational function for which the
numerator P and denominator Q are two poly-
nomials of the lowest possible degrees. This
fairly simple strategy is followed by most
existing methods. A classical linear least-
squares (LS) technique is notably implemented
in the LFR Toolbox [21] in case the rational
function is restricted to be polynomial. In the
general case, a nonlinear LS technique,
implemented for example in the Curve Fitting
Toolbox of Matlab©, tries to minimize the
approximation error, whereas a Quadratic
Programming problem solved by [5] ensures
that the resulting rational function intersects a
set of intervals containing the data. But all these
techniques suffer from the same drawback: all
admissible monomials of P and Q are usually
nonzero, regardless of their real ability to model
the data. More generally, the question of which
terms should be included in the model is often
addressed by trial-and-error, or even ignored in
practice. A way to deal with this question is to
use Orthogonal LS (OLS), which allows to
evaluate the ability of each monomial to
efficiently model the data and therefore to select
only the most relevant ones, leading to sparse
expressions. This approach was applied by [24]
to model aeronautical data with polynomials,

but practical methods leading to rational
expressions are still missing. Yet, the additional
degrees of freedom offered by such expressions
could lead to simpler expressions and thus to
smaller LFR.

In this context, the main contribution of
this paper is to propose 2 new methods to
compute rational expressions with sparse
structure and as few monomials in P and Q as
possible. The 1st method relies on an indirect
approach that builds a sparse model based on
neural networks at first, before translating the
result into the final fractional form. A stepwise
selection algorithm is used, combining the
benefits of forward OLS to estimate the
regression parameters with a new powerful
global optimization algorithm to determine the
best location of the regressors. The 2nd method
performs the data approximation by building a
sparse modeling in a single step thanks to a
symbolic regression technique. A recent
evolutionary algorithm, Genetic Programming
(GP), is used to select monomials, and is
coupled with a nonlinear iterative procedure to
estimate the coefficients of the rational function.
Besides, the resulting LFR must be well-defined
in order to be used for analysis or control [40].
To ensure that its denominator has no roots in
the parametric domain, a computationally effi-
cient method based on µ-analysis is presented,
which is an additional contribution of this paper.

The paper is organized as follows. The
polynomial/rational approximation problem is
first stated in §2 and the main existing solutions
are briefly recalled. The new methods are then
described in §3-4, as well as the algorithm permit-
ting to check the non singularity of the resulting
rational functions in §5. A real aeronautical
example is finally presented in §6, where the
new methods are compared to the existing ones
w.r.t. both the accuracy and LFR complexity.

2 Problem Statement and Baseline Solutions

Let }{],1[, Nkyk ∈ be a set of samples (measu-
rements, tabulated data...) corresponding to
several parametric configurations }{],1[, Nkkx ∈
of a given system. More precisely, each

n
R∈=],,[1 n

kkk xxx K contains the values of the n
explanatory variables for which the sample

R∈ky is obtained. The objective of this paper
is to compute a rational function RR

n →:f of
reasonable complexity which approximates these

3

A Comparison of Techniques to Get Sparse Rational Approximations for Linear Fractional Representations

data, i.e. such that)(kxf is close to ky for all
],1[Nk ∈ in the sense of a certain criterion (see

below). The main existing approaches are
briefly recalled below and will be referred to as
the baseline solutions (BS) in the sequel.
Remarks: The case where an analytical
expression RR

n →:Af is available instead of N
samples of)(1+n -tuples }{),,...,,(21

k
n
kkk yxxx is

not considered here (see e.g. [27]). Moreover,
this paper only deals with approximation (or
regression) and not with interpolation, which
would aim at finding a rational function f such
that the equalities kk yxf =)(are strictly
satisfied for a large number N of samples (see
[13] and references therein).

The most common approach consists in
restricting f to be a polynomial one, that is:

∑
=

==
Pn

i
ii xraxPxf

0

)()()((1)

where }{],0[, Pi nir ∈ are polynomial regressors
and }{],0[, Pi nia ∈ are coefficients to be
determined. The issue is then to solve a linear
LS problem with respect to these coefficients
[21], i.e. to minimize the following criterion:

∑
=

−=
N

k
kk xPyC

1

2)]([(2)

A well-known improvement to this
approach relies on a preliminary orthogonali-
zation process to decouple the regressors. As a
result, the ability of each new regressor to
reduce the criterion C can be evaluated
regardless of those already selected. Hence,
only the most relevant ones can be considered,
which amounts to a certain extent to minimize
the complexity of the approximation (1) while
still guaranteeing a low approximation error.
This method was successfully applied by [24]. It
was later improved, allowing a sparse poly-
nomial approximant to be computed satisfying
the following global and local constraints:







∈∀≤−
≤

],1[)(2

1

NkxPy

C

kk ε
ε

 (3)

where 1ε and 2ε are some user-defined positive
values [10,29]. The more general case where f is
extended to become a rational function is now
considered:

∑∑
==

==
QP

n

i

Q
ii

n

i

P
ii xrbxra

xQ

xP
xf

00

)()(
)(
)(

)((4)

A first method consists in solving a nonlinear
LS problem with respect to the coefficients

}{],0[, Pniai ∈ and }{],0[, Qnibi ∈ , that is to
minimize the following criterion:

∑
=









−=

N

k k

k
k xQ

xP
yC

1

2

)(
)(

 (5)

This is notably implemented in the Curve
Fitting Toolbox of Matlab© [37], where several
optimization tools can be used to compute a
solution (Levenberg-Marquardt algorithms,
trust-region methods...). One of its major
drawbacks is that several local minima may
exist due to the non-convexity. Hence, the
results strongly depend on the initialization,
which is not a trivial issue. A 2nd method was
introduced by [22] in the context of polynomial
approximation and then generalized by [5] to
the rational case. Firstly, an uncertainty interval

][, kk
yy is defined around each ky . A rational

function is then determined that intersects all
these intervals:],1[Nk ∈∀ kkkk

yxQxPy ≤≤)()(.
This can be achieved by solving a Quadratic
Programming problem in the coefficients

}{],0[, Pniai ∈ and }{],0[, Qnibi ∈ with a strictly
convex objective function. It will be denoted by
the QP approach in the sequel.
Remark: It is usually desirable that the
denominator of f has no roots in the considered
parametric domain, so as to ensure that f has a
smooth behaviour and that well-posed LFR are
obtained [40]. Unfortunately, none of the afore-
mentioned techniques can guarantee this.

3 Indirect Approach for Rational Modeling

Beyond the polynomial/rational expressions, the
use of Surrogate Modeling becomes widespread
among many scientific domains to replace the
system or the reference model when this one is
too restrictive for achieving some tasks like
optimization, modeling, parameter identification
[4,35]... Hence, a wide range of methods has
been developed for building surrogate models
efficiently, i.e. with both accuracy and parsi-
mony. For example, Neural Networks (NN) are
recognized nowadays as an efficient alternative
for representing complex nonlinear systems, and
tools are available to model static nonlinearities
such as the ones encountered when formulating
a problem in LFR form. The underlying idea for
solving the considered approximation problem
via an indirect approach consists in using such
methods to derive a rational model. The tool

C. ROOS, G. HARDIER, C. DÖLL

4

used in the sequel was developed by ONERA for
A/C modeling and identification purposes and is
named KOALA (Kernel Optimization Algorithm
for Local Approximation). Due to space
constraints, only its main features will be out-
lined in this paper (cf. [4,35] for more details).

At first, it is noteworthy that a nonlinear
model can be either linear, nonlinear, or both in
regard to its internal parameters. For NN, the
latter corresponds to Multi-Layer Perceptrons
[17], but also to Radial Basis Function
Networks (RBFN) when the centers and the
radii of the radial units are optimized [14].
However, the joint optimization of the whole set
of model parameters (linear and nonlinear)
practically results in ill-posed problems, and
consequently in convergence and regularization
issues. That is why Linear-in-their-Parameters
models (LP) are often adopted, allowing more
simple and robust algorithms. By taking
advantage of their features, structural identifi-
cation, i.e. determining the best set of regressors
from the available data only, becomes possible
in addition to parametric estimation.

To choose the unknown regressors, KOALA
is based on forward selection, starting with an
empty subset and adding them one at a time in
order to gradually improve the approximation.
To speed up that constructive process, a
preliminary orthogonalization technique is used,
permitting the individual regressors to be
evaluated regardless of those previously
recruited for the modeling [6]. In the case of
local models like RBFN, choosing each
regressor amounts to optimizing the kernel
functions in the input space. To implement this
optimization step, a global method is the best
suited, and KOALA uses a new evolutionary
metaheuristic known as Particle Swarm Optimi-
zation (PSO) [8]. The performance of this
approach is strongly dependent on the algo-
rithms added to the basic version of PSO (e.g.,
[7] uses a standard and very simple version of
PSO). After a thorough literature analysis, the
most promising techniques have been selected
and implemented in the part of the KOALA code
used to optimize the regressors' positioning.

Without going into details, a brief survey
of the main functionalities is given below: fixed
and adaptive topologies → from static (star,
ring, Von Neumann) to dynamic ones (e.g.
Delaunay neighboring) [19]; particle's displa-
cement → standard, with constriction factor,

FIPS and weighted FIPS versions of the velocity
update laws [23]; hybrid local/global method
→ to speed up the convergence with direct
search (improved Nelder-Mead, Delaunay
tessellation for the initial simplex); multiswarm
strategies → for competing swarms or for parti-
tioning the search domain into several sub-
regions [38]; diversity analysis → to provide
information about the swarm dispersion and to
refine the convergence tests [26]; swarm
initialization → from random to low discre-
pancy sequences (centroidal Voronoï diagram,
Hammersley) [9]; competitive multirun → to
benefit from several topologies, algorithm
variants and tuning; charged vs neutral
particles → cooperation of particles with dif-
ferent physical properties [1].

The coupling of that PSO algorithm with
the constructive technique detailed in [35]
allows structural and parametric optimizations
to be jointly performed for different types of
regressors with local basis. In the case of
KOALA , it is applied to RBFN but also to Local
Linear Models (LLM) after some adjustments of
the OLS method. LLM networks generalize
RBFN [25], but are also related to other local
models like Fuzzy Inference Systems. They are
derived by replacing the RBF linear weightings
(denoted by w in the sequel) by an affine
expression depending on the model inputs. It is
thus expected that fewer kernels will be required
to achieve the same accuracy in most
applications. For LLM, the generic formulation
used to represent LP models is:

)6()()(][)(ˆ #

11 0
kl

mmn

l
lkj

m

j

i
k

n

i
jikk xrwxrxwxfy ∑∑ ∑

+

== =
===

where)(kj xr represents the kernel value of the
j th regressor function, and with 10 =kx to include
the constant terms of the affine modeling into
the second sum. This relationship permits to
recover a standard LP formulation with an
extended set of regressors #

lr . To adapt the
constructive algorithms to the kernel functions

#
lr , the group of regressors sharing the same

kernel jr needs to be considered as a whole
when adding or subtracting terms, and no more
separately as it was the case for RBFN or
polynomials [6,24].

KOALA aims at gradually selecting a series
of regressors by optimizing their kernel
parameters, i.e. the ellipsoid centers c and radii
σ related to the radial unit (see (7) hereafter).

5

A Comparison of Techniques to Get Sparse Rational Approximations for Linear Fractional Representations

At each step of the process, the PSO particles
are associated with vectors of 2nR gathering
these parameters for the n explanatory variables.
To sum up, the global performance of KOALA
algorithm results from two complementary
aspects: applying efficient OLS-based forward
selection and Separable Nonlinear Least
Squares optimization to powerful modeling
(LLM) and, on the other hand, implementing a
new PSO algorithm which outperforms the
standard ones [35]. To give a rough idea, the use
of KOALA results in a model comprising only 5
radial units in the benchmark case of §6 (for a
global quadratic error 3105.2 −≈C), whereas a
more standard algorithm, e.g. the one of [7],
requires not less than 15 RBF units to achieve
the same level of approximation. According to
what is explained below, the (maximum) degree
of the rational approximant can be reduced from
30 to 10 and the LFR size from 60 to 20.

Back to rational modeling, a first idea for
an indirect approach capitalizing on KOALA
results is to convert equation (6) a posteriori
into a rational form. By choosing Gaussian
radial functions, this regression expresses as the
sum of m terms, the j th one being for any x:

)7(1

)(

00

2

2

][][)()(
∑

∑∑ =

−

==

−
==

n

i

cx

i
n

i
jij

i
n

i
jij

ji

ji
i

exwxrxwxf
σ

Therefore, it is possible to use Pade appro-
ximants of the exponential function, so as to
replace it by a rational function in reduced form

],[exp qp . The latter expresses as the quotient of
two polynomials of the thp and thq degrees,
and the corresponding approximant to)(xf j
becomes a rational function of the th)(12 +p and

th2q degrees for every explanatory variable ix .
However, getting high quality approximants
(e.g. decreasing rapidly to 0 as ix increases)
requires large values for q (with 2>− pq or 3).
Hence, the degree of the resulting rational
function is penalized, with no guarantee about
the accuracy of the global regression)(xf .

Consequently, a more relevant approach
consists in replacing the exponential function
straight away by such an approximant, and then
to proceed to the optimization of the regression
with this new kernel function. The simplest
transform corresponds to the reduced form

]1,0[exp , i.e. to the sum of m components like:

)()(
1

22

0

/)(1)(∑∑
==

−+=
n

i
jiji

ii
n

i
jij cxxwxf σ (8)

This solution is preferred here and is used
for the comparisons shown in §6. Hence,
another class of models is added to the
RBF/LLM kernels proposed by KOALA , based
on the Pade approximant]1,0[exp . It must also be
mentioned to conclude that the post-processing
of the resulting regression, prior to the
derivation of the LFR, makes use of the Matlab©
Symbolic Toolbox. Again, several options can
be considered for gathering the m components

)(xf j into a single rational function: global
expansions of numerator and denominator,
factorization of the denominator, sum of
elementary rational terms. The latter appears to
be the most relevant since it favors some simpli-
fications when building the final LFR. A factor
of 2 can usually be gained in the final LFR size.

4 Direct Approach for Rational Modeling

When the model structure has to be determined
as a whole (numerator-denominator degrees,
number and type of monomials), the approxi-
mation problem cannot generally be solved by
means of classical techniques. Over a few expla-
natory variables, a sequential and systematic
exploration of the terms cannot reasonably be
expected owing to the curse of dimension-
nality. For example, with 2 variables and a
maximum degree of 10, there are not less than
1015 rational candidates available! Moreover,
this dual-purpose optimization (model structure
& parameters) is complicated by the fact that a
rational model is no more a Linear-in-its-
Parameters one (LP). Fortunately, several
promising techniques have recently appeared for
global optimization, with the purpose of solving
symbolic regression problems close to this one.
This is the case of Genetic Programming, and
after a short description of its main principles,
the way it can be adapted to the approximation
of a rational function will be examined.

GP is part of the evolutionary family, as
Genetic Algorithms are (GA). It uses the same
principles inspired by those of natural evolution
to evolve a population of individuals randomly
created, until a satisfactory solution is found.
Opposite to GA, it is not based on a binary
coding of information but uses a structured
representation instead, as syntax trees. These
parse trees appear more suited to solve
structural or symbolic optimization problems,
since they can have different sizes and shapes.

C. ROOS, G. HARDIER, C. DÖLL

6

The alphabet used to create these models is also
flexible enough to cope with different types of
problems. So, it can be used to encode
mathematical equations, behavior models, or
computer programs. First works date back to the
early 60s, but GP was really implemented and
brought up to date only in the early 90s by [18],
thanks also to an increase of computing power.
He was able to prove the interest of GP in many
application fields, and laid the foundations of a
standard paradigm which did not evolve much
since then. The iterative process breeds a
population and transforms the individuals
generation after generation by applying
Darwinian mechanisms: reproduction, mutation,
crossover, but also gene duplication or deletion.
They are applied to the hierarchically structured
trees of the individuals, comprising a set of
nodes which fall into 2 categories: the set F of
internal nodes called functions or operators, and
the set T of tree's leaves called terminals.

All types of functions are acceptable: from
mathematical operators (÷×−+ ,,, , ,exp...), to
logical, conditional (tests) or user-defined. The
terminals correspond to the function arguments
but can also include some internal parameters or
predefined constants. The content of T is a
central issue for the problem of a joint
structural/parameter optimization. That requires
the best functional structure to be discovered by
choosing and arranging relevant operators from
F, but also to rule the coefficients involved in
this functional structure by adapting the
numerical values of the parameters included in
T. Such a symbolic regression extends the
notion of numerical regression. To be able to
discover the right parameter values, an extra
mechanism must be added to the GP algorithm
[18]. It relies on introducing ephemeral random
constants in T and applying evolution mecha-
nisms to those new kinds of terminals. Though
consistent with the GP formalism, this constant
creation is not efficient since tuning a single
parameter mobilizes many subtrees and raises
the nodes number and the tree depth conside-
rably. With LP models, it is wiser to simplify
this formulation by taking the regression
parameters away and including only the
explanatory variables ix and possibly some
predefined constants in T. Hence, the
individuals are just mobilized to represent the
functional relationships between the ix . At
every GP iteration, the regressor functions jr

(and their number QP nnm +≤) are derived from
the trees corresponding to any individual by
analyzing the tree structure from its root. The
numerical value of the regression parameters

),(jj ba can then be adapted afterwards, by
applying any minimization technique to the
squared error. Moreover, coupling GP with an
OLS algorithm allows to solve the optimization
of the),(jj ba very efficiently [20].

It is also noteworthy that GP permits to
produce polynomials by setting F= },{ ×+ and
T= },,,,1{ 210 nxxxx K= , hence restricting the
regressors to simple monomials. The modeling
complexity can also be controlled by penalizing
some internal GP parameters like the tree depth,
the number of branches/leaves, or by favoring
the selection of the simplest operators.
Practically, this can be achieved thanks to the
fitness function which is used to handle the GP
mechanisms of evolution. Similarly to what is
done in ridge regression, a penalty component
can be added to the fitness function to favor the
simplest models and to prevent overfitting. In
the framework of LP models and OLS
algorithms, more elaborated regularization
strategies can be implemented, e.g. using Leave-
One-Out validation errors [35].

The interest in combining orthogo-
nalization methods with symbolic optimization
of the kernel functions has already been studied
some years ago and has resulted in the Matlab©

code GP-OLS [20]. More recently, a Toolbox has
been developed (GPTIPS), permitting to encode
and to adapt a LP model in a multigene
symbolic regression form [33]. However, none
of these tools is suitable for synthetizing a
rational modeling directly, especially because
the parameter optimization becomes a nonlinear
process then. Consequently, the direct approach
proposed here is somewhat different and is
dedicated to the rational case. It is issued from
several considerations: � the rational case
extends the polynomial one (structured model
expressed as the quotient of two polynomials)
� GP is fully justified since there is no other
classical option available for jointly optimizing
the structure of numerator and denominator (e.g.
the brute-force search of the BS does not mini-
mize the number of monomials) � numerator
and denominator remain LP when considered
separately, and it would be a pity not to take
advantage of that. Hence, GP is clearly a
promising alternative for rational modeling, but

7

A Comparison of Techniques to Get Sparse Rational Approximations for Linear Fractional Representations

a prior adaptation of the method is required to
use it with maximum efficiency. A tool named
TRACKER (Toolbox for Rational Approximation
Computed by Knowing Evolutionary Research)
was thus developed from scratch by ONERA for
rational modeling, and is described below.

Each component of the rational function
(numerator and denominator) is represented by
a single separate chromosome which comes in a
syntax tree form as usual, and a priori includes
several genes. The sets T and F are chosen as
for the polynomial case, and a peculiar syntax
rule is defined to ensure that all the non terminal
nodes located below a ''× -type node are also

''× -type nodes. This trick avoids creating
useless branching which could result in splitting
and multiplying some monomials. Thanks to
this architecture, a gene appears as a subtree
linked to the root node of its chromosome
through one or several ''+ -type nodes. A parse
analysis of the different genes composing a
chromosome also permits to avoid the creation
of spurious genes by identifying and grouping
them if any. Fig. 2 depicts a tree's architecture
corresponding to a simple)(xf example. Five
genes related to the different monomials are
highlighted by colors (except from constants

0a , 0b which are integral part of the structure).
To solve the parametric optimization, i.e.

to estimate the regression coefficients),(jj ba of
any created tree, it is suitable to implement a
well-known technique, in use for identifying
transfer functions in the frequency domain [30].
It consists in iteratively linearizing the expres-
sion of the quadratic cost function as:

)9(

)(ˆ1

)()(

1

10

kj

n

j
j

kkj

n

j
kjkj

n

j
j

k

xrb

yxrybxra

Q
Q

Q
Q

P
P

∑

∑∑

=

==

+














−−

≈ε

where the approximation of kε comes from the
replacement of the parameters jb by their most
recent estimates jb̂ at the running iteration, and
the denominator is arbitrarily normalized by
choosing 10 =b . By denoting the corresponding
estimate of the denominator, for any sample kx :

)(ˆ1)(ˆ
1

kj

n

j
jk xrbxD Q

Q

∑
=

+= (10)

the method relies on the fact that the approxima-
tion)(ˆ)(kk xDxD ≈ becomes fully justified when
the iterative process has converged. The vector

of normalized outputs can then be written as
T

NN xDyxDyy)](ˆ/)(ˆ/[11
* L= , and the kth row
kR of the regression matrix follows =kk RxD)(ˆ

][)()()()(1 11 knkkkknk xryxryxrxr Q

Q

QP

P

P −− LL .
Finally, the parameters to be determined

T
nn QP

bbaaaw][110 LL= are a solution of the
linearized LS problem *1)(ˆ yRRRw TT −= .

2

3233

2

12110

312210

xxbxxbxbb

xxaxaa
xf

+++
++=)(

2

3233

2

12110

312210

xxbxxbxbb

xxaxaa
xf

+++
++=)(

Fig. 2. Ex. of TRACKER parse tree for rational modeling

In practice, 2 or 3 iterations are usually
sufficient to ensure the convergence of this
process, conveniently initialized by choosing

1)(ˆ =kxD at the first iteration. In case of ill-
conditioning, a few iterations of Levenberg-
Marquardt optimization are used to recover a
satisfactory result. Introduced into the selection
process, that technique enables to evaluate the
performance of every individual very easily, by
coming down to a short series of ordinary LS.
The overcost remains limited because the major
part of the computations required by matrix R
can be stored and reused through the loop.

5 Algorithmic Aspects

An important issue is now to check that the
denominator Q has no roots in the parametric
domain, i.e. 0)(≠xQ for all D∈x . Such a
requirement is actually a prerequisite to build a
well-defined LFR. Unfortunately, checking
whether a multivariate polynomial of degree 4
or higher with real coefficients has a real zero is
NP-hard in the general case [2]. A classical
strategy is therefore to focus on sufficient
conditions, and some methods based on
parameter-dependent slack variables [32] or
sum-of-squares [36] have been recently intro-
duced. They give quite accurate results, but can
become computationally demanding if some
multivariate polynomials of high degrees are

C. ROOS, G. HARDIER, C. DÖLL

8

considered. An efficient alternative based on µ-
analysis is proposed here.

)(xQ is firstly converted into an LFR
according to Fig. 1, where 1)(1)(+×+∈ ppM R is a
fixed matrix and pp

R
×∈=],,[diag

1

1
np

n
p IxIx K∆ .

By breaking M up into a block form]2,1[,)(∈jiijM
according to this interconnection, the relation

12
1

112122)()(MMIMMxQ p
−−+= ∆∆ holds. It is

also considered without loss of generality that

D corresponds to the unit hypercube, i.e.
],[11 +−∈ix for all],[1 ni ∈ , an assumption which

can always be achieved using a suitable affine
transformation. The following technical lemma
is then introduced, noting that)0(22 QM = is
nonzero (otherwise, it could be directly
concluded that Q has a real zero in D).
Lemma: Let 21

1
221211 MMMMX −−= . Then, for

all D∈x : 0)(0)(det ≠−⇔≠ ∆XIxQ p .
This result shows that the considered non

singularity check is strongly linked to the notion
of structured singular value (see [12] and
references therein), the definition of which is
recalled below.
Definition: Let ∆ denote the set of all real

pp× matrices with the same block-diagonal
structure as ∆ . If no matrix ∆∈D renders the
matrix XDI p − singular, then the structured
singular value)(X

∆
µ is equal to 0. Otherwise,

it is defined as the inverse of the size of the
smallest ∆∈D satisfying 0)(det =− XDI p :

{ }
1

0)(),(detmin)(
−

∈ 










=−= XDIDX p

D
σµ

∆

∆
 (11)

where (.)σ denotes the largest singular value.
Computing the exact value of)(X

∆
µ is

NP-hard, but polynomial-time algorithms allow
both an upper bound)(X

∆
µ [39] and a lower

bound)(X
∆

µ [34] to be computed. The
following algorithm can then be derived:
� If 1)(>X

∆
µ , a value D∈x~ has been

computed for which 0)~(=xQ .
� If 1)(<X

∆
µ , it can be concluded that

D∈∀≠ xxQ ,0)(.
� Otherwise, nothing can be assessed. A strategy

is then to recursively divide D , and to apply
the procedure again on each subdomain until
either a µ lower bound becomes larger than 1,
or the maximal µ upper bound on all
subdomains becomes smaller than 1.

Such a procedure is only heuristic, but its
convergence properties appear quite good in
practice. Actually, it can usually be observed
that the smaller a sub-domain, the smaller the

gap between the bounds (see [28] for a detailed
study of such a behavior). A conclusion is thus
usually obtained after only a few iterations,
sometimes even after a single one.

If a worst-case value D∈x~ is identified,
for which 0)~(=xQ , the algorithms presented in
§2 and §4 are applied again with the additional
constraint 0)~(>≥ εxQ , where ε is a user-
defined tolerance. The trick is to repeat the
whole procedure until a nonsingular rational
function is computed (or a maximum number of
iterations is reached). Once a suitable rational
function is obtained, with no poles in the
considered domain, it is finally converted into
an LFR. Finding a minimal order representation
(i.e. for which the size of ∆ is minimum)
remains an open problem. Yet, efficient
techniques exist to compute a reasonably low-
order one, and an extra numerical reduction can
be applied without altering the accuracy. All
these computations can be performed using the
LFR toolbox for Matlab© [21].

6 Comparison of the methods and results

Equations (12) describe the longitudinal motion
of a rigid A/C [3], in body axis (x forwards and
z downwards):













++=

−−=

engDLMyy

engL

Fz+αsinCαcosCxLC
ρSV

qI

γcosmg+αsinFC
ρSV

mVqmV

δδ

α

][

)12(

)(
2

2
2

2

&

&

The flight parameters are the Angle of
Attack α (AoA), the pitch rate q, the airspeed V,
and the flight path angle γ. The constants are
denoted by g (gravity), ρ (air density), m (A/C
mass), S (reference surface), yyI (lateral y-axis
inertia), and L (mean aerodynamic chord). engF
is the thrust, whereas cgref xxx −=δ and

refeng zzz −=δ represent the distances between
the aerodynamic reference point and the centre
of gravity x-location or the engine z-location.

MDL CCC ,, represent the aerodynamic
coefficients relative to the lift, drag and pitching
moments. They are usually obtained as
nonlinear look-up tables during wind tunnel
tests [4]. In order to translate equations (12) in
fractional form, these tabulated data have to be
replaced by polynomial or rational expressions,
which can theoretically be achieved using any
of the previous approximation methods. This is
illustrated in the sequel for the drag coefficient

9

A Comparison of Techniques to Get Sparse Rational Approximations for Linear Fractional Representations

DC of a generic fighter aircraft model [10]. The
reference data depend on both Mach number
Ma and AoA α (in radians), and are depicted
on a fine 50x90 grid in Fig. 3 which is used as a
validation set to evaluate the approximation
results achieved with a rougher 40x60 grid of
learning data.

Fig. 3. Drag coefficient displayed on the validation grid

The two approaches proposed for rational
approximation are compared with the Quadratic
Programming based approach of §2 (QP), that
gave the best results so far amongst the so-
called baseline solutions. All results are
gathered in Table 1, and some are also displayed
in Fig. 4-5. For the Surrogate Modeling based
algorithm of §3 (SM), the number of monomials
is given both for the factorized expression
directly obtained with KOALA (without
brackets) and for the underlying expanded form
(between brackets).

GP has the advantage that rational
approximants with sparse structures are
obtained. Only a few monomials are actually
nonzero, which results in low-order LFR.
Moreover, good numerical properties are
observed, and significantly higher degrees can
be considered than with QP. For a given degree,
SM and QP give quite similar results regarding
the number of monomials. Indeed, both methods
generate rational functions for which the
numerator/denominator are composed of almost
all admissible monomials when written in
expanded form. But SM offers two major pros.
First, the size of the resulting LFR is smaller,
since the symbolic expression does not appear
as a single expanded rational function but is
already factorized as a sum of elementary
components. Besides, SM is numerically much
more efficient and allows higher degree appro-
ximations to be computed very quickly (some
seconds) and easily. This is not possible with
QP, since numerical troubles appear for degrees

larger than 10, thus leading to poor results.
GP and SM thus appear to be the most

promising methods on this example. Moreover,
these methods prove quite complementary, as
far as the trade-off between parsimony and
accuracy is considered. SM provides very
accurate approximations, which do not have a
sparse structure but are directly factorized in a
compact form resulting in low order LFR. On
the other hand, GP directly selects the most
relevant monomials to generate very sparse
symbolic expressions. It also appears that GP is
more accurate for low degree approximations,
while SM gives better results for degrees larger
than 10. Actually, at lower degrees, the number
of radial units used by SM (half the required
degree) is not sufficient to represent the shape
of the reference data accurately enough. Hence,
a minimum number of radial basis functions is
required to get the most out of this method.

Method Degree Monomials RMSE Max error LFR size

6 56 9.73 10-4 1.91 10-3 17

8 90 5.80 10-4 1.27 10-3 23

10 132 4.57 10-4 1.22 10-3 29
QP

12 182 4.56 10-4 1.21 10-3 35

6 34 9.46 10-4 4.86 10-3 15

8 31 7.85 10-4 4.47 10-3 17

10 29 6.92 10-4 3.47 10-3 21

12 36 6.61 10-4 3.23 10-3 26

GP

14 43 6.53 10-4 3.05 10-3 28

6 18 (47) 1.27 10-3 6.24 10-3 12

8 24 (79) 7.87 10-4 5.12 10-3 16

10 30 (119) 6.74 10-4 3.46 10-3 20

12 36 (167) 5.44 10-4 2.56 10-3 24

14 42 (223) 4.10 10-4 2.12 10-3 28

16 48 (287) 2.81 10-4 1.38 10-3 32

SM

24 72 (623) 1.83 10-4 1.07 10-3 48

Table 1. Comparison of results with different approaches

Finally, it is worth noting that the compu-
tational cost is strongly in favour of SM and QP.
As the degree of the rational function increases,
the Darwinian mechanisms of evolution
involved by Genetic Programming require more
generations to produce very accurate solutions,
and the CPU time is seriously impaired.
Nevertheless, a parallel implementation will be
provided with the next release of the
SMAC/APRICOT library to address this issue
when using multicore computers.
Remark: It is worth emphasizing that the non
singularity of the rational functions is
guaranteed in all cases thanks to the µ-analysis
based test proposed in §5.

C. ROOS, G. HARDIER, C. DÖLL

10

7 Conclusion and prospects

This work takes place in the framework of a
more general project aimed at developing a
Systems Modeling, Analysis and Control
(SMAC) Toolbox. This Matlab/Simulink©-based
library is being developed by ONERA to provide
both researchers and control engineers with a
complete set of tools for making the design,
tuning and validation of control laws easier.
More precisely, the purposes of the SMAC
project are to control aeronautical vehicles
throughout their whole flight domain in the
presence of nonlinearities, uncertainties,
external disturbances and imperfectly measured
or estimated data, while obtaining strong
guarantees w.r.t. the stability margins and the
performance levels. A free (limited) version of
SMAC can be downloaded at w3.onera.fr/smac,
that includes 3 kinds of tools:
� modeling tools allowing the considered

physical systems (usually represented in
industrial context using a mix of nonlinear
analytical expressions and tabulated data) to
be described as a single parameterized model
(typically a LFR),

� design tools combining robustified nonlinear
dynamic inversion techniques, structured H∞
synthesis and anti-windup compensation, so as
to produce simple yet powerful controllers,
which can be easily implemented but do not
require any interpolation as this is the case
with classical gain-scheduled techniques,

� analysis and validation tools permitting the
robustness properties of the resulting closed-
loop systems to be evaluated in the presence
of model uncertainties (µ-analysis), but also of
time-varying parameters and hard non-
linearities such as magnitude and rate
saturations (IQC-based analysis).

Accordingly, the methods described in this
paper belong to the 1st group of modeling tools,
and are aimed at creating accurate LFR with
sizes as reduced as possible in order to facilitate
the subsequent use of the design and analysis
tools belonging to the 2nd or 3rd group. They are
implemented in the APRICOT library (Approxi-
mation of Polynomial and Rational-type for
Indeterminate Coefficients via Optimization
Tools) of the SMAC toolbox that includes a set
of optimization tools to convert numerical data
into simple yet accurate polynomial or rational
expressions. A limited version is available at

w3.onera.fr/smac/apricot. It can be applied to
any sampled data with 2≤n explanatory
variables and 100≤N samples. The full version
has been tested on much more complicated
benchmarks and has proved successful in
several real-world applications. It can be
obtained in the context of a close cooperation
with ONERA/DSCD.

More generally, the SMAC toolbox contains
a new release of the LFR toolbox [21], that
implements a more powerful lfr object as well
as additional modeling tools. It also provides the
SMART library (Skew-Mu Analysis based
Robustness Tools) [30], which collects most of
the µ-analysis based algorithms developed at
ONERA/DCSD during the last decade. Finally,
some routines dedicated to robustness analysis
in the presence of time-varying parameters and
nonlinearities, as well as control-oriented tools,
will also be included soon.

References

[1] Blackwell T.M. and Bentley P.J. Dynamic search
with charged swarms. GECCO, pp. 19-26, New
York, USA, 2002.

[2] Blum L., Cucker F., Shub M., and Smale S. Comple-
xity and real computation. Springer, New York, 1998.

[3] Boiffier J.L. The dynamics of flight : the equations.
John Wiley & sons, Chichester, 1998.

[4] Bucharles A. et al. An overview of relevant issues for
aircraft model identification. AerospaceLab, Issue 4,
http://www.aerospacelab-journal.org/al4, 2012.

[5] Celis O.S., Cuyt A., and Verdonk B. Rational
approximation of vertical segments. Numerical
Algorithms, 45(1-4), pp. 375-388, 2007.

[6] Chen S., Hong X., Harris C.J., and Sharkey P.M.
Sparse modelling using orthogonal forward
regression with PRESS statistic and regularization.
IEEE Trans. on Systems, Man and Cybernetics (B),
34 (2), pp. 898-911, 2004.

[7] Chen S., Hong X., Luk B.L., and Harris C.J. Non-
linear system identification using particle swarm opti-
mization tuned radial basis function models. Intal Jal
of Bio-inspired Computation, 1 (4), pp. 246-258, 2009.

[8] Clerc M. Particle swarm optimization. ISTE,
London, 2006.

[9] Clerc M. Initialisations for particle swarm
optimization. http://clerc.maurice.free.fr/pso/, 2008.

[10] Döll C., Bérard C., Knauf A., and Biannic J.M. LFT
modelling of the 2-DOF longitudinal nonlinear
aircraft behaviour. IEEE Symposium on Computer-
Aided Control System Design, pp. 864-869, San
Antonio, USA, 2008.

[11] Ferreira C. Gene expression programming: a new
adaptive algorithm for solving problems. Complex
Systems, 13(2), pp. 87-129, 2001.

11

A Comparison of Techniques to Get Sparse Rational Approximations for Linear Fractional Representations

[12] Ferreres G. A practical approach to robustness
analysis with aeronautical applications. Springer,
Berlin, 1999.

[13] Floater M.S. and Hormann K. Barycentric rational
interpolation with no poles and high rates of approxi-
mation. Numerische Mathematik, 107(2), pp. 315-
331, 2007.

[14] Hardier G. Recurrent RBF networks for suspension
system modeling and wear diagnosis of a damper.
IEEE World Congress on Computational Intel-
ligence, 3, pp. 2441-2446, Anchorage, USA, 1998.

[15] Hardier G., Roos C. Creating sparse rational approxi-
mations for LFR modeling using genetic program-
ming. 3rd IFAC Intal Conf on Intelligent Control and
Automation Science, Chengdu, China, 2013.

[16] Hardier G., Roos C. Creating sparse rational approxi-
mations for LFRs using surrogate modeling. 3rd IFAC
Intal Conf. on Intelligent Control and Automation
Science, Chengdu, China, 2013.

[17] Haykin S. Neural networks: a comprehensive founda-
tion. IEEE Press, MacMillan, New York, 1994.

[18] Koza J.R. and Poli R. A Genetic Programming
Tutorial. In Burke ed., Intoductory tutorials in
optimization, search and decision support, 2003.

[19] Lane J., Engelbrecht A.P., and Gain J. Particle swarm
optimization with spatially meaningful neighbours.
IEEE Swarm Intelligence Symposium, pp. 1-8, St
Louis, USA, 2008.

[20] Madar J., Abonyi J., and Szeifert F. Genetic
programming for the identification of nonlinear
input-output models. Industrial and Engineering
Chemistry Research, 44 (9), pp. 3178-3186, 2005.

[21] Magni J.F. User manual of the LFR Toolbox (V 2.0).
http://w3.onera.fr/smac/lfrt, 2006.

[22] Markov S., Popova E., Schneider U., and Schulze J.
On linear interpolation under interval data.
Mathematics and Computers in Simulation, 42, pp.
35-45, 1996.

[23] Mendes R. and Kennedy J. The fully informed
particle swarm: simpler, maybe better. IEEE Trans.
on Evol. Computation, 8 (3), pp. 204-210, 2004.

[24] Morelli E.A. and DeLoach R. Wind tunnel database
development using modern experiment design and
multivariate orthogonal functions. 41st AIAA Aero-
space Sciences Meeting & Exhibit, Reno, USA, 2003.

[25] Nelles O. and Isermann R. Basis function networks
for interpolation of local linear models. 35th IEEE
Conf. on Decision and Control, pp. 470-475, Kobe,
Japan, 1996.

[26] Olorunda O. and Engelbrecht A.P. Measuring explo-
ration/exploitation in particle swarms using swarm
diversity. IEEE Congress on Evol. Computation, pp.
1128-1134, Hong Kong, China, 2008.

[27] Petrushev P.P. and Popov V.A. Rational approxima-
tion of real functions. Encyclopedia of mathematics
and its applications, Vol. 28, University Press,
Cambridge, 1987.

[28] Roos C. and Biannic J-M. Efficient computation of a
guaranteed stability domain for a high-order
parameter dependent plant. ACC, pp. 3895-3900,
Baltimore, USA, 2010.

[29] Roos C. Optimization based clearance of flight
control laws. In Varga-Hansson-Puyou, Generation
of LFRs for a flexible aircraft model, §4. Lecture
Notes in Control and Information Sciences, Springer-
Verlag, 2011.

[30] Roos C. Systems Modeling, Analysis and Control
(SMAC) Toolbox: an insight into the robustness
analysis library. IEEE Multiconference on Systems
and Control, pp. 176–181, Hyderabad, India,
http://w3.onera.fr/smac/smart, 2013.

[31] Sanathanan C. and Koerner J. Transfer function
synthesis as a ratio of 2 complex polynomials. IEEE
Trans. on Automatic Control, 8 (1), pp. 56-58, 1963.

[32] Sato M. Parameter-dependent slack variable
approach for positivity check of polynomials over
hyper-rectangle. ACC, pp. 5357-5362, St Louis,
USA, 2009.

[33] Searson D.P., Lealy D.E., and Willis M.J. GPTIPS:
an open source GP toolbox for multigene symbolic
regression. Intal Multiconference of Engineers and
Computer Scientists, Hong Kong, China, 2010.

[34] Seiler P., Packard A., and Balas G. A gain-based
lower bound algorithm for real and mixed µ
problems. Automatica, 46(3), pp. 493-500, 2010.

[35] Seren C., Hardier G., and Ezerzere P. On-line
Estimation of Longitudinal Flight Parameters, SAE
AeroTech Congress and Exhibition, Toulouse,
France, 2011.

[36] Shor N.Z. Class of global minimum bounds of
polynomial functions. Cybernetics, 23(6), pp. 731-
734, 1987.

[37] The Mathworks Curve fitting toolbox user’s guide,
2010.

[38] Trojanowski K. Multi-swarm that learns. Intelligent
Information Systems, Vol. XVI, pp. 121-130, 2008.

[39] Young P.M., Newlin M.P., and Doyle J.C. Computing
bounds for the mixed µ problem. Intal Jal of Robust
and Nonlinear Control, 5(6), pp. 573-590, 1995.

[40] Zhou K., Doyle J.C., and Glover K. Robust and opti-
mal control. Prentice-Hall, Upper Saddle River, 1996.

Copyright Statement

The authors confirm that they, and/or their company or
organization, hold copyright on all of the original material
included in this paper. The authors also confirm that they
have obtained permission, from the copyright holder of
any third party material included in this paper, to publish
it as part of their paper. The authors confirm that they
give permission, or have obtained permission from the
copyright holder of this paper, for the publication and
distribution of this paper as part of the ICAS 2014
proceedings or as individual off-prints from them.

C. ROOS, G. HARDIER, C. DÖLL

12

0
0.2

0.4
0.6

0.8 −0.2

0

0.2

0.4

−0.06

−0.04

−0.02

0

0.02

αMa

C
D

 0
0.2

0.4
0.6

0.8 −0.2

0

0.2

0.4

−2

0

2

4

x 10
−3

αMa

e
r
r
o
r

0
0.2

0.4
0.6

0.8 −0.2

0

0.2

0.4

−0.06

−0.04

−0.02

0

0.02

αMa

C
D

 0
0.2

0.4
0.6

0.8 −0.2

0

0.2

0.4

−2

0

2

4

x 10
−3

αMa

e
r
r
o
r

0
0.2

0.4
0.6

0.8 −0.2

0

0.2

0.4

−0.06

−0.04

−0.02

0

0.02

αMa

C
D

 0
0.2

0.4
0.6

0.8 −0.2

0

0.2

0.4

−2

0

2

4

x 10
−3

αMa

e
r
r
o
r

Fig. 4. Approximated coefficients of degree 8 and approximation errors (top=QP, middle=GP, bottom=SM)

0
0.2

0.4
0.6

0.8 −0.2
0

0.2
0.4

−0.06

−0.04

−0.02

0

0.02

αMa

C
D

 0
0.2

0.4
0.6

0.8 −0.2
0

0.2
0.4

−2

0

2

4

x 10
−3

αMa

e
r
r
o
r

Fig. 5. Approximated coefficient of degree 24 and approximation error (SM)

