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Abstract  

The problem of generating an optimal 

flight trajectory with the objective of 

maximizing the coverage of specified target 

areas minimizing the total flight path, in the 

presence of a constrained environment, is 

solved via multi-objective Genetic Algorithms. A 

novel coverage model, based on the evaluation 

of a so called coverage potential field, is 

proposed. Sensitivity studies with increasing 

problem complexity allow validating procedure 

effectiveness as well as final solution reliability.  

1  Introduction  

The use of unmanned aerial vehicles 

requires a careful resources optimization to 

maximize effectiveness and to reduce risks and 

operational costs. To this end the planning of an 

optimal flight trajectory, consistent with mission 

objectives, operational scenario, and vehicle 

dynamics and performance, plays an important 

role. 

Parameters defining flight missions are 

usually related to regions to fly over, desired 

flight altitudes on targets. The operational 

scenario also provides constraints depending on 

take-off and landing areas, no-fly zones, the 

presence of mountains or adverse climatic 

conditions, minimum/maximum distance from 

base stations or cooperating vehicles. Finally, 

constraints related to the specific aircraft used, 

like maximum climbing rate, maximum and 

minimum speed, minimum turning radius, range 

and endurance etc., have to be enforced. 

Due to the complexity of the problem, non-

conventional, nature-inspired optimization 

methods received much attention in the last 

decade. These non-deterministic methods have 

shown their effectiveness and robustness in a 

wide range of optimization problems, taking 

advantage from some specific features such as 

the capability to handle mixed-type design 

variables accounting for a large number of 

constraint functions, and a parallel-like 

searching method leading to a greater 

effectiveness in finding global minimum within 

the design space. An example of hybrid 

techniques applied to the optimization of a 

space plane re-entry trajectory problem can be 

found in [1]. Hybrid soft computing and 

evolutionary techniques was used in [2]  to 

compute optimum flight path for unmanned air 

vehicles under several aerodynamic constraints. 

Different applications of Particle Swarm 

Optimization algorithms can be found in [3,4,5]. 

A real-time free flight path optimization based 

on improved genetic algorithms is reported in 

[6]. A numerical potential field method 

combined with a genetic optimizer has been 

applied for mobile robot path planning in [7]. 

The objective of this paper is the 

development of a Genetic Algorithm procedure 

for flight path optimization compliant with  

operational constraints aimed at the coverage 

area maximization and path length 

minimization. Assuming a typical surveillance 

mission, environmental constraints are defined 

in terms of no-fly zones, take-off and landing 

areas. Flight paths are described through a 

discrete number of waypoints interpolated by 

cubic Catmull-Rom splines. Each individual of 

the genetic population represents a sequence of 

vectors defining the waypoints. Trajectory starts 

from a specified point with a given direction 

and ends on a selected landing area. 
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Both single-objective and multi-objective 

optimization procedures have been 

implemented. The former minimizing total 

flight path length was aimed mainly at tuning 

some of the optimization parameters; the latter 

besides the path length minimization also try to 

maximize the trajectory length covered over 

specified target areas. To this end a novel 

coverage model, based on the evaluation of a so 

called coverage potential field, is proposed. A 

noticeable advantage deriving from the 

application of this model is the possibility to 

handle target areas of any shape. 

Sensitivity studies with increasing problem 

complexity are performed changing number and 

position of both targets and no-fly zones. The 

proposed tests allow validating the procedure 

effectiveness as well as the final solution 

reliability. 

The paper is organized as follows. In 

Section 2 basic concepts of genetic algorithms 

are introduced. In Section 3 the trajectory 

optimization problem is formulated, then the 

spline-based approach used in flight path 

definition and the proposed novel coverage 

model are described as well. 

In Section 4 the proposed algorithm is 

applied to solve different optimization problems 

in 2D and 3D scenarios.  

Final conclusions and remarks are reported 

in Section 5. 

2  Genetic Algorithm  

2.1 Basic Concept  

Genetic algorithm (GA) is an optimization 

technique based on the Darwinian principles of 

evolution. Inheriting genetics and natural 

selection paradigms, a GA can describe a set of 

possible solutions, or individuals,  making them 

to evolve towards the optimum maximizing a 

fitness function (i.e. minimizing or maximizing 

specific objective functions). A finite set of 

solutions is called population. 

Such evolution is achieved over following 

epochs, or generations, until a termination 

criterion is not met. 

 Let            be subsets of n Euclidean 

spaces, denoted as search space, with    
       .  

In this frame, each individual of the 

population, s, is characterized by a n-tuple of 

design variables,               
 , where 

     ,        . 

As in nature each individual differs from 

another one thanks to its own DNA, in the 

algorithmic counterpart each individual is 

represented by a string (chromosome)  of n 

binary-coded numbers (genes) each related to a 

specific design variable (Fig.1).  

 

Fig. 1. Population encoding in a GA 

 

The genetic algorithm consists of several 

steps, as shown in Fig. 2. 

- Population initialization: a set of 

solutions are randomly generated in the 

search space.  

- Fitness computation: at this step 

objective function and constraints are 

evaluated to sort individuals and get the 

best solution (Fig. 3).  

- Termination criterion: usually two 

criteria are defined in a GA, the first 

one based on the maximum number of 

generations and the second one based 

on the maximum number of 

generations without improvements of 

the best fitness. In this paper the first 

criterion has been used. 
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- Selection: couples of parents are 

selected for mating among the sorted 

population on a probabilistic basis. 

Two selection methods have been 

implemented: roulette wheel and 

tournament based. According to the 

roulette wheel selection method, each 

individual has a probability to be 

chosen proportional to its fitness. As 

for the tournament-based selection, the 

same criterion is applied on population 

subsets in a sort of knockout 

tournament. 

 

Fig. 2. Genetic algorithm flowchart 

 

 

Fig. 3. Fitness computation 

- Crossover: on selected parents, a binary 

crossover operator is applied to create 

two new individuals (Fig. 4). 

- Mutation: to avoid premature 

stagnation of the algorithm a mutation 

operator is used, randomly changing a 

bit of the just created chromosomes. 

Mutation probability can be a variable 

parameter during evolution. 

 

Fig. 4. Crossover operator 

3  The optimization problem formulation  

3.1 Problem description 

The optimization problem consists in finding 

the shortest path starting from a take-off point 

and ending on a selected destination point 

compliant with operational constraints due to 

environment (e.g. obstacles) as well as specific 

aircraft performance (e.g. maximum turn 

radius). 

Moreover, to completely plan a typical 

UAV surveillance mission, one or more 

coverage areas to explore or supervise must be 

defined too [8]. That’s why both the total 

trajectory length and the covered area have been 

included in the selected figure of merit (fitness) 

of the optimum solution. 

To this end, the following objective 

functions have been defined: the first one (f1) 

relates to the trajectory length to be minimized, 

the second one (f2) relates to the coverage of 

target areas to be maximized. In particular, a 

coverage area index has been defined ranging 

from 0 (maximum coverage) to 1 (no coverage). 

             (1) 

   
            

       
 (2) 
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where         is the total area to be 

covered whereas      is the area supervised by 

the aircraft, taking into account the on-board 

camera cone of vision. 

The fitness function (fit) to be maximized 

has been defined as follows: 

    
  
  

  
  

    
 (3) 

where    and    are user-defined weights 

balancing objective functions f1 and f2 of the 

optimum solution. 

As usual, the constrained optimization 

problem has been treated as an unconstrained 

one by means of proper defined penalty 

functions that degrade fitness value whenever 

one or more constraints are violated. The 

penalized fitness    ̅̅ ̅̅
  related to the i-th 

trajectory (or individual) can be calculated as: 

   ̅̅ ̅̅
  

    
∏   

 
   

  (4) 

where P is the total number of constraint 

functions. In particular, two constraint functions 

(P=2) have been considered: one related to the 

maximum flight path curvature and one related 

to the presence of obstacles or no-fly zones.  

Let         |   
  

‖  ‖
| be the 

maximum curvature of the generic path and 

     the curvature maximum allowable value. 

According to eq. (4), coefficient K1  related to 

the first constraint can be defined as: 

   {
 (

    

    
)

 

          

          

 (5) 

As for obstacle avoidance, let      be the 

number of obstacles the generic path passes 

through. Coefficient K2  related to the second 

constraint can be defined as: 

   {

                      

                
 

 

(6) 

where   [    ] and   [    ] are 

user-defined coefficients enforcing the 

strengthen of the penalty function.  

It is worth noticing that possible safety 

margins can be easily taken into account 

properly changing  the obstacles border. 

3.3 Waypoints position model 

Let A=(xA, yA)
T
 and B=(xB, yB)

T
 be the 

starting and ending point respectively. Let 

    [     ]  [     ] be the search space 

and           
        the i-th waypoint 

with          such that      and         

For trajectory planning, waypoints position 

cannot be generated using an absolute position 

model related to a global reference frame 

(oG,xG,yG), because a lot of unfeasible 

trajectories would result, spending a lot of time 

to compute useless solutions. To improve the 

algorithm effectiveness, a relative position 

model has been used by introducing a more 

suitable local reference frame (oL,xL,yL). 

Let     [   ]   [   ] and 

               be the search space and 

design variables respectively. The i-th waypoint 

position,           
 , can be computed 

starting from waypoint        as: 

          {
     

     
} (       ) 

with                        

(7) 

where      and      are computed once the 

local reference frame is set by tracing the line 

joining the waypoint      (center of the local 

reference frame) and the destination point      

(Fig. 5). 

 

Fig. 5. Waypoint position model 

 



 

5  

A MULTI-OBJECTIVE GENETIC ALGORITHM FOR A MAX 

COVERAGE FLIGHT TRAJECTORY OPTIMIZATION IN A 

CONSTRAINED ENVIRONMENT 

With such a type of waypoints selection  

algorithm will be forced to trace trajectories 

going towards the destination point, thus 

improving its effectiveness.  

3.2 Potential field-based coverage model 

The basic idea of this new model consists 

in taking into account the presence of one or 

more target areas by means of a potential field 

built at the beginning of the optimization task. 

This potential field generates an attractive 

action in the neighborhood of each target area 

that can be used to modify spline control points 

selection.  

To simplify definition of the coverage area 

as well as computation of the related potential 

field, only circular areas are considered. 

Nevertheless, this model can be applied to areas 

of any shape, as will be shown in paragraph 4.4. 

Potential field        is defined as:  

       
 

(  (        )
 
)
  (8) 

where        √                

is the distance of the arbitrary point       from 

the center         of the circular target area 

with radius r. 

To increase the probability of paths passing 

over the target area, equation (7) is modified as 

follows: 

          {
     

     
}            

with                       
   

    

(9) 

where     and     denote gradients of 

function        computed respectively on the 

local reference frame axes    and    , centered 

in      (Fig. 5). 

3.3 Spline-based trajectory definition 

Once waypoints are chosen on the search 

domain, aircraft trajectory is built by means of a 

Catmull-Rom spline [9]. This family of cubic 

interpolating splines ensuring    continuity is 

formulated such that the tangent at each point    

is calculated using the previous and the next 

control points, i.e.                . The 

geometry matrix is given by: 

               

 

 
 (

       
        

           
           

     
     

      
    

)

(

 

    

    

  

    )

  
(10) 

The   parameter, known as “tension”, 

allows to control the sharpness of the curve 

bending at the interpolated control points. In 

this paper a value of 0.5 is set. 

Depending on the specific operational 

scenario, tangents at initial point,     , and 

destination point,      , are defined by the user. 

Thus equation (10) allows to trace the 

aircraft trajectory interpolating   waypoints 

 ̃   ̃     ̃  whose position is frozen at the end 

of the optimization task. 

 

4 Applications and results  

Both single-objective and multi-objective 

optimization procedures have been implemented 

and applied to different  scenarios. The former 

aimed at the minimization of the flight path 

length has been preliminarily carried out to tune 

the optimization parameters. The latter tries also 

to maximize the coverage of specified target 

areas. Only normalized dimensions have been 

used throughout the examples presented in this 

chapter. 

4.1 Single-objective application - Scenario 1 

Consider a rectangular area       
[   ]  [   ] with the starting point A placed at 

      and the destination point B placed at 

     .    circular obstacles of radius      are 

placed in a grid pattern resembling in same way 

a sort of urban scenario (Fig. 6). 

Path length has been selected as the 

objective function to be minimized (f1). As 

previously said this application was mainly 

aimed at the optimization parameters tuning. 

Selected values are summarized in Table 1. 
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Table 1. GA parameters (Single-objective 

application) 

Parameter Value 

Population size 100 

Generations 100 

Crossover probability (%) 100 

Crossover type Multi-cut 

Mutation probability
1
 0.01-0.1 

Max curvature 50 

Penalty function parameter,  p 4 

Penalty function parameter, γ 3 

Fitness weight,    1 

Fitness weight,    0 
 

 
Fig. 6. Scenario 1 – Optimized paths over 8 

runs (min length)  

In Fig. 6 best paths computed over 8 runs 

are shown. As can be seen, optimized paths 

appears quite similar in terms of both shape and 

length. Table 2 summarizes results in terms of 

minimum length (best value) and average 

length, showing a good reliability as well.  

Table 2. Single-objective optimization results 

 Value 

Min path length 1.4226 

Average length over 8 runs 1.4245±0.0021 

Computational time (s)
2
 29.5 

Fig.7 shows the population-averaged 

objective function f1 evolution obtained over 8 

runs. The selected number of epochs is quite 

                                                 
1
 Mutation probability is linearly increased during the 

evolution to avoid premature stagnation of the algorithm 
2
 Test on an Intel Core i3 @1.3GHz, 8GB RAM 

enough to provide a good convergence of the 

path length to the minimum; as can be seen,  the 

algorithm actually takes less than 20 epochs to 

identify the optimum solution. 

 

Fig. 7. Scenario1 - Average objective function 

f1 evolution over 8 runs 

4.2 Multi-objective application - Scenario 2 

This scenario is obtained adding 1 circular 

target area centered at point           with 

radius     to Scenario 1. To compute the related 

potential field, searching domain has been 

meshed using a         grid with      

elements. 

The minimum path length maximizing the 

coverage of target area has to be identified by 

the algorithm. As for optimization parameters, 

same values used in the previous application 

have been selected (see Tab. 1) with the 

exception of fitness weights (       ). 

Fig. 8 shows best paths obtained over 8 

runs. Also in this application a sufficient 

reliability was obtained showing most of the 

paths a similar shape. Table 3 summarizes 

results related to the best solution as well as the 

average one over 8 runs.  

Evolution of both objective functions, f1 

and f2 , related to the best run are shown in Fig. 

9. As can be seen, this applications is much 

more demanding in terms of number of 

generations: the algorithm takes almost all the 

100 epochs to find the optimal path. 
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Fig. 8. Scenario 2 – Optimized paths over 8 

runs (min length + max coverage) 

Table 3. Multi objective optimization results 

(Scenario 2) 

 Value 

Best solution: length 1.5180 

  coverage 0.3707 

Average solution:  length 1.5525±0.0432 

(over 8 runs)  coverage 0.3793±0.0276 

Computational  time (s) 46.4 

 
Fig. 9. Scenario 2 - Objective functions  f1 

and f2 evolution 

4.3 Multi-objective application - Scenario 3 

This scenario was obtained adding 1 more 

circular target area centered at point           

with radius     to Scenario 2. In order to test the 

optimization procedure sensitivity to different 

fitness weights values, three optimization tasks 

have been performed balancing in a different 

way objective functions f1 and f2. The first one, 

(          ) was aimed at finding the 

trajectory with the minimum coverage index 

(i.e. maximum coverage area), the second one, 

(          ) was aimed at finding the mean 

solution equally balancing path length and 

coverage area. Finally the third one, (   
       ) was aimed at finding the minimum 

length trajectory. 

Table 4 summarizes GA parameters and 

final results obtained at the end of the three 

different optimization tasks in terms of path 

length and coverage index.  

Table 4. Multi-objective optimization – GA 

parameters and results (Scenario 3) 

Parameter Value 

Population size 100 

Generations 200 

Crossover probability (%) 100 

Crossover type Multi-cut 

Mutation probability 0.01-0.05 

Nr. Waypoints 10 

Max curvature 50 

Penalty function parameter, p 4 

Penalty function parameter, γ 3 

Max coverage path:  length 1.6233 

  coverage 0.0953 

Mean solution:  length 1.4745 

  coverage 0.5000 

Min length path:  length 1.4281 

  coverage 0.6286 

Optimized trajectories related to the three 

different tasks are shown in Fig.11.  

It is worth noticing that the minimum 

length path is consistent with the single 

objective solution previously shown in Section 

4.1. Nevertheless, compared with Scenario 2, a 

double number of generations was generally 

required to solve a multi-objective optimization 

problem with this more complex scenario.    

4.4 Multi-objective application - Scenario 4 

A specific scenario with non-convex obstacles 

has been defined to assess algorithm capability 

in finding optimum path through obstacles with 

a more general shape.  

A rectangular area       [   ]  [   ] 
with the starting point placed at       and the 
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destination point placed at           has been 

considered. 

 
Maximum coverage solution (          ) 

 
Mean solution (          ) 

 
Minimum length solution (          ) 

Fig. 11. Scenario 3 – Optimized paths 

Two non-convex obstacles have been 

placed close to the starting point and destination 

point respectively. Moreover, a target area has 

been  placed inside the concavity of the obstacle 

near the destination point to further increase the 

complexity of this scenario (Fig. 12). 

Objective functions f1 and f2 have been 

equally balanced setting       and     . 

Fig. 12. Scenario 4 – Optimized path 

 

Fig. 13. Scenario 4 - Objective functions  f1 

and f2 evolution 

Table 5. Multi-objective optimization – GA 

parameters and results (Scenario 4) 

 Value 

Population size 200 

Generations 200 

Crossover probability (%) 100 

Crossover type Multi-cut 

Mutation probability
3
 0.01-0.05 

Nr. Waypoints 15 

Max curvature 50 

Penalty function parameter, p 5 

Penalty function parameter, γ 8 

Computational time (s) 187 

Best solution:  length 1.5160 

 coverage 0.0870 

                                                 
3
 Mutation probability is linearly increased during the 

evolution to avoid premature stagnation of the algorithm 
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Optimum path is shown in Fig. 12. As can 

be seen the algorithm was able to find a way out 

the concave obstacle reaching the destination 

point B. Evolution of objective functions  f1 and 

f2 is shown in Fig. 13. As can be seen the 

selected number of generations allows a 

satisfactory convergence to the optimum 

solution. In Table 5 selected GA parameters and 

results are summarized. 

4.5 Multi-objective application - Scenario 5 

To assess algorithm capability to solve three 

dimensional real-world problems an extension 

of waypoints relative position model described 

in Section 3.3 is proposed. 

Let       [   ]   [   ]  [   ] 
and                     be the search 

space and design variables respectively. 

Position of the i-th waypoint,              
 , 

can be computed  as: 

          {

     

     

     

}           

whit                        
   

   

                     
 

 

(11) 

where      and      are computed once 

the local reference frame is set by tracing the 

line joining the waypoint      (center of the 

local reference frame) and the destination point 

     (Fig. 14). 

 

Fig. 14. Extended waypoint position model 

Let         [     ]  [     ] be the 

search space with the starting point A placed at 

            and the destination point B placed at 

           . 13 obstacles are placed like a sort of 

mountain scenery with the target area placed in 

a valley (Fig. 15). Objective functions f1 and f2 

have been equally balanced setting       and 

    . 

Table 6. Multi-objective optimization – GA 

parameters and results (Scenario 5) 

 Value 

Population size 1000 

Generations 500 

Crossover probability (%) 100 

Crossover type Multi-cut 

Mutation probability
4
 0.01-0.05 

Nr. Waypoints 7 

Max curvature 50 

Penalty function parameter, p 2 

Penalty function parameter, γ 3 

Computational time (s) 2157 

Best solution: length 2.3520 

  coverage 0.7013 

Table 6 summarizes selected GA 

parameters and results whereas the optimized 

path is shown in Fig. 15. 

 As we can see the algorithm was able to 

find a feasible trajectory passing over the 

specified target area and reaching the 

destination point. As expected, to maximize 

coverage area balancing at the same time path 

length, the algorithm tried to selected the 

altitude as high as possible just over the target 

being coverage bound the result of the flight 

altitude.  

 The proposed approach appears to be 

effective also in a three dimensional scenario. 

On the other hand a considerable increase in the 

computational effort resulted compared with 

previous applications even though a quite 

simple scenario has been defined.  

4.6 Multiple trajectories optimization   

Possibility to identify multiple trajectories 

has been deemed an interesting problem to be 

investigated especially when a single aircraft 

could be not sufficient to cover large areas. In 

particular the optimization procedure has been 

applied to identify two trajectories minimizing 

total length and maximizing total coverage of 

                                                 
4
 Mutation probability is linearly increased during the 

evolution to avoid premature stagnation of the algorithm 
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specified target areas. Same scenario used in 

Section 4.3 (Scenario 3) has been considered. 

 
TOP VIEW 

 
Fig. 15. Scenario 5 – 3D Optimized path 

As this preliminary application concerns an 

off-line path planning, it is worth emphasizing 

that no aircraft collision avoidance model has 

been developed for the time being. 

Fitness function has been defined equally 

balancing objective functions f1 and f2 (   
       ); moreover to take into account 

multiple trajectories both functions f1 and f2 

have been modified as follows: 

                         (12) 

   
                   

       
 (13) 

where    and    are the two different paths, 

      is the area covered by the first aircraft 

and       is the area covered by the second 

aircraft. 

In order to properly evaluate the objective 

function f2 , any possible overlap of the second 

aircraft trajectory just over the target area do not 

contribute to       increment. 

In Table 7 selected GA parameters and 

results are summarized whereas the best path is 

shown in Fig. 17. 

Table 7. Multiple trajectories optimization – 

GA parameters and results  

Parameter Value 

Population size 500 

Generations 1000 

Crossover probability (%) 100 

Crossover type Multi-cut 

Mutation probability 0.01-0.05 

Nr. Waypoints 6 

Max curvature 50 

Penalty function parameter, p 4 

Penalty function parameter, γ 3 

Computational time (s) 2543 

Best solution:  length  1.5709+1.4408 

  coverage 0.1365 

 
Fig. 17. Multiple optimized trajectories 

As can be seen the final solution appears 

much more effective in terms of coverage index 

compared with the mean solution obtained in 

Section 4.3 (Tab. 4) and rather comparable with 

the max coverage solution. On the other hand 

this application appears much more demanding 

in terms of both population size and generations 

number. 
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5  Conclusions  

In this paper, a Genetic Algorithm 

procedure for off-line flight path optimization 

has been presented. 

 Flight paths have been described  through 

a discrete number of waypoints interpolated by 

means of cubic Catmull-Rom splines. Path 

length and coverage area are the selected 

objective functions to be minimized and 

maximized respectively. 

Assuming typical surveillance missions, 

different scenarios have been defined to test the 

procedure effectiveness in finding near-optimal 

solutions compliant with operational constraints. 

Results show the algorithm is able to provide 

quite good solutions also in the presence of non-

convex obstacles.  

Finally a preliminary assessment of 

optimization procedure capability in handling 

multiple trajectories has been carried out. Such 

capability could represent an important feature 

usable whenever mission effectiveness is  

affected by poor aircraft range performance and 

it should be further investigated with much 

more complex scenarios. 

As for computational effort, additional 

work should be devoted to reduce 

computational time in order to make this 

procedure suitable for possible 3D on line 

application. For the time being it could be rather 

used as a pre-flight path planner working with a 

real time optimizer devoted to the  refinement of 

such pre-defined trajectories. 
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