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Abstract

Implicit large-eddy simulations (ILES) of tran-
sitional separated flow were performed using a
high-order flux reconstruction (FR) scheme on
the configuration of SD7003 wing section at low-
Reynolds number Re = 60,000 for which com-
plex transitional flow dominates the flow field on
the upper surface of the wing. Presented study
is an attempt to assess the performance and suit-
ability of the FR scheme for accurate simulations
of transitional flow with small (grid-scale) vor-
tices. Simulations are carried out with polyno-
mial degree p =2 (3"-order) and p = 3 (4"-
order) resulting in up to 2,000,000 degrees of
freedom. Second order simulations has been in-
cluded, dependency of the grid and angle of at-
tack (4° & 8°) were surveyed to improve fidelity
of simulations.

1 Introduction

Increasing performance of current computers al-
lows to simulate flow problems of higher com-
plexity with more matured and sophisticated nu-
merical methods than it was possible ever before.
In the last two decades, computational fluid dy-
namics (CFD) simulations have became neces-
sary part of the design process in majority of en-
gineering fields. Mostly lower fidelity methods
are being used and since lower fidelity methods
do not take into account phenomena that are im-

portant for some design work (e.g. vortex dom-
inated flows, sonic boom, aero-accoustics and
noise etc.) development of high fidelity tools
which are reliable and easy to use is necessary.

Recent advances in miniaturization acceler-
ates development of micro-air vehicles (MAVs)
which usually work in the regime of low
Reynolds (Re) numbers about 10* ~ 10°. Let’s
mention also other applications such as pro-
pellers, leading-edge control devices, wind tur-
bines, high-altitude aircrafts for which their oper-
ation can partially or completely lie in the range
of low Re numbers.

The low Reynolds flows (10* ~ 10°) have
gradual laminar-turbulent transition and under fa-
vorable conditions might appear a laminar sepa-
ration bubble (LSB) on the surface where sepa-
rated stream encloses a region of stagnant and re-
verse flow. In Figure 1 is shown self-explanatory
sketch of a laminar separation bubble. Such flows
have a complex three-dimensional unsteady na-
ture. Strength, position and extent of the LSB
depends on many factors, among the most in-
fluential belong the Reynolds number, angle of
attack or external factors such as a free-stream
turbulence intensity, vortical and acoustic distur-
bances. Higher angle of attack or Reynolds num-
ber usually shortens the length of the bubble (Fig-
ure 2).

Moreover, shorter bubbles are more sensitive
for sudden changes of velocity or angle of attack
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which can cause that the shear layer may fail to
reattach and it may “burst” to form either a long
bubble or an unattached free shear layer.[1]

The initial stage of natural transition is an
amplification of acoustic or vortical perturba-
tions of tiny scale within the boundary-layer.
The acoustic perturbations tends to influence the
growth of two-dimensional instabilities, whereas
the vortical perturbations influence the growth of
three-dimensional instabilities. Low-order nu-
merical schemes (order of accuracy < 2) with
their higher numerical dispersion and dissipa-
tion struggle with predictions of complex un-
steady flows where ability to resolve small scales
of the flow in detail is required. In order to
achieve required precision with low-order nu-
merical schemes for flows where demands on
accurate results are emphasized, e.g. in aero-
acoustics, a tremendous grid resolution would
be required which would lead to an unaccept-
able computational cost. High-order accurate nu-
merical schemes (order of accuracy > 2) have
lower numerical dispersion and dissipation and
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despite the fact that they are more costly per it-
eration than low-order methods, one can obtain
very accurate results with much lower computa-
tional cost than it would be possible with com-
mon low-order methods. Among disadvantages
of high-order accurate numerical schemes belong
that they are often more complicated and still less
robust than their low-order counterparts.

The discontinuous Galerkin (DG) method is a
major high-order scheme based on weak formu-
lation of conservation laws. Strong mathemati-
cal formulation makes its implementation some-
times cumbersome. Concurrently, methods as
staggered-grid multi-domain spectral method[2,
3], the spectral difference (SD)[4, 5] and the flux
reconstruction (FR)[6, 7] have been subject of re-
search. Those high-order schemes are based on
differential form of the governing equations. Dif-
ferential formulation leads to simpler algorithm
with lower computational cost due to absence of
numerical integrations. The FR scheme is a high-
order accurate conservative scheme proposed by
H. T. Huynh in 2007. It uses differential form of
Euler or Navier-Stokes equations and it is consid-
ered to be more general formulation because it in-
volves only one grid and do not staggers solution
and flux points into two grids as staggered-grid
spectral method or spectral difference method. It
has been found by Huynh that there exist rela-
tions between the FR, the DG and the SD method
and their simplified equivalents can be recovered
within the FR framework. In the previous work
on the FR scheme conducted by one of the au-
thors, the vortical flow simulations exhibited a
high-resolution property for large-scale vortices
in a practical application.[8]

Numerical simulations presented in this pa-
per aims to investigate use of a high-order ac-
curate flux reconstruction (FR) scheme for ac-
curate three-dimensional simulations of transi-
tional flow with small (grid-scale) vortices. Tran-
sitional flow over a rectangular wing section with
Selig/Donovan low-Reynolds number airfoil has
been chosen since it has been subject of several
numerical studies. [9, 11, 12, 13, 14]

This introduction section describes the moti-
vation for the current effort. In the second section
of this paper, numerical algorithm is briefly pre-
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sented. A careful evaluation of numerical sim-
ulation results is presented in the third section.
Finally, this paper is closed with conclusions and
remarks obtained from the current effort.

2 Numerical algorithm

Numerical simulations are carried out on hex-
ahedral domains by a high-order accurate par-
allel code which solves the unsteady, three-
dimensional, compressible Navier-Stokes equa-
tions using the FR scheme for spatial discretiza-
tion. High-order method adds internal solution
points (also called degrees of freedom, abbr.
DOF) inside each computational cell. The so-
lution polynomial is reconstructed in the cell to
achieve high-order accuracy. This concept is well
known and shared with other high-order meth-
ods including the DG, spectral finite volume (SV)
method, SD and FR scheme.

2.1 Formulation of the flux reconstruction
scheme

The FR scheme used in this paper was proposed
by H. T. Huynh [6, 7] in 2007 and is briefly re-
viewed in this section. More detailed description
can be found in authors’ previous work [10] or in
Huynh’s papers [6, 7] where can be found thor-
ough mathematical explanation.

The conservation form of Navier-Stokes
equations is expressed by the following equation,

00 0E JF oG

ET TR TR P
where 7 is time, Q is a vector of conservative vari-
ables and E,F and G are flux vectors including
inviscid and viscous terms. Computational do-
main is discretized into non-overlapping hexahe-
dral cells. In each single cell is solution approxi-
mated by N pieces of data in all coordinate direc-
tions. N pieces of data are solution points, some-
times called degrees of freedom (DOF).

To be able to reconstruct solution within each
cell with a polynomial of degree (p = N — 1),
one need to specify N solution points. Sev-
eral choices how to define solution points (SP)
are available e.g. equidistant, Lobatto or Gauss
points etc. (see Figure 2.1)
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Fig. 3 Solution points on 2D element (p = 2) a)
Lobatto points (red), some of them lie on the cell
edges b) Gauss points (red) are all inside the cell.
Black dots show flux points.

Solution can be reconstructed using the ten-
sor product of three 1D Lagrange polynomials of
degree p = N — 1, thus, solution is reconstructed
with N3 solution points in the cell. In similar
fashion are obtained flux polynomials from the
flux values at solution points. The flux polyno-
mials are of degree N — 1 and they are generally
discontinuous across cell interfaces as illustrated
in Figure 4. To prevent any loss of information
between adjacent cells, the flux polynomials are
corrected to have common values at the cell-cell
interfaces. Common numerical fluxes are eval-
uated at each interface using a simple Rusanov
scheme (Figure 5 a). The corrected (one can say
continuous) flux polynomial should be close to its
original and corrected flux polynomial should be
N""-order polynomial which ensures that its spa-
tial derivative is of degree N — 1, the same degree
as of solution polynomial. (Figure 5 b,c) More-
over, the flux derivatives need to be also corrected
in a similar manner.
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Fig. 4 Flux polynomials are generally discontin-
uous at the cell-cell interface.

Hyunh proposed method using correction
functions to modify, one can say ’correct’ flux
polynomials. Correction functions are of such
convenient shape that when added to the poly-
nomial, this polynomial remains close to its orig-
inal and is modified on the left and right side to
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Fig. 5 Flux polynomials are generally discontin-
uous at the cell-cell interface and they need to be
corrected to share same value at the interface.

share common value with the neighboring cell.
The correction function, which is a N-order poly-
nomial requires additional N — 1 conditions to-
gether with prescribed boundary conditions

gr(=1)=1, g(1)=0
gr(—=1)=0, ggr(l)=1 (2)

where L and R mean left and right correction
function. Huynh derived various correction func-
tions which can be employed, e.g. based on the
Legendre, Radau, or Lobatto polynomials. Fig-
ure 6 shows three possible “left” correction func-
tions g7 for N =4, (p = 3). It has been observed
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Fig. 6 Correction functions for the flux polyno-
mial. (p=3) Only g;’s are shown due to symmetry.

by Hyunh that choice of the correction function
has an influence on the stability and accuracy of
the scheme. In this study, the correction function
is based on the Radau polynomial and scheme
exhibits higher accuracy with lower CFL stabil-
ity as a trade off. The numerical scheme cor-
responds to the discontinuous Galerkin method.
Gauss points are chosen as solution points in this
study.

For discretization of the viscous fluxes, the
second Bassi-Rebay (BR2) [15] scheme with
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compact stencil is implemented and the common
viscous fluxes can be easily calculated by the
average (centered formula). When inviscid and
viscous flux vectors are evaluated at all solution
points, one can proceed to evaluate all divergence
terms in (1)and update the solution Q in time via
a suitable temporal discretization. A non-linear
LU-SGS [16] implicit time-integration scheme
which was extended to be second order accurate
in time has been used in this study.

3 Results and discussion

Simulation results are presented and discussed
in the current section. For the purpose of
comparison are representatives of various high-
order numerical schemes, namely, discontinu-
ous Galerkin and compact differencing scheme
chosen. Selected simulations for comparison
were conducted by Galbraith & Visbal [12] (a0 =
4° & 8°), Garmann & Visbal [13](ot = 8°). Above
mentioned authors have used the 6/"-order ac-
curate compact differencing scheme. Simula-
tions using the 4'"-order accurate discontinous
Galerkin method have been conducted by Carton
de Wiart & Hillewaert [11] (o = 4°).

3.1 Numerical setup

Unsteady three-dimensional computations were
performed using the flux reconstruction for spa-
tial discretization (second, third and fourth-order
of accuracy in space) and implicit lower-upper
symmetric Gauss-Seidel (LU-SGS) method for
the temporal discretization (second order of ac-
curacy in time).

Simulations are carried out with flow condi-
tions as follows, Re = 60,000, free-stream Mach
number M., = 0.1, constant ratio of specific heats
Y= 1.4 and Prandtl number P, = 0.72.

The Selig-Donovan SD7003 airfoil has a
maximum thickness of 8.5% and maximum cam-
ber of 1.45% at the 35% chord location. The
wing section is created from the extended pla-
nar airfoil geometry with spanwise length set to
z/c = 0.2, see Figure 7.

Two computational domains consist of
16,000 and 32,000 hexahedral cells correspond-
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Spanwise periodic conditions

Fig. 7 Selig/Donovan SD7003 low-Reynolds
number airfoil

ing in approximately 2,000,000 degrees of free-
dom at the maximum. An O-grid is surround-
ing the model with a resolved near-wall layer
(y" &~ 1) and with the far-field boundary condi-
tion (free-stream velocity condition) located 100
chords from the model, see Table 1 and Fig-
ure 8. On the wing surface is applied a no-
slip isothermal condition with a temperature ra-
tio Tiyai1/Ting = 1.002 and flow is considered to
be periodic in space, thus periodic boundary is
applied along the spanwise direction.

Table 1 Computational domains

DOF [10°]
Mesh Dimensions’ Cells 2nd  3rd*  4th*
Grid 1 8x 97 x25 16,128 0.13 043 1.03
Grid2  8x193x25 32,256 0.26 0.87 2.06
Grid3 15x193x49 129,024 1.03 —— ——

Grid2  atx/c=0.6 xT vt I3
3rd 17.1 135 53
4th 11.4 09 35

* Number of solution points per cell is N3, where N is the order
of accuracy of the scheme.

T spanwise x circumferential x wall-normal
y* (wall-normal), z* (spanwise)

Non-dimensional time steps (At* = Ar X
U./c) were of the order 10~*.  Third-order
simulations have been running over a non-
dimensional time (N/T) interval of 50 with all
quantities of interest averaged during the last
N/T interval of 20. To reduce necessary compu-
tational time for the fourth-order simulations, an
initial flow-field was extrapolated from the third-
order simulations using of Lagrange interpolation
polynomials.

Averaged flow fields of fourth-order simula-
tions were obtained after letting the flow to sta-

> =— % =

(b) Solution points, left 3rd (27 points per hexa cell) and
right 4""-order (64 points per hexa cell)

Fig. 8 Representation of computational domain

bilize. After that, time averaged data were col-
lected over N/T interval of 10. Figure 9 shows
time history of lift and drag coefficient for o0 = 4°
and both computational domains.
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3.2 Angle of attack oo = 4°

For the sake of clarity and completeness, authors
would like to show some results for an angle of
attack o = 4° obtained earlier this year. There-
fore, an extent of the part for an angle o0 = 4° is
rather limited and more thorough discussion can
be found in [10].

At o =4°, a laminar separation bubble on the
upper surface of the wing can be characterized in
time mean sense as a long and stable. The flow
tends to separate from the surface around 20%
and reattach back to the surface around 60% of
the chord. The mean separation bubble is clearly
visible in Figure 11 b). For qualitative compari-
son are three-dimensional coherent vortices visu-
alized by the iso-surfaces of Q-criterion in Fig-
ure 10. Averaged pressure and skin friction co-
efficient distributions are plotted in Figure 12.
Computed boundary-layer profiles of streamwise
velocity and Reynolds stress component /2 on
grid 2 for the fourth order are compared with pro-
files obtained from the literature in Figure 13.
The profiles of mean-square fluctuations of u-
velocity calculated on grid 1 seem to be under-
predicted, whereas the grid-2 shows an improve-
ment. With higher grid resolution, especially in
streamwise (circumferential) direction, the three-
dimensional vortical structures are captured bet-
ter and the laminar separation bubble and aerody-
namic forces reasonable agree with the literature.
In Table 2 are summarized time averaged data
along with results from the literature for com-
parison. Obtained results for an angle of attack
4° agree well with the literature despite of use
of relatively coarse domains with maximum at
2,000,000 degrees of freedom.

3.3 Angle of attack oo = 8°

In the following section are presented results for
an angle of attack oo = 8°. Apart of an angle of at-
tack, the numerical setup is without change in pa-
rameters. For an angle of attack oo = 8° is charac-
teristic that separation occurs almost immediately
and flow reattaches at about quarter chord. The
laminar bubble is shorter (in time-mean sense)
and shifted closer to the leading edge of the wing
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(compare Figure 11 and Figure 18). Turbulent
flow is over larger part of the wing as shown
in Figure 14 of instantaneous Q-criterion iso-
surfaces for three orders of accuracy (Z”d, 3rd
and 4'"). Second-order simulation (Figure 14a)
with around 130,000 degrees-of-freedom (8 SP
per computational cell) is not capable of cap-
turing the three-dimensional breakdown. A ro-
bust vortex is periodically formed but because
its breakdown is suppressed due to the insuffi-
cient grid resolution, the vortex travels further
downstream to the trailing edge. Similar behav-
ior has been observed in two-dimensional sim-
ulations conducted by the authors earlier. This
strong vortex negatively affects flow downstream
on the suction side of the wing. The third-order
simulation (Figure 14b) with around 430,000
degrees-of-freedom (27 SP per computational
cell) shows improving trend since the vortex roll-
up and breakdown is more clear without “two-
dimensional” effects reported above. Signifi-
cant change can be seen in Figure 14c) which
depicts the fourth-order simulation with around
1,000,000 degrees-of-freedom (64 SP per com-
putational cell). Spanwise vortex is formed and
almost immediately decays. For the purpose of
evaluation of the effects of order of polynomi-
als, second-order simulation has been computed
on grid 3. This domain consists of 129,024 cells
and with the second-order code, number of solu-
tion points in spanwise, circumferential and nor-
mal directions (28 x 385 x 97) are the same as in
the 4th-order simulation, thus, second-order sim-
ulation on grid 3 also has 1,000,000 degrees-of-
freedom. In (Figure 14c) can be found compar-
1ison of both simulations with 1,000,000 DOF’s.
Second-order simulation shows much worse per-
formance in predicting of three-dimensional vor-
tical structures than its 4th-order counterpart.
The vortical structures are similar with the third-
order simulation showed in Figure 14b with only
approx. 430,000 DOF’s. Computational cost of
the second-order simulation were somewhere be-
tween the computational cost of 4th-order and
3rd-order simulation, thus, it is possible to con-
clude that the mesh refinement is an inefficient
means for low order methods to reach an accu-
racy threshold. Figure 15 shows time-mean pres-
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sure C, and skin friction Cy coefficient distribu-
tions compared with the literature.

The fourth-order simulation with (1,000,000
DOF) seems to be in better agreement with re-
sults of Garmann et al. on domain compris-
ing 12,549,120 points than with results obtained
by Galbraith et al. on domain consisting of
5,700,000 points. Skin friction coefficient distri-
bution reasonably follows the one by Garmann et
al. with drop in friction profile predicted at the
same location with the same magnitude. Some
discrepancy in the pressure coefficient distribu-
tion can be found upstream the turbulent tran-
sition. Figure 16a shows comparison of mean
boundary-layer streamwise velocity profiles for
the fourth-order. Computed boundary layer pro-
files reasonably follows the profiles of Garmann
et al. with velocity slightly overpredicted along
the whole suction side of the wing. Reynolds
stress component u/2 profiles for the fourth order
are compared with profiles obtained from the lit-
erature in Figure 16b. Even though the grid 1 has
lower resolution, magnitude and shape of mean-
squared velocity profiles reasonable agree with
profiles from the literature with some discrepan-
cies which are clearly visible in the most sensitive
area of transition to turbulence at x/c = 0.2 and
x/c = 0.3. Table 3 contains summary of time-
mean results and summary of results from the lit-
erature.

The comparison of average pressure coeffi-
cient and skin friction coefficient on the airfoil
obtained with the second, third and fourth-order
simulations can be seen in Figure 17. Second-
order simulation with 130,000 DOF’s shows poor
results due to the “two-dimensional” effect re-
ported earlier. The third-order simulation pre-
dicts location of the turbulent transition more up-
stream. The same behavior has been observed
for an angle of attack o = 4° where resolution of
this domain has been classified as an insufficient.
Second-order simulation with 1,000,000 DOF’s
also shows poor results in comparison with the
4th-order case with 1,000,000 DOF’s. Separa-
tion and transition to turbulence is predicted bet-
ter than in the 3rd-order simulation and distribu-
tion reasonable follows the 4th-order distribution
until the transition point (approx. at x/c = 0.2).

After the transition to turbulence, are forces sig-
nificantly different. It can be seen that pressure
gradient in C,, plot is not so steep (from x/c = 0.2
to x/c = 0.4), drop in friction profile is wider and
friction profile is not recovered properly at the
rear part of the wing which may indicate that the
vortex breakdown is slower and its disintegration
is over larger portion of the wing. Further analy-
sis of the results will be presented at the confer-
ence.

Contours of turbulent kinetic energy T.K.E.
for all simulations are shown in Figure 19. Fig-
ure 20 shows contours of turbulent kinetic energy
computed on the fine domain with 12.5 MDOF’s
by Garmann et al. Fourth-order results agree well
and are consistent with the literature. The slight
difference in T.K.E magnitude can be attributed
to the effects of fairly coarse grid resolution con-
sisting of 1,000,000 degrees of freedom.

4 Conclusion

This paper presents some preliminary results ob-
tained with the flux reconstruction scheme for the
prediction of transition associated with a laminar
separation bubble on the SD7003 airfoil. Sim-
ulations are performed using second, third and
fourth order accurate code. The grid resolution
of the second and third order simulations is too
coarse for the small energetic scales to be well
captured, nevertheless, fourth-order simulation
shows a remarkable agreement with results ob-
tained with much finer LES simulation [13].
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Grid 2

Pressure coefficient, Cp

1 | |
0 0.2 04 0.6 0.8 1
x/c

(a) Cp

0.04 1 T

——4th-order Grid1 [1,032,192 DOF]
4th-order Grid2 [2,064,384 DOF]

Fig. 10 Instantaneous iso-surface of Q-criterion 008  Ghihane i o L
« CD 6th-order Galbraith [6,600,000 points]

(4th-order, a@ = 4°, Q=500, colored by Mach R
o
number) £
.
:§
Table 2 : o = 4° Time averaged results: £

present study and literature.

Source Xsep/c  xr/c [ Cp DOF
Simulations N [10°]
" (CD)Galbraith ~ ~ ~ 6 023 ~ 065 ~ 059 ~ o002 ~ 57
(CD) Galbraith 6 0.20 0.66 - - 6.6
(DG) Carton de Wiart 4 0.207 0.647 0.607 0.0201 0.8
(DG) Carton de Wiart 4 0.209 0.654 0.602 0.0196 11
Present study
TERGndT T T3 0237 ~ 0626 0587 00191 04 (b) Cf
(FR) Grid 1 4 0.224 0.646 0.5902 0.0208 1.0
(FR) Grid 2 3 0.203 0.662 0.6035 0.0215 0.9 . .
(FR) Grid 2 4 0201 0657 05987 0.0221 2.0 Flg. 12 Comparlson of mean (a) Cp and (b) C f
N - order of accuracy, xgep - separation, x, - reattachment . . . . .
CD - compact differencixll]g scheme, DG - discontinuous Galerkin, FR - flux recon- dlStI‘lbuthIlS Wlth the lltel‘atul'e at o= 40 .
struction
e 6th-order CD Galbraith [5,700,000 points] — 4th-order Grid 2 [2,064,384 DOF]
0.04 A4§l1—orc}er DG Cmon (‘ie Wyian 4t‘h-qrc‘ler Grid 1 ‘[1,03'2,192 DOF]
. T :

0.03
L 0.02
(3

0.01

0.1 0.2 0.3 0.4 05 06 0.7 0.8 0.9 1

" 0.05
(a) 4" _order, grid 1, pressure 004
| |
00.4 0{5 0.9
= b) u?
S rT— ®
(b) 4-order, grid 1, u-velocity Fig. 13 Boundary layer profiles of (a) u-velocity
(b) mean-squared fluctuations of u-velocity (u/2)
Fig. 11 Pressure and u-velocity contours for o0 = 4°. at oo = 4°.
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(a) 2" (130,000 DOF)

(c) 4" (1,000,000 DOF) & 2" (1,000,000 DOF)*
Fig. 14 Grid 1: Instantaneous iso-surface of Q-

criterion (a0 = 8°, Q=300, colored by Mach num-
ber), ad a) * Grid 3

SKAROLEK, MIYAJI

-3 T
——4th-order Grid 1 [1,032,192 DOF]

2.5 + CD 6th-order Galbraith [5,700,000 points]
* CD 6th-order Garmann [12,549,120 points]

Pre§sure coefﬁcient,ICp

0 02 04 06 08 1
xlc
(@ Cp
0.02¢¢ —— 4th-order Grid 1 [1,032,192 DOF]

+ CD 6th-order Galbraith [5,700,000 points]
+ CD 6th-order Garmann [12,549,120 points]

0.005

-0.005

Skin friction coefficient, Cf
o

-0.01

-0.015

-0.02 I I
0.2 0.4 0.6 0.8 1
xlc

(d) Cy

Fig. 15 Comparison of mean (a) C,, and (b) Cy
distributions with the literature at o0 = 8°.

o 6th-order CD Garmann et al. [12,549,120 points] -------- 4th-order Grid 1[1,032,192 DOF]
T st
0.04 o o ]
0 0% . N 1
< 002 i e i
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(a) u-velocity
W
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» 4
' :
. ?
i .
: ¢
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o RS IR SR
0.1 0.2 03 0.4 .5 0.6 0.7

x/c

(b) u?

Fig. 16 Boundary layer profiles of (a) u-velocity
(b) mean-squared fluctuations of u-velocity (/%)
at o = 8°.
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UNSTEADY FLOW OVER A SD7003 AIRFOIL AT LOW-Re NUMBERS USING THE FR SCHEME

Table 3 : o = 8° Time averaged results:
present study and literature.

Source Xsep /€ x/c CL Cp DOF
Simulations N [10°] 2
~ (CD) Galbraithetal. 6 0.04 ~ ~ 028 ~ 092 ~ 0043 ~— 57 ~
(CD) Garmann et al. 6 0.023 0.259 0.9696 0.0391 12,5 T T————
Present study R ———
TFER)GrdT T T T 737 70031 T 024 T 095457 T0.0349 T 04 T -0.05 w/Us L5
(FR) Grid 1 4 0.028 0.257 0.9331 0.0389 1.0 | . .
N - order of accuracy, xg, - separation, x, - reattachment .
CD - compact diffeancirpllg schepme, FR - flux reconstruction (b) u'VdOClty

Fig. 18 Contours for o = 8°. (4/"-order, grid 1)

—4th-order Grid 1 [1,032,192 DOF]
25 -+ 3rd-order Grid 1 [435,456 DOF]
. --+-- 2nd-order Grid 1 [129,024 DOF]
--+=— 2nd-order Grid 3 [1,032,192 DOF]

Prelssure coefﬂclent,lop

0.5 T
1
0 0.2 0.4 0.6 0.8 1
xlc
(@ Cp
- (b) 2™-order, grid 3, TK.E
0.02 % 4th-order Grid 1 [1,032,192 DOF]

--+--3rd-order Grid 1[435,456 DOF]
-—+-2nd-order Grid 1[129,024 DOF]
--e—2nd-order Grid 1 [1,032,192 DOF]

001 §
5
5 0.005 Soons
g Pl e
3 : Pl
g N ‘.*.l ./ = * "‘:’:‘ 0 TKE
S A by ¥ %,
E r{ >e p25d .
£ 00 7 (c) 3™-order, grid 1, T.K.E
-0.01 i
-0.015
-0.02
0.2 0.4 06 08 1
xlc
(®) Cr

(d) 4""-order, grid 1, TK.E

Fig. 17 Mean (a) C,, and (b) C distributions for

various orders of accuracy at o, = 8°. Fig. 19 Turbulent kinetic energy contours for

o= 8°.

E I
000 002 004 006 008 0.10 0.2 0.4 0.6 0.18 020

. 0.985 p/pe 1.006
[

] (a) TK.E
(a) pressure
Fig. 20 Previous result of Garmann et al.[13] at
Re = 60000, or = 8°.
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