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Abstract

The paper presents an Eulerian derivation of the
non-inertial Navier-Stokes equations as an alter-
native to the Lagrangian fluid parcel approach.
This work expands on the work of Kageyama and
Hyodo [1] who derived the incompressible mo-
mentum equation for constant rotation for geo-
physical applications. In this paper the deriva-
tion is done for the Navier-Stokes equations in
compressible flow for arbitrary rotation for im-
plementation in aero-ballistic applications.

1 Introduction

Derivation of the non-inertial Navier-Stokes
equations (conservation of mass, momentum and
energy) is generally done using the fluid parcel
approach. Although this method leads to the cor-
rect set of equations, it does not clearly indicate
the origin of the fictitious forces and can lead to
misconceptions.

In deriving the conservation of momentum
equation, Newton’s second law is modified to in-
clude the fictitious forces as body forces in the
same manner as which the gravity force is han-
dled: ∑

F +
∑

Ffictitious = ma (1)

The fictitious forces are derived separately
using a point mass method to obtain a relation
for the inertial acceleration in terms of the non-
inertial acceleration components [2]:

a =
d2X

dt2
+Ω̇∧x+Ω∧(Ω∧x)+V̇+2Ω∧V (2)

These accelerations are multiplied by the density
to obtain the momentum form of the fictitious ef-
fects and included on the right hand side of the
momentum equation.

This approach, although simple and intuitive,
is not rigorous and lends itself to mistakes with
regards to the nature of the fictitious forces. It has
been observed in literature that these fictitious ef-
fects are erroneously added in the conservation of
energy equation when this Lagrangian approach
is used.

Kageyama and Hyodo [1] proposed an Eu-
lerian method for the derivation of the Coriolis
and centrifugal forces in the momentum equa-
tion. The derivation was limited to incompress-
ible flow in pure rotation since their application
is in the Geophysical field.

In this paper the work of Kageyama and Hy-
odo [1] is expanded upon to include the full set of
Navier-Stokes equations for compressible flow in
arbitrary rotation for aero-ballistic applications.

2 Non-inertial Navier-Stokes Equations for
Constant, Pure Rotation

This section involves the derivation of the non-
inertial Navier-Stokes equations for constant ro-
tation. This section is based on the work of
Kageyama & Hyodo [1] and forms the basis for
the subsequent section where the work is ex-
panded upon to derive the full set of Navier-
Stokes equations for compressible flow in vari-
able rotation.
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2.1 Frame Transformations

The first step in the derivation is to define the re-
lation of the inertial and non-inertial frames with
respect to each other. These relations are math-
ematically described in terms of transformation
operators and is used to change the perspective
of the observer.

Assume that three (3) frames exist; O, O’ and
Ô as indicated in Figure 1. Frame O is the sta-
tionary, inertial frame. Frame O’ is an orienta-
tion preserving frame(i and i’ has the same ori-
entation), which can be either inertial or non-
inertial depending on the cases analysed. This
frame shares an origin with the rotational frame
Ô. Frame Ô is the non-inertial, rotational frame
and is therefore not orientation preserving.

Now consider a point P which can be ob-
served from all the frames. Point P is rotating
around the origin of frame O, but it is stationary
in frames O’ and Ô. The set of equations will be
developed to describe the motion of point P in the
rotational frame Ô.

Fig. 1 Frame Transformations

This point is described in frame O from
where a modified Galilean transformation, GM,
will be used to describe it in frame O’. The
rotational transform, RΩt, will then be used to
transform the resulting equations (as described in
frame O’) to the rotational frame Ô.

2.1.1 Modified Galilean Transformation

The standard Galilean transform is limited in
its application to constant translation in the x-
direction. Kageyama & Hyodo [1] modified it
to accommodate constant rotational conditions.

The Galilean transform is used to transform
between two reference frames that only differ by

a constant vector of motion. In Figure 2 such a
motion is described between frame O and O’.

Assume that the origins of the two frames in-
tersect at time t = 0 and that frame O’ is moving
at a constant velocity V in the x-direction. At
time t =∆t, the frames O and O’ are then dis-
tance xrel from each other.

Fig. 2 Galilean Transformation between Frames

The relationship between the co-ordinates
points for this single event between frames O and
O’ is described by Equation 3. This is known as
the standard Galilean transform.

x′ = x− V∆t

y′ = y

z′ = z

t′ = t

(3)

Lets further assume at this point that the constant
motion need not be in the x-direction alone and
that it can be presented as a vector of motion as
shown in Figure 3. Lets further assume that it can
be used to described constant motion in rotation
as well.

Fig. 3 Modified Galilean Transformation be-
tween Frames

In order to simplify this case let all the frames
share the same origin and let the point P be sta-
tionary in the rotational frame Ô. Therefore point
P is rotating with a constant angular velocity
around the origin or the inertial frame O. The xrel

component can then be described as:

xrel = V∆t (4)
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where

V = Ω ∧ x (5)

The modified Galilean transform operator is in-
troduced such that any vector observed from the
inertial frame O can be related to the vector ob-
served from the orientation preserving frame O’
as:

u′(x′, t) = GMu(x, t) (6)

This definition will lead to a mathematical de-
scription to directly relate the vector fields in the
inertial frame O, to the vector fields in the orien-
tation preserving frame O’:

u′(x′, t) = GMu(x, t)

= GΩ∧xu(x, t)

= u(x, t)−Ω ∧ x

u′(x′, t) = u(x, t) + x ∧Ω

(7)

2.1.2 Rotational Transformation

Since frame Ô shares an origin with the frame
O’ the vector components in Ô is related to O’
by defining a rotational transform, RΩt. Equation
7 can be used to describe a vector as seen from
frame Ô in relation to a vector in frame O.

û(x̂, t) = RΩtu′(x′, t)

= RΩtGΩ∧xu(x, t)
(8)

RΩt is therefore the rotational transform that op-
erates on x′ to obtain the x̂ co-ordinates in the
rotational frame. From Equation 7 and 8 it can
be derived that for the velocity vector the follow-
ing relation holds:

û(x̂, t) = RΩt{u(x, t) + x ∧Ω} (9)

Lets assume, for convenience sake, that the rota-
tion is around the z-axis of frame O. The vector
Ω is then described as Ω = (0, 0,Ω). The rota-
tional transform in this case will be described by
the following tensor:

RΩt =

 cos Ωt sin Ωt 0
− sin Ωt cos Ωt 0

0 0 1

 (10)

The first column of this tensor is the projection
of the x′ component on x̂,ŷ and ẑ. In the

same manner is the second and third columns
the projection of y′ and z′ respectively on the
rotational axes. The quantitative values of the
rotation tensor will be different for each case.

Now that the modified Galilean invariance
and the rotational transform has been described
for constant rotational conditions, both can
be used in the derivation of the non-inertial
Navier-Stokes equations for constant rotation.

2.2 Incompressible Flow Conditions

In this section the non-inertial Navier-Stokes
equations for conservation of mass, momentum
and energy for constant rotation in incompress-
ible flow will be derived using an Eulerian ap-
proach.

2.2.1 Continuity Equation

The conservation of mass, known as the continu-
ity equation, in the inertial frames takes the form:

∂ρ

∂t
+ (∇ · ρu) = 0 (11)

The first term represents the temporal change in
density due to compressibility of the flow. Since
this case involves incompressible flow this term
can be neglected, but for the purposes of the
derivation it will remain in the equation until
the last step. The second term is the divergence
of density and velocity which represents the
residual mass flux of a given control volume.

Scalars, such as density and mass flux, are
invariant under Galilean transformation. The
first term of the continuity equation in the inertial
frame can therefore be directly equated to the
term in the non-inertial frame:

∂ρ̂

∂t
= RΩt∂ρ

∂t
(12)

The second term of the continuity equation will
be affected by both frame transformations since
it contains the velocity vector:

(∇̂ · ρ̂û) = RΩtGΩ∧x(∇ · ρu)

= RΩt[∇ · ρ(GΩ∧xu)]
(13)

3



ML COMBRINCK, LN DALA

Equation 9 is used to complete the modified
Galilean transformation, and the equation be-
comes:

(∇̂ · ρ̂û) = RΩt{∇ · ρ(u + x ∧Ω)}
= RΩt{∇ · (ρu) +∇ · ρ(x ∧Ω)}

(14)

The second term of the equation above falls away
since the divergence of the cross product of dis-
tance and rotation is zero:

∇ · (x ∧Ω) = 0 (15)

The equation thus becomes:

∇̂ · ρ̂û = RΩt(∇ · ρu) (16)

The addition of Equation 12 and Equation 16
leads to a relation between the continuity equa-
tion in the inertial and rotational frames:

∂ρ̂

∂t
+ ∇̂ · ρ̂û = RΩt(

∂ρ

∂t
+∇ · ρu) (17)

The right hand side of the equation is equal to
zero since this represents the continuity equation
in the inertial frame (Equation 11):

∂ρ̂

∂t
+ ∇̂ · ρ̂û = 0 (18)

Since this is the incompressible case, the tempo-
ral term is equal to zero. The continuity equation
for the rotational frame therefore takes the form:

∇̂ · ρ̂û = 0 (19)

The physical meaning of this equation describes
the very nature of incompressible flow assump-
tion; the residual mass flux in a specific control
volume is zero. This means that there are no
compressible effects in the flow because the same
amount of mass flux that enters a domain will exit
it.

The transient density term causes a change in
the residual mass flux in the domain that mani-
fests itself in the form of compressibility.

2.2.2 Momentum Equation

The inertial equation for incompressible momen-
tum conservation is describe by the equation be-
low:

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u (20)

The first term that will be transformed to obtain
an expression that relates the inertial to the rota-
tional frame is the time dependant term. It will be
done by finding an expression for the time deriva-
tive in the limit:

∂û

∂t
(x̂t, t) = lim

∆t→0

û(x̂t+∆t, t+ ∆t)− û(x̂, t)

∆t
(21)

An expression for û(x̂t+∆t, t + ∆t) must be
found. The form that the expression must take,
will directly relate the frames to each other:

û(x̂t+∆t, t+ ∆t) = RΩ(t+∆t)GΩ∧xt+∆t

[u(xt+∆t, t+ ∆t)]
(22)

The tools that is required to obtain an expression
for the relation above is described in the deriva-
tion below.

Perform a Taylor series expansion for xt+∆t:

xt+∆t = xt + ∆tV +O(∆t2) (23)

The resulting series is truncated at the second or-
der term and the derivative term is substituted
through Equation 5. Re-arrangement of the terms
will lead to an expression for displacement over
the specific time interval:

xt+∆t − xt = x∆t = ∆t(Ω ∧ x) (24)

A Fourier series expansion is done for
u(xt+∆t, t + ∆t), and with substitution of
Equation 24 it results in:

u(xt+∆t, t+ ∆t)

= u(xt, t) + [∆t(Ω ∧ x) · ∇]u(xt, t)

+ (∆t
∂

∂t
)u(xt, t)

(25)

Equation 25 is substituted into Equation 22 to get
the expression:

û(x̂t+∆t, t+ ∆t)

= RΩ(t+∆t)GΩ∧xt+∆t{u(xt, t)

+ [∆t(Ω ∧ x) · ∇]u(xt, t) + (∆t
∂

∂t
)u(xt, t)}

(26)

GΩ∧xt+∆t can be simplified as shown below if
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Equation 23 is substituted in the operator and
truncated at the first order:

GΩ∧xt+∆t = GΩ∧{xt+∆t(Ω∧xt+O[∆t2])}

= GΩ∧{xt(1+O[∆t])}

≈ GΩ∧xt

(27)

The expression for û(x̂t+∆t, t + ∆t), then be-
comes:

û(x̂t+∆t, t+ ∆t)

= RΩ(t+∆t)GΩ∧x{u(xt, t)

+ [∆t(Ω ∧ x) · ∇]u(xt, t)

+ (∆t
∂

∂t
)u(xt, t)}

(28)

A final set of tools is required before the expres-
sions for Equation 21 can be completed.

The assumption was made that point P is
fixed in the rotating frame and the rotation is
around the shared origin or the frames, then an
expression can be derived for xt:

x̂ = RΩ(t+∆t)xt+∆t = RΩtxt

xt = RΩ∆txt+∆t

(29)

This relation is substituted in the Taylor series ex-
pansion for xt+∆t:

xt+∆t = xt + ∆tV +O[∆t2]

= RΩ∆txt+∆t + ∆t(Ω ∧ xt) +O[∆t2]
(30)

Re-arrange this equation and consider in the limit
as ∆t approaches 0:

lim
∆t→0

RΩ∆txt+∆t − xt+∆t

∆t
= lim

∆t→0
(xt ∧Ω) (31)

Considering this relation for any vector b, and
take into account that xt+∆t→ xt as ∆t→ 0, the
following equation is arrived at:

lim
∆t→0

RΩ∆tb− b

∆t
= b ∧Ω (32)

Substitute Equation 28 into Equation 21 to
obtain the equation:
∂û

∂t
(x̂t, t)

= lim
∆t→0

RΩ(t+∆t)GΩ∧x{[1− 1
RΩ∆t

∆t

+(∆t(Ω ∧ x) · ∇)]u(xt, t) + (∆t ∂∂t)u(xt, t)}
∆t

(33)

By using Equation 32, and after re-arrangement
of the terms the following expression is arrived
at:

∂û

∂t
(x̂t, t) = RΩt[

∂

∂t
+ (Ω ∧ x) · ∇ −Ω∧]

[GΩ∧xu(xt, t)]
(34)

Substitute Equation 9 into the equation above
will result in:

∂û

∂t
(x̂t, t)

= RΩt[
∂

∂t
+ (Ω ∧ x) · ∇ −Ω∧](u(xt, t))

+RΩt[
∂

∂t
+ (Ω ∧ x) · ∇ −Ω∧](x ∧Ω)

(35)

In the equation above the transient component of
[ ∂
∂t

+ (Ω∧ x) · ∇−Ω∧](x∧Ω) is equal to zero:

∂

∂t
(x ∧Ω) =

∂x

∂t
∧Ω + (x ∧ ∂Ω

∂t
) = 0 (36)

The first term is zero because the magnitude of x
is constant over the time domain; its magnitude
does not change with respect to the origin since
this case involves pure rotation. The second term
is zero due to constant rotation of the point P. In
the case where the rotation is not constant, this
term will play a role as seen in this next section.

By introduction of the identity below, the
terms [(Ω ∧ x) · ∇ − Ω∧](x ∧ Ω) can be
simplified:

(a · ∇)(x ∧Ω) = a ∧Ω (37)

The entire term is hence cancelled out:

[(Ω ∧ x) · ∇ −Ω∧](x ∧Ω)

= [(Ω ∧ x) · ∇](x ∧Ω)−Ω ∧ (x ∧Ω)

= Ω ∧ (x ∧Ω)−Ω ∧ (x ∧Ω)

= 0

(38)

This leads to the final description of the unsteady
terms in the momentum equation. Note the ap-
pearance of one part of the Coriolis effect mani-
festing in the relation below.

∂û

∂t
(x̂t, t)

= RΩt[
∂

∂t
+ (Ω ∧ x) · ∇ −Ω∧](u(xt, t))

(39)
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The relation of the inertial to the rotational advec-
tion term is described in the following manner:

(û · ∇̂)û

= RΩtGΩ∧x(u · ∇)u

= RΩt(GΩ∧xu · ∇)GΩ∧xu

(40)

Substitution of Equation 9 into the equation
above results in:

(û · ∇̂)û

= RΩt[(u + x ∧Ω) · ∇](u + x ∧Ω)

= RΩt[(u + x ∧Ω) · ∇]u

+RΩt[(u + x ∧Ω) · ∇](x ∧Ω)

(41)

Dividing out all the terms gives the final relation
of the advection term between the frames. Note
the appearance of the centrifugal effect and the
other part of the Coriolis effect from the transfor-
mation of the advection term.

(û · ∇̂)û

= RΩt[(u · ∇)u + ((x ∧Ω) · ∇)u

+ (u ∧Ω) + (x ∧Ω) ∧Ω]

(42)

The gradient of pressure term in the momentum
equation is described between the frames in the
following manner:

∇̂p̂ = RΩtGΩ∧x∇p (43)

It was discussed earlier that scalars are invari-
ant under the modified Galilean transformation.
Scalars will not be invariant under the rotational
transform if spatial operations is performed on it
since the axis along which the discretization is
performed, changes between frames. The rela-
tion between the gradient of pressure in the iner-
tial and rotational frames is therefore described
by:

∇̂p̂ = RΩt∇p (44)

The diffusion term in the inertial frame can be
related to the rotational frame in the following
manner:

ν∇̂2û

= RΩtGΩ∧xν∇2u

= RΩtν∇2GΩ∧xu

= RΩtν∇2(u + x ∧Ω)

= RΩtν[∇2u +∇2(x ∧Ω)]

(45)

If it is considered that:

∇2(x ∧Ω) = 0 (46)

It can be shown that the diffusion term is invariant
under constant transformation:

ν∇̂2û = RΩtν∇2u (47)

Note that the pressure and viscous terms are
Galilean invariant in this instance and combine
the two components in a vector f(x, t):

f(x, t) = −∇p+ ν∇2u (48)

The new, combined parameter in the inertial and
rotational frames is related in the following man-
ner due to the invariance:

f̂(x̂, t) = RΩtf(x, t) (49)

The transformation of the momentum is com-
pleted through the summation of the unsteady
and advection terms in the rotational and inertial
frames as determined in Equation 39 and Equa-
tion 42:

∂û

∂t
+ (û · ∇̂)û

= RΩt[
∂u

∂t
+ (u · ∇)u + 2u ∧Ω

+ x ∧Ω ∧Ω]

= RΩt[
∂u

∂t
+ (u · ∇)u]

+RΩt[2u ∧Ω + x ∧Ω ∧Ω]

(50)

The first term grouping of the equation above is
simplified as shown in the equations below. This
was done using Equation 20, Equation 48 and
Equation 49.

RΩt[
∂u

∂t
+ (u · ∇)u]

= RΩt[−∆p+ ν∇2u]

= RΩtf(x, t)

= f̂(x̂, t)

(51)

The second term grouping, with the insertion of
Equation 9, becomes:

RΩt[2u ∧Ω + x ∧Ω ∧Ω]

= 2(RΩtu) ∧Ω + (RΩtx) ∧Ω ∧Ω

= 2[û−RΩt(x ∧Ω)] ∧Ω

+ (RΩtx) ∧Ω ∧Ω

= 2û ∧Ω− x̂ ∧Ω ∧Ω

(52)
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The two simplifications above is filled back into
Equation 50 and results in the non-inertial mo-
mentum equation for constant rotation.

∂û

∂t
+ (û · ∇̂)û = −∇̂p̂+ ν∇̂2û

+ 2û ∧Ω− x̂ ∧Ω ∧Ω
(53)

It can be seen from the equation above that the
fictitious forces associated with constant rotation
is the centrifugal and the Coriolis effects. The
centrifugal effect originates from the transforma-
tion of the advection terms while the Coriolis
effect is form both the transient and advection
terms.

2.2.3 Energy Equation

The general energy equation in the inertial frame
takes the following form:

∂ρε

∂t
+ (∇ · ρεu) = −p(∇ · u) +∇ · (k∇T ) (54)

The time dependant term is transformed in a sim-
ilar manner to the pressure term in the momen-
tum equation since internal energy is a scalar. It
was already discussed that scalars are invariant
under transformation. The first term is therefore
transformed though the following operation:

∂ρ̂ε̂

∂t
= RΩt∂ρε

∂t
(55)

The convective term is transformed between the
frames with the use of the rotational transform,
modified Galilean transform and by substitution
of Equation 9

(∇̂ · ρ̂ε̂û)

= RΩtGΩ∧x(∇ · ρεu)

= RΩt[∇ · ρε(u + x ∧Ω)]

= RΩt[∇ · ρεu +∇ · ρε(x ∧Ω)]

(56)

It was already shown in Equation 15 that the sec-
ond term on the right hand side is equal to zero.
Therefore the transformed equation becomes:

(∇̂ · ρ̂ε̂û) = RΩt(∇ · ρεu) (57)

The terms that represents the rate of work done

by the normal pressure forces is transform be-
tween the frames and Equation 9 is inserted:

− p̂(∇̂ · û)

= RΩtGΩ∧x[−p(∇ · u)]

= RΩt[−p∇ · (u + x ∧Ω)]

= RΩt[−p∇ · u +−p∇ · (x ∧Ω)]

(58)

It can be shown that this terms is also invariant
under transformation by the insertion of Equation
15:

−p̂(∇̂ · û) = RΩt[−p∇ · u] (59)

The diffusion is invariant under transformation
since the heat transfer coefficient (k) and temper-
ature (T) are scalars. The transformation between
the frames then becomes:

∇̂ · (k̂∇̂T̂ ) = RΩtGΩ∧x[∇ · (k∇T )]

= RΩt[∇ · (k∇T )]
(60)

All the transformed terms of the energy equation
is summed to obtain the equation below.

∂ρ̂ε̂

∂t
+ (∇̂ · ρ̂ε̂û) + p̂(∇̂ · û)− ∇̂ · (k̂∇̂T̂ )

= RΩt[
∂ρε

∂t
+ (∇ · ρεu) + p(∇ · u)

−∇ · (k∇T )]

(61)

The right hand side of the equation is equal to
zero, as shown in Equation 54. The energy equa-
tion in the non-inertial frame for constant rotation
is invariant under transformation in this specific
case:

∂ρ̂ε̂

∂t
+ (∇̂ · ρ̂ε̂û) = −p̂(∇̂ · û) + ∇̂ · (k̂∇̂T̂ ) (62)

This equation can be further simplified with the
assumption of incompressibility and using Equa-
tion 19:

∂ρ̂ε̂

∂t
+ (∇̂ · ρ̂ε̂û) = ∇̂ · (k̂∇̂T̂ ) (63)

Note that the energy equation is invariant under
transformation.
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2.3 Compressible Flow Conditions

In this section the non-inertial Navier-Stokes
equations for conservation of mass, momentum
and energy for constant rotation in compressible
flow will be derived using an Eulerian approach.

2.3.1 Continuity Equation

The general continuity equation in the rotational
frame was derived in Equation 18. This has
shown that the equation is invariant under trans-
formation. The compressible, non-inertial equa-
tion thus remains:

∂ρ̂

∂t
+ ∇̂ · ρ̂û = 0 (64)

2.3.2 Momentum Equation

The incompressible form of the momentum equa-
tion as shown in Equation 20, made the as-
sumption that the change in density is negligible.
Therefore, the equation could be simplified by di-
viding density into all the terms as there are no
temporal or spatial gradients in density. The dif-
fusion term in particular could be simplified in a
manner that would facilitate easy transformation
where the divergence of the gradient of velocity
yields the same result as taking the laplacian of
the velocity. This is not the case when compress-
ibility has to be accounted for. The compressible
Navier-Stokes Equation in the inertial frame will
take the form:

∂

∂t
ρu +∇ · (ρu⊗ u)

= −∇P +∇ · [µ(∇u +∇uT ) + λ(∇ · u)I]
(65)

The non-inertial form of the separate terms of
the equation, must be derived from this form to
obtain the compressible transformation.

First consider the unsteady term in the rota-
tional frame and apply the product rule for
partial derivatives. This operation will result in
two terms that was not considered during the
incompressible case:

∂

∂t
(ρ̂û) = ρ̂

∂û

∂t
+ û

∂ρ̂

∂t
(66)

With the aid of Equations 8 (which defined the
transformation between the frames) and Equation

34 (which defined the relation between the in-
compressible transient term in different frames)
the above becomes:

∂

∂t
(ρ̂û) = RΩtGΩ∧x[ρ

∂u

∂t
+ ρ(Ω ∧ x) · ∇u

− ρΩ ∧ u + u
∂ρ

∂t
]

(67)

The product rule is then used to combine the
terms ρ∂u

∂t
and u∂ρ

∂t
so that the equation simpli-

fies to:

∂

∂t
(ρ̂û) = RΩt[

∂

∂t
(ρ) + ρ(Ω ∧ x) · ∇

− ρΩ∧]GΩ∧xu
(68)

The equation is of the same form as Equation 34,
it can therefore be shown that the final form of
the equation will be similar to Equation 39, but
with the inclusion of the density scalar:

∂

∂t
(ρ̂û) = RΩt[

∂

∂t
(ρ) + ρ(Ω ∧ x) · ∇

− ρΩ∧]u
(69)

The relation between the frames for the advection
term in the compressible Navier-Stokes momen-
tum equation is:

∇̂ · (ρ̂û⊗ û) = RΩtGΩ∧x[∇ · (ρu⊗ u)] (70)

By using Equation 7 the equation above is ex-
panded into:

∇̂ · (ρ̂û⊗ û)

= RΩt{∇ · ρ[(u + x ∧Ω)⊗ (u + x ∧Ω)]}
= RΩt{(∇ · ρu)⊗ u + (∇ · ρu)⊗ (x ∧Ω)

+ [∇ · ρ(x ∧Ω)]⊗ u

+ [∇ · ρ(x ∧Ω)]⊗ (x ∧Ω)}

(71)

As shown in the previous section, the identity be-
low can be used to simplify the equation.

(∇ · a)⊗ (x ∧Ω) = a ∧Ω (72)

This will lead to the following expression for re-
lating the diffusion term in the rotational frame to
the terms in the inertial frame:

∇̂ · (ρ̂û⊗ û)

= RΩt[∇ · ρu⊗ u + ρu ∧Ω

+ (∇ · ρ(x ∧Ω)⊗ u + (ρx ∧Ω) ∧Ω]

(73)

8
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The pressure gradient term in the momentum
equation is transformed in a similar manner than
shown in the previous section. This part of the
equation remain invariant since it is a scalar.

∇̂P̂ = RΩtGΩ∧x∇P
∇̂P̂ = RΩt∇P

(74)

In the transformation of the diffusion term the
difference between the compressible and incom-
pressible cases must be noted. The divergence of
the velocity vector is not equal to zero, therefore
the completed diffusion term must be accounted
for. The expression for relating the diffusion term
between the frames hence becomes:

∇̂ · [µ̂(∇̂û + ∇̂ûT ) + λ̂(∇̂ · û)̂I]

= RΩtGΩ∧x∇ · [µ(∇u +∇uT )

+ λ(∇ · u)I]

(75)

With the implementation of Equation 9, the right
hand side of the equations becomes:

RΩt∇ · {µ[∇(u + x ∧Ω) +∇(u + x ∧Ω)T ]

+ λ(∇ · (u + x ∧Ω))I}
(76)

If it is considered that,

∇(x ∧Ω) +∇(x ∧Ω)T = 0 (77)

and

∇ · (x ∧Ω) = 0 (78)

It can be shown that, as in the case of incom-
pressible flow, the diffusion component of the
momentum equation is invariant for constant ro-
tation conditions:

∇̂ · [µ̂(∇̂û + ∇̂ûT ) + λ̂(∇̂ · û)̂I]

= RΩt∇ · [µ(∇u +∇uT ) + λ(∇ · u)I]
(79)

The same principle as in the previous section is
used to derive the final equation:

∂ρ̂û

∂t
+ ∇̂ · (ρ̂û⊗ û)

= −∇̂P̂
+ ∇̂ · [µ̂(∇̂û + ∇̂ûT ) + λ̂(∇̂ · û)̂I]

+ 2ρû ∧Ω− ρx̂ ∧Ω ∧Ω

(80)

It must be noted that the incompressible momen-
tum equation is a special case of the compress-
ible momentum equation where it is assumed that
the velocity of the flow is low enough (generally
incompressibility assumptions is assumed below
Mach 0.3) that the compressible effects does not
have a significant effect on the flow properties.
No truly incompressible conditions exist.

2.3.3 Energy Equation

The general energy equation remains the same as
described in the previous section:

∂ρε

∂t
+ (∇ · ρεu) = −p(∇ · u) +∇ · (k∇T ) (81)

This equation remains invariant in the non-
inertial frame as shown in Equation 62

∂ρ̂ε̂

∂t
+ (∇̂ · ρ̂ε̂û) = −p̂(∇̂ · û) + ∇̂ · (k̂∇̂T̂ ) (82)

Take again note that there are not fictitious effects
present in the energy equation.

2.4 Incompressible Equations as a Special
Case of the Compressible Equations

The assumption of incompressibility can be
made when the flow velocity is substantially
small (below Mach 0.3) so that the mass flux is
close to zero. This is a special case of compress-
ible flow that assumes that no temporal changes
in density occurs. As such, if the compressible
Navier-Stokes equations where derived correctly,
applying the incompressible assumptions to
it, should lead to the derived, incompressible
Navier-Stokes equations.

The compressible continuity equation in the
rotational frame was determined to be:

∂ρ̂

∂t
+ ∇̂ · ρ̂û = 0 (83)

The applied assumption of incompressibility will
result in the transient change in density being
zero:

∂ρ̂

∂t
= 0 (84)

The equation therefore becomes:

∇̂ · ρ̂û = 0 (85)

9
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This provides the same result Equation 19
which is the derived, incompressible continuity
equation in the rotational frame.

The derived, compressible momentum equation
in the rotational frame is:

∂ρ̂û

∂t
+ ∇̂ · (ρ̂û⊗ û)

= −∇̂P̂
+ ∇̂ · [µ̂(∇̂û + ∇̂ûT ) + λ̂(∇̂ · û)̂I]

+ 2ρû ∧Ω− ρx̂ ∧Ω ∧Ω

(86)

The first term that must be simplified to account
from incompressibility is the diffusion term:

∇̂ · [µ̂(∇̂û + ∇̂ûT ) + λ̂(∇̂ · û)̂I] (87)

Lets consider the x-momentum components of
the divergence of the deviatoric stress tensor. As-
sume in this instance that the dynamic viscosity
µ is a constant. Simplify the relation below to
obtain the form as shown below:

∂

∂x
(2µ

∂u

∂t
+ λ∇ · u) +

∂

∂y
(µ(

∂u

∂y
+
∂v

∂x
))

+
∂

∂z
(µ(

∂u

∂z
+
∂w

∂x
))

=µ(2
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
+

∂2v

∂y∂x
+

∂2w

∂z∂x
)

+
∂

∂x
(λ∇ · u)

= µ∇2u+ µ
∂

∂x
(∇ · u) +

∂

∂x
(λ∇ · u)

(88)

This relation can be written in the vector form to
account for all the components of the diffusive
momentum if it is assumed that the second vis-
cosity, λ, is constant (Stokes Hypothesis):

∇̂ · µ̂∇̂û + ∇̂ · [(µ̂+ λ̂)(∇̂ · û)] (89)

The second term in the relation above will be
equal to zero if the incompressible continuity
equation is substituted into the relation. This re-
sult in the following equation:

∂ρ̂û

∂t
+ ∇̂ · (ρ̂û⊗ û) = −∇̂P̂ + ∇̂ · µ̂∇̂û

+ 2ρû ∧Ω− ρx̂ ∧Ω ∧Ω
(90)

Since density is constant in the equation above, it
can be divided into the equation, which will lead

to the non-inertial momentum equation:

∂û

∂t
+ (û · ∇̂)û = −∇̂p̂+ ν∇̂2û

+ 2û ∧Ω− x̂ ∧Ω ∧Ω
(91)

This equation above it the same as Equation 53
which was derived from first principles.

The conservation of energy equation in the
rotational frame for compressible flow is
described by:

∂ρ̂ε̂

∂t
+ (∇̂ · ρ̂ε̂û) = −p̂(∇̂ · û) + ∇̂ · (k̂∇̂T̂ ) (92)

If the continuity equation is applied to this equa-
tion it will result in:

∂ρ̂ε̂

∂t
+ (∇̂ · ρ̂ε̂û) = ∇̂ · (k̂∇̂T̂ ) (93)

This is the same as Equation 63 where the
incompressible energy equation in the rotational
frame was derived.

This section therefore indicates that there
are no observed discrepancies between the
derived equations for the compressible and
incompressible cases in the rotational frame.

3 Non-inertial Navier-Stokes Equations for
Variable, Pure Rotation

In this section the non-inertial Navier-Stokes
equation for variable rotation around the axis of
the inertial frame will be derived.

It will observed that the equations for mass
and energy conservation for constant and variable
rotation remains the same. The equation for con-
servation of momentum has an additional term to
account for the variability in rotation. It will be
shown that the equations for constant and vari-
able rotational acceleration are equivalent and
that all additional terms due to the changes in
acceleration is negligible in the limit as ∆t ap-
proaches zero.

3.1 Frame Transformations

Assume that the same three frame exist as in the
previous derivation: O, O’ and Ô. O is again the

10
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stationary frame, O’ is the orientation preserving
frame and Ô is the rotational frame. In the previ-
ous derivation Ô was rotating at a constant veloc-
ity around the shared origin. In this instance Ô
are rotating around the shared origin with a con-
stant rotational acceleration.

3.1.1 Modified Galilean Transformation

In this section the modified Galilean transform
obtained from the previous section will be aug-
mented to account for rotational acceleration.

Assume that the frame origins intersect at
time t = 0 and that frame O’ is moving at ac-
celeration a in three dimensional space. At time
t =∆t frame O and O’ are distance xrel from
each other. In Equation 4 there was not an ac-
celerating component, but in this case it must be
incorporated in the expression to account for the
distance travelled by the particle:

xrel = V∆t+
1

2
a∆t2 (94)

In the equation above the velocity is again de-
scribed as in Equation 5:

V = Ω ∧ x (95)

The acceleration is the time derivative of the ve-
locity:

∂V

∂t
=

∂

∂t
Ω ∧ x

=
∂Ω

∂t
∧ x + Ω ∧ ∂x

∂t

(96)

The second term is equal to zero since this case
involves pure rotation. The accelerating compo-
nent for the rotational case is therefore expressed
as:

a = Ω̇ ∧ x (97)

Equation 94 is a Taylor series expansion that was
truncated after the second order term since con-
stant acceleration was assumed. Had the accel-
eration not been constant, the additional terms
will be accounted for by the inclusion of further
derivative terms:

xrel = V∆t+
1

2!
a∆t2 +

1

3!
ȧ∆t3 + ... (98)

In this equation it can already be seen that the
effect of further derivatives on xrel becomes
smaller and smaller. Further on in this section
it will be shown that only one additional term
are introduced in the non-inertial Navier-Stokes
momentum equation due to variable accelera-
tion. The continuity and energy conservation
equations remains invariant.

In the same manner as in the previous sec-
tion, Equation 7, the relation between the
order preserving frame and the inertial frame is
defined with the inclusion of the accelerating
components:

u′(x′, t)

= GMu(x, t)

= GΩ∧x+(Ω̇∧x)∆tu(x, t)

= u(x, t) + x ∧Ω + (x ∧ Ω̇)∆t

(99)

3.1.2 Rotational Transformation

The rotational transform for this case can be de-
fined in the same manner as Equation 8. The vec-
tor components in Ô is related to O’ by defining
a rotational transform and substituting Equation
99 to relate Ô to O:

û(x̂, t) = RΩt+Ω̇t2u′(x′, t)

= RΩt+Ω̇t2GΩ∧x+(Ω̇∧x)∆tu(x, t)
(100)

RΩt+Ω̇t2 is the rotational transform that operates
on x′ to obtain the x̂ co-ordinates in the acceler-
ating, rotational frame.

Lets assume, for convenience sake, that the
rotation is around the z-axis, then the vector
Ω is described as Ω = (0, 0,Ω) and vector Ω̇

is described as Ω̇ = (0, 0, Ω̇). The rotational
transform in this case will be described by:

RΩt+Ω̇t2 =

 cos(Ωt+ Ω̇t2) sin(Ωt+ Ω̇t2) 0

− sin(Ωt+ Ω̇t2) cos(Ωt+ Ω̇t2) 0
0 0 1


(101)

From Equation 99 and 100 it can be derived
that for the velocity vector the following relation
holds:

û(x̂, t)

= RΩt+Ω̇t2 [u(x, t) + x ∧Ω + (x ∧ Ω̇)∆t]
(102)

11
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3.2 Incompressible Flow Conditions

In this section the non-inertial Navier-Stokes
equations for conservation of mass, momentum
and energy for variable rotation in incompress-
ible flow will be derived using an Eulerian ap-
proach.

3.2.1 Continuity Equation

Consider the continuity equation in the inertial
reference frame:

∂ρ

∂t
+ (∇ · ρu) = 0 (103)

As was discussed in the previous section, scalars
are invariant under transformation and therefore
the time dependant term in the inertial and accel-
erating frame is related by:

∂ρ̂

∂t
= RΩt+Ω̇t2 ∂ρ

∂t
(104)

The relation of the second term in the continuity
equation becomes:

(∇̂ · ρ̂û)

= RΩt+Ω̇t2GΩ∧x+(Ω̇∧x)∆t(∇ · ρu)

= RΩt+Ω̇t2∇ · ρ(GΩ∧x+(Ω̇∧x)∆tu)}

(105)

With the implementation of Equation 102 the re-
lation is simplified to:

(∇̂ · ρ̂û)

= RΩt∇ · ρ[u + x ∧Ω + (x ∧ Ω̇)∆t]
(106)

The second and third terms in the relation above
is equal to zero:

∇ · (x ∧Ω) = 0

∇ · (x ∧ Ω̇) = 0
(107)

The relation is hence simplified to an invariant
relation:

∇̂ · ρ̂û = RΩt+Ω̇t2(∇ · ρu) (108)

The addition of Equation 104 and Equation 108
gives a relation for continuity in the rotational
frame:

∂ρ̂

∂t
+ ∇̂ · ρ̂û = RΩt+Ω̇t2(

∂ρ

∂t
+∇ · ρu) (109)

With the help of Equation 103 and the assump-
tion that the flow is incompressible, the final
equation for mass conservation in the accelerat-
ing frame is obtained:

∇̂ · ρ̂û = 0 (110)

Consider the term (x ∧ Ω̇)∆t in Equation 106.
This term originates from the Taylor series ex-
pansion in Equation 98 and contains a ∆t compo-
nent. Any further expansions, due to changes in
acceleration, will also contain a ∆tn component.
These acceleration terms will become negligible
in the limit:

lim
∆t→0

(x ∧ Ω̇)∆t = 0 (111)

In the light of this, the derivations for the conti-
nuity equation in the rotational frame have been
proven to be invariant to rotation whether the ac-
celeration it is zero, constant or variable. In any
rotational frame Equation 110 holds for incom-
pressible conditions.

3.2.2 Momentum Equation

The conservation of momentum equation in the
inertial frame can be expressed by:

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u (112)

The terms will again, as in the previous section,
be treated separately and then combined to
obtain the final transformed equation.

The first transformation will concern the
unsteady term where an expression must be
found for:

∂û

∂t
(x̂t, t)

= lim
∆t→0

û(x̂t+∆t, t+ ∆t)− û(x̂, t)

∆t
(113)

The first task is to find an expression for the term
û(x̂t+∆t, t + ∆t). The expression must take the
form:

û(x̂t+∆t, t+ ∆t)

= RΩ(t+∆t)+Ω̇(t2+∆t2)

[GΩ∧xt+∆t+(Ω̇∧xt+∆t)∆tu(xt+∆t, t+ ∆t)]

(114)
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For simplification the rotational and modified
Galilean transforms will be shown in the follow-
ing manner:

RΩ(t+∆t)+Ω̇(t2+∆t2) = RM
t+∆t

GΩ∧xt+∆t+(Ω̇∧xt+∆t)∆t = GM
t+∆t

(115)

The Taylor series expansion for xt+∆t is ex-
pressed as:

xt+∆t = xt + ∆tV +
1

2
∆t2a +O(∆t3) (116)

The equation above is truncate at the second or-
der. With the substitution of Equation 96 and
Equation 97 and further re-arrangement the equa-
tion becomes:

xt+∆t − xt

= x∆t = ∆t(Ω ∧ x) +
1

2
∆t2(Ω̇ ∧ x)

(117)

The Fourier series expansion is obtained for
u(xt+∆t, t + ∆t). Substitute Equation 117 into
the expression to obtain:

u(xt+∆t, t+ ∆t)

= u(xt, t) + {[∆t(Ω ∧ x)

+
1

2
∆t2(Ω̇ ∧ x)] · ∇}u(xt, t)

+ (∆t
∂

∂t
)u(xt, t)

(118)

The equation above is substituted into Equation
114 to get the expression:

û(x̂t+∆t, t+ ∆t)

= RM
t+∆t

GM
t+∆t{u(xt, t) + [∆t(Ω ∧ x)

+
1

2
∆t2(Ω̇ ∧ x)] · ∇]u(xt, t)

+ (∆t
∂

∂t
)u(xt, t)}

(119)

In the previous section is was shown that the fol-
lowing simplification can be made:

GM
t+∆t ≈ GMt (120)

Using the simplification for the modified
Galilean transformation above leads to the ex-
pression:

û(x̂t+∆t, t+ ∆t)

= RM
t+∆t

GM
t{u(xt, t)

+ [∆t(Ω ∧ x) +
1

2
∆t2(Ω̇ ∧ x)] · ∇]u(xt, t)

+ (∆t
∂

∂t
)u(xt, t)}

(121)

In order to complete the expression in Equation
113 further expressions must be defined. Assume
that the point P is fixed in the rotating frame, and
the rotation is around the origin (meaning that L
and L’ share an origin), then:

x̂ = RM
t+∆t

xt+∆t = RM
t
xt

xt = RM
∆t

xt+∆t

(122)

Use the expression above and conduct a Taylor
series expansion for xt+∆t:

xt+∆t = xt + ∆tV +
1

2
∆t2a +O[∆t3]

= RM
∆t

xt+∆t + ∆t(Ω ∧ xt)

+
1

2
∆t2(Ω̇ ∧ xt) +O[∆t3]

(123)

Re-arrange the expression above and consider it
in the limit:

lim
∆t→0

RM
∆t

xt+∆t − xt+∆t

∆t

= lim
∆t→0

[(xt ∧Ω)

− 1

2
∆t(Ω̇ ∧ xt)−O[∆t3]]

(124)

If the above is considered for any vector b, and
if it is taken into account that xt+∆t → xt as
∆t → 0, the following equation related to ro-
tation is obtained:

lim
∆t→0

RM
∆t

b− b

∆t
= b ∧Ω (125)

With all the required expressions in place Equa-
tion 113 can now be completed:

∂û

∂t
(x̂t, t) = lim

∆t→0

RM
t+∆t

GM
t{[1− 1

RΩ∆t

∆t
+∆t(Ω ∧ x) · ∇

∆t

+1
2∆t2(Ω̇ ∧ x) · ∇]u(xt, t)

∆t

+(∆t ∂∂t)u(xt, t)}
∆t

(126)

Equation 125 is used to simplify the expression
above and with some re-arrangement of terms the
following expression is obtained:

∂û

∂t
(x̂t, t) = RM

t
[
∂

∂t
+ (Ω ∧ x) · ∇ −Ω∧]

[GM
t
u(xt, t)]

(127)
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This equation above will retain its current form
irrespective of any further changes in accelera-
tion. All other terms that in inserted to account
for variation in acceleration will become negligi-
ble when the expression is considered in the limit.

Equation 102 is substituted in the equation
above to remove the modified Galilean operator
from the equation:

∂û

∂t
(x̂t, t)

= RM
t
[
∂

∂t
+ (Ω ∧ x) · ∇ −Ω∧](u(xt, t))

+RM
t
[
∂

∂t
+ (Ω ∧ x) · ∇ −Ω∧](x ∧Ω)

+RM
t
[
∂

∂t
+ (Ω ∧ x) · ∇ −Ω∧](x ∧ Ω̇)∆t

(128)

The different parts of [ ∂
∂t

+ (Ω ∧ x) · ∇ −
Ω∧](x ∧ Ω) , which is the second combination
of terms in Equation 128, will now be considered.

The transient term in the equation above
can be expanded on with the use of the product
rule for partial differential equations:

∂

∂t
(x ∧Ω) =

∂x

∂t
∧Ω + (x ∧ ∂Ω

∂t
) (129)

In the equation above the first term on the right
hand side is zero because the magnitude of x is
constant, it does not change its magnitude with
respect to the origin. The second term is not
equal to zero in this case and has to be taken into
account since it represents the unsteady rotation,
this is called the Euler fictitious force.

The terms [(Ω ∧ x) · ∇ − Ω∧](x ∧ Ω) has
already been shown in the previous section to be
equal to zero:

[(Ω ∧ x) · ∇ −Ω∧](x ∧Ω) = 0 (130)

The relation [ ∂
∂t

+(Ω∧x) ·∇−Ω∧](x∧Ω) will,
for this case, simplify to:

[
∂

∂t
+ (Ω ∧ x) · ∇ −Ω∧](x ∧Ω) = x ∧ Ω̇ (131)

The different parts of [ ∂
∂t

+ (Ω ∧ x) · ∇ −
Ω∧](x ∧ Ω̇)∆t, which is the third combination

of terms in Equation 128, will now be considered.

The transient component of the terms can
be expanded again using the product rule. In this
case the terms are all equal to zero:

∂

∂t
(x ∧ Ω̇) =

∂x

∂t
∧ Ω̇ + (x ∧ ∂Ω̇

∂t
) = 0 (132)

The first term in the equation above is equal to
zero because the magnitude of x is constant. The
second term in the equation above is equal to
zero because constant acceleration is considered
in this case. In the case where the acceleration
is not constant, the second term will not be zero.
However, this entire term will fall away in the
limit as ∆t, in the main equation, tends to zero.

Now consider the term [(Ω ∧ x) · ∇ −Ω∧](x ∧
Ω̇)∆t. If the identity:

(a · ∇)(x ∧ Ω̇) = a ∧ Ω̇ (133)

is considered, it can be shown that the entire term
is equal to zero:

[(Ω ∧ x) · ∇ −Ω∧](x ∧ Ω̇)

= (Ω ∧ x) ∧ Ω̇−Ω ∧ (x ∧ Ω̇) = 0
(134)

The entire third combination of terms in Equa-
tion 128 falls away, if not due to the nature of the
rotational motion, it will fall away in the limit
due to the ∆t term.

The above leads to the final description of
the unsteady terms in the momentum equation
for constant rotation:

∂û

∂t
(x̂t, t) = RM

t
[
∂

∂t
+ (Ω ∧ x) · ∇

−Ω∧](u(xt, t)) +RM
t
(x ∧ Ω̇)

(135)

At this stage it must noted that in any pure rota-
tion, this is the form the unsteady component of
the equation will always take. Additional terms
that appear in rotation will become negligible in
the limit due to the ∆t.

Take note in this equation of the appearance
of a part of the Coriolis effect and the Euler
effect.

The advection term in the non-inertial Navier-
Stokes equation for constant rotation will be
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transformed in the following paragraphs. The
relation between the inertial and rotational
frames can be described by the equation below:

(û · ∇̂)û = RM
t
GM

t
(u · ∇)u

= RM
t
(GM

t
u · ∇)GM

t
u

(136)

With the use of Equation 102, the equation above
is expanded into:

(û · ∇̂)û

= RM
t
[(u + x ∧Ω + ((x ∧ Ω̇)∆t) · ∇]u

+RM
t
[(u + x ∧Ω + ((x ∧ Ω̇)∆t) · ∇](x ∧Ω)

+RM
t
[(u + x ∧Ω + ((x ∧ Ω̇)∆t) · ∇](x ∧ Ω̇)∆t

(137)

The equation above can be simplified by consid-
ering it in the limit of ∆t and using the identity
in Equation 37. this will lead to the equation:

(û · ∇̂)û

= RM
t
[(u · ∇)u + ((x ∧Ω) · ∇)u

+ (u ∧Ω) + (x ∧Ω) ∧Ω]

(138)

In this case a note can again be made that this
is the form that the advection terms of the mo-
mentum equation will always taken in rotation,
irrespective if the rotation is constant or variable.

Note in this equation the appearance of
the other part of the Coriolis effect and the
centrifugal effect.

The pressure gradient term will be consid-
ered next. The relation between the inertial and
rotational frame for the pressure gradient can be
expressed in the manner below:

∇̂p̂ = RM
t
GM

t∇p (139)

Since scalars are invariant under transformation
the equation can be simplified to:

∇̂p̂ = RM
t∇p (140)

The last term in the momentum equation that
must be transformed is the diffusion term. The
relation between the inertial and non-inertial
frames is described below and Equation 102 is

used to expand on the relation:

ν∇̂2û

= RM
t
GM

t
ν∇2u

= RM
t
ν∇2GM

t
u

= RM
t
ν∇2[u + x ∧Ω + (x ∧ Ω̇)∆t]

(141)

If it is consider that:

∇2(x ∧Ω) = 0

∇2((x ∧ Ω̇)∆t) = 0
(142)

The advection terms of the equation becomes:

ν∇̂2û = RM
t
ν∇2u (143)

Note that the pressure and viscous term is
Galilean invariant in this instance and the two
components can be combined into a single vari-
able f :

f(x, t) = −∇p+ ν∇2u (144)

The relation for f between the inertial and rota-
tional frames can therefore be described by:

f̂(x̂, t) = RM
t
f(x, t) (145)

Expressions have been obtained for all the parts
of the momentum equation that relates the in-
ertial frame to the rotational frame. The trans-
formed equation is obtained by the summation
of the transient and advection components as de-
rived in Equation 135 and Equation 138:

∂û

∂t
+ (û · ∇̂)û

= RM
t
[
∂u

∂t
+ (u · ∇)u + 2u ∧Ω

+ x ∧Ω ∧Ω + x ∧ Ω̇]

= RM
t
[
∂u

∂t
+ (u · ∇)u]

+RM
t
[2u ∧Ω + x ∧Ω ∧Ω + x ∧ Ω̇]

(146)

First grouping of terms on the right hand side of
the equation above can be simplified using Equa-
tions 112, 144 and 145:

RM
t
[
∂u

∂t
+ (u · ∇)u]

= RM
t
[−∇p+ ν∇2u]

= RM
t
f(x, t)

= f̂(x̂, t)

(147)

15



ML COMBRINCK, LN DALA

Second grouping of terms in the transformed
equation can be simplified using Equation 102
and with some manipulation the equation will be-
come:

RM
t
[2u ∧Ω + x ∧Ω ∧Ω + x ∧ Ω̇]

= 2û ∧Ω− x̂ ∧Ω ∧Ω + x̂ ∧ Ω̇
(148)

The above simplifications can be substituted into
Equation 146 and will result in the non-inertial
momentum equation in a rotational frame:

∂û

∂t
+ (û · ∇̂)û

= −∇̂p̂+ ν∇̂2û

+ 2û ∧Ω− x̂ ∧Ω ∧Ω + x̂ ∧ Ω̇

(149)

It can be noted that the only difference between
the momentum equation in constant and variable
rotation is the appearance of the Euler term.

The Euler term x̂∧ Ω̇ represents the unsteady
rotational acceleration of the point P around the
axis. It has also been shown that the equation
above will always take this form whether the ac-
celeration in rotation is constant or variable. In
the case where there is no acceleration, the Euler
term will fall away.

3.2.3 Energy Equation

Consider the energy equation in the inertial
frame:

∂ρε

∂t
+ (∇ · ρεu) = −p(∇ · u) +∇ · (k∇T ) (150)

The various terms can be transformed to the
rotational frame separately and then combined
to obtained the energy equation in the rotational
frame.

The time dependant term can be related be-
tween the frames as shown below since scalars
are invariant under transformation:

∂ρ̂ε̂

∂t
= RM

t ∂ρε

∂t
(151)

The relation for the convective term between the
inertial and rotational frame is shown below. This
equation can be expanded upon with the used of

Equation 102:

(∇̂ · ρ̂ε̂û)

= RM
t
GM

t
(∇ · ρεu)

= RM
t
[∇ · ρε(u + x ∧Ω + ((x ∧ Ω̇)∆t))]

= RM
t
[∇ · ρεu +∇ · ρε(x ∧Ω)

+∇ · ρε(x ∧ Ω̇)∆t]

(152)

The second and third terms on the right hand side
of the equation above was shown in Equation 107
to be equal to zero. The convective term there-
fore becomes Galilean invariant under transfor-
mation:

(∇̂ · ρ̂ε̂û) = RM
t
(∇ · ρεu) (153)

The term that represents the rate of work done by
the normal force can be related in the inertial and
rotational frames as shown below. This term can
be expanded upon using Equation 102.

− p̂(∇̂ · û)

= RM
t
GM

t
[−p(∇ · u)]

= RM
t
[−p∇ · (u + x ∧Ω + (x ∧ Ω̇)∆t]

= RM
t
[−p∇ · u− p∇ · (x ∧Ω)

− p∇ · (x ∧ Ω̇)∆t]

(154)

Showing that the second and third terms is again
equal to zero, the same as above and indicated in
Equation 107, this transformation is also invari-
ant.

−p̂(∇̂ · û) = RM
t
[−p∇ · u] (155)

The diffusive term in the rotational frame can be
expressed in the inertial frame with the following
relation:

∇̂ · (k̂∇̂T̂ ) = RM
t
GM

t
[∇ · (k∇T )] (156)

Since k and T are scalars the relation is invariant
under transformation:

∇̂ · (k̂∇̂T̂ ) = RM
t
[∇ · (k∇T )] (157)

The full relation between the rotational and in-
ertial frames for the energy equation can be ob-
tained by summation of the components obtained
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above. This leads to the equation:
∂ρ̂ε̂

∂t
+ (∇̂ · ρ̂ε̂û) + p̂(∇̂ · û)− ∇̂ · (k̂∇̂T̂ )

= RM
t
[
∂ρε

∂t
+ (∇ · ρεu) + p(∇ · u)

−∇ · (k∇T )]

(158)

The right hand side of the equation is equal to
zero, this can be seen from re-arrangement of the
terms in Equation 150. The non-inertial energy
equation is invariant under transformation in this
specific case for constant acceleration in rotation,
but it can be seen that this equation will remain in
this form even if the acceleration is not constant.
Equation 110 is further used to arrive at:

∂ρ̂ε̂

∂t
+ (∇̂ · ρ̂ε̂û) = ∇̂ · (k̂∇̂T̂ ) (159)

3.3 Compressible Flow Conditions

In this section the non-inertial Navier-Stokes
equations for conservation of mass, momentum
and energy for variable rotation in compressible
flow will be derived using an Eulerian approach.

3.3.1 Continuity Equation

The continuity equation was shown to be invari-
ant under the modified Galilean transformation
for constant rotational acceleration in Equation
109. Since the compressible case is considered
here, the transformed equation becomes:

∂ρ̂

∂t
+ ∇̂ · ρ̂û = 0 (160)

The continuity equation has thus proven to be in-
variant in all instances of rotation.

3.3.2 Momentum Equation

The difference between the compressible and in-
compressible momentum equation was discussed
in the previous section. It was shown in Section
2.3.2 that the difference between the incompress-
ible and compressible case only manifests in the
diffusion term. In a similar manner the equation
for variable rotation will take a form similar to
Equation 80 but with the inclusion in this case of
the Euler term as seen in Equation 149:
∂ρ̂û

∂t
+ ∇̂ · (ρ̂û⊗ û)

= −∇̂P̂ + ∇̂ · [µ̂(∇̂û + ∇̂ûT ) + λ̂(∇̂ · û)̂I]

+ 2ρû ∧Ω− ρx̂ ∧Ω ∧Ω + ρx̂ ∧ Ω̇

(161)

In the case only pure rotations was considered, if
the rotation was not pure, an additional fictitious
term would have been present in the momentum
equation. This term has its origin from the tran-
sient term as shown in Equation 129. The result-
ing momentum equation would be:

∂ρ̂û

∂t
+ ∇̂ · (ρ̂û⊗ û)

= −∇̂P̂ + ∇̂ · [µ̂(∇̂û + ∇̂ûT ) + λ̂(∇̂ · û)̂I]

+ 2ρû ∧Ω− ρx̂ ∧Ω ∧Ω

+ ρx̂ ∧ Ω̇ + ρẋ ∧Ω

(162)

This equation applies to all bodies in rotational accel-
eration. It has been shown that no further terms will
be added to the non-inertial formulation even if the
acceleration is unsteady.

3.3.3 Energy Equation

The energy equation remains invariant in the non-
inertial frame as shown in Equation 159. The non-
inertial energy equation in compressible flow there-
fore becomes:

∂ρ̂ε̂

∂t
+ (∇̂ · ρ̂ε̂û) = −p̂(∇̂ · û) + ∇̂ · (k̂∇̂T̂ ) (163)

It was shown in this paper that the energy equa-
tion is invariant under transformation in all cases
of rotation.

3.4 Constant Rotation Equations as a Spe-
cial Case of the Variable Rotation Equa-
tions

In the previous sections it was shown that the
continuity and conservation of energy equations
are invariant under transformation for all cases of
rotation. This is not unexpected since mass and
energy are scalar values that is invariant, how-
ever this is an important result to show since it
is not obvious when deriving the equations us-
ing the fluid parcel approach. The derivation of
the momentum equation for the various cases not
only provided the appropriate fictitious forces for
each case, but it also showed from which trans-
formations the forces originated.

As was shown, the derivations are directly re-
liant on the Tailor series expansion of the mo-
tion of the observed point P. The constant rota-
tion case is therefore a special case of the variable
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rotation case since the order at which the Tay-
lor series was truncated affects the fictitious force
involved. If the derivations was done correctly,
the variable rotation case will lead directly to the
constant rotation case in constant rotation condi-
tions is applied to it. Since the conservation of
mass and energy equations is invariant, this will
be shown using the momentum equation.

Consider the momentum equation for vari-
able, pure rotation in the rotational frame:

∂û

∂t
+ (û · ∇̂)û = −∇̂p̂+ ν∇̂2û

+ 2û ∧Ω− x̂ ∧Ω ∧Ω + x̂ ∧ Ω̇
(164)

The fictitious forces involved are the Coriolis
force, centrifugal force and Euler force. If it is
considered that the rotational is constant, the Eu-
ler force should fall away. The equation then be-
comes:

∂û

∂t
+ (û · ∇̂)û = −∇̂p̂+ ν∇̂2û

+ 2û ∧Ω− x̂ ∧Ω ∧Ω
(165)

This is the same as Equation 53 which describes
the momentum equation for constant rotation as
seen from the rotational frame. This indicates
consistency in the derivations.

4 Conclusion

This paper presented an Eulerian derivation of the
non-inerital Navier-Stokes equations for com-
pressible flow in arbitrary rotational conditions.

It was shown that the continuity equation and
the energy equation is invariant under transfor-
mation in all cases. Some instances have been
observed in the literature where the fictitious ef-
fects were added to the energy equation due to
misconception that arise when using the fluid par-
cel (Lagrangian) approach. This work indicates
that no fictitious effects are present in the energy
equation.

In the derivation of the non-inertial momen-
tum equation the origin of the fictitious forces
could be observed. The Coriolis force originates
from the transformation of both the transient and
the adjective terms. This term is present in all
cases of rotation. The centrifugal force origi-
nates from the transformation of the advection

term and is also present in all rotation cases. The
Euler force originates from the transformation of
the transient term and is not present when the ro-
tational speed is constant. There is a fourth term
that is closely linked to the Euler force, ẋ ∧Ω,
which is not present in cases of pure rotation, but
in full arbitrary, non-constant rotations.

It has further been shown in this paper that
changes in rotational acceleration does not intro-
duce further fictitious forces in the momentum
equation. The four effects identified includes the
full range of terms that can be added in the rota-
tional frame.

The Eulerian approach does not allow for the
misconceptions that can arise when using the La-
grangian approach. The method is mathemati-
cally rigorous, but more so the meaning of the
terms is clear and leads to a improved under-
standing of the origin of the fictitious effects in
the rotational frame.
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6 Nomenclature

6.1 Super Scripts and Sub Scripts

′ Orientation preserving frame
ˆ Rotational frame
rel Relative conditions
t Time
∆t Change in time

6.2 Alphabet

a Acceleration vector
b Vector
k Heat transfer coefficient
p Pressure per unit mass
t Time
u Veloctiy vector
x Distance in x-direction
x Position vector
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y Distance in y-direction
z Distance in z-direction
G Galilean operator
I Identity matrix
O Frame designations
P Pressure
R Rotational transform operator
T Temperature
V Velocity in x-direction
V Velocity vector
X Position vector

6.3 Greek Letters

ε Internal energy
λ Second viscosity
µ Dynamic viscosity
ν Kinematic viscosity
ρ Density
Ω Rotational speed around the z-axis
Ω Rotational speed vector
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Appendix A - Proof of Identities

Identity 1

∇ · (x ∧Ω)

=
∂

∂xi
[xjΩk − xkΩj ]i

− ∂

∂xj
[xiΩk − xkΩi]j

+
∂

∂xk
[xiΩj − xjΩi]k

= 0

Identity 2

∇ · (x ∧ Ω̇)

=
∂

∂xi
[xjΩ̇k − xkΩ̇j ]i

− ∂

∂xj
[xiΩ̇k − xkΩ̇i]j

+
∂

∂xk
[xiΩ̇j − xjΩ̇i]k

= 0

Identity 3

∇2(x ∧Ω)

= (
∂2

∂x2
i

+
∂2

∂x2
j

+
∂2

∂x2
k

)[xjΩk − xkΩj ]i

− (
∂2

∂x2
i

+
∂2

∂x2
j

+
∂2

∂x2
k

)[xiΩk − xkΩi]j

+ (
∂2

∂x2
i

+
∂2

∂x2
j

+
∂2

∂x2
k

)[xiΩj − xjΩi]k

= 0

Identity 4

∇2(x ∧ Ω̇)

= (
∂2

∂x2
i

+
∂2

∂x2
j

+
∂2

∂x2
k

)[xjΩ̇k − xkΩ̇j ]i

− (
∂2

∂x2
i

+
∂2

∂x2
j

+
∂2

∂x2
k

)[xiΩ̇k − xkΩ̇i]j

+ (
∂2

∂x2
i

+
∂2

∂x2
j

+
∂2

∂x2
k

)[xiΩ̇j − xjΩ̇i]k

= 0

Identity 5

(c · ∇)(x ∧Ω) = c ∧Ω

LH = (c · ∇)(x ∧Ω)

= (ci
∂

∂xi
+ cj

∂

∂xj
+ ck

∂

∂xk
)[(xjΩk − xkΩj)i

− (xiΩk − xkΩi)j + (xiΩj − xjΩi)k]

= (cjΩk − ckΩj)i− (ciΩk − ckΩi)j

+ (ciΩj − cjΩi)k]
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(c · ∇)(x ∧Ω) = c ∧Ω

RH = c ∧Ω

= (cjΩk − ckΩj)i− (ciΩk − ckΩi)j

+ (ciΩj − cjΩi)k]

LH = RH

Identity 6

(c · ∇)(x ∧ Ω̇) = c ∧ Ω̇

LH = (c · ∇)(x ∧ Ω̇)

= (ci
∂

∂xi
+ cj

∂

∂xj
+ ck

∂

∂xk
)[(xjΩ̇k − xkΩ̇j)i

− (xiΩ̇k − xkΩ̇i)j + (xiΩ̇j − xjΩ̇i)k]

= (cjΩ̇k − ckΩ̇j)i− (ciΩ̇k − ckΩ̇i)j

+ (ciΩ̇j − cjΩ̇i)k]

RH = c ∧ Ω̇

= (cjΩ̇k − ckΩ̇j)i− (ciΩ̇k − ckΩ̇i)j

+ (ciΩ̇j − cjΩ̇i)k]

LH = RH

Identity 7

∇(x ∧Ω) +∇(x ∧Ω)T = 0

∇(x ∧Ω) =
∂
∂xi

(xjΩk − xkΩj) ... ∂
∂xk

(xjΩk − xkΩj)
∂
∂xi

(−xiΩk + xkΩi) ... ∂
∂xk

(−xiΩk + xkΩi)
∂
∂xi

(xiΩj − xjΩi) ... ∂
∂xk

(xiΩj − xjΩi)


=


0 Ωk −Ωj

−Ωk 0 Ωi

Ωj −Ωi 0


∇(x ∧Ω) +∇(x ∧Ω)T = 0


0 Ωk −Ωj

−Ωk 0 Ωi

Ωj −Ωi 0

 +


0 −Ωk Ωj

Ωk 0 −Ωi

−Ωj Ωi 0

 = 0

Identity 8

x ∧Ω = −Ω ∧ x

LH = x ∧Ω

= (xjΩk − xkΩj)i− (xiΩk − xkΩi)j

+ (xiΩj − xjΩi)k

RH = −Ω ∧ x

= −[(xkΩj − xjΩk)i− (xkΩi − xiΩk)j

+ (xjΩi − xiΩj)k]

= (xjΩk − xkΩj)i− (xiΩk − xkΩi)j

+ (xiΩj − xjΩi)k

LH = RH
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