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Abstract

The problem of generating an optimal
flight trajectory with the objective of
maximizing the coverage of specified target
areas minimizing the total flight path, in the
presence of a constrained environment, is
solved via multi-objective Genetic Algorithms. A
novel coverage model, based on the evaluation
of a so called coverage potential field, is
proposed. Sensitivity studies with increasing
problem complexity allow validating procedure
effectiveness as well as final solution reliability.

1 Introduction

The use of unmanned aerial vehicles
requires a careful resources optimization to
maximize effectiveness and to reduce risks and
operational costs. To this end the planning of an
optimal flight trajectory, consistent with mission
objectives, operational scenario, and vehicle
dynamics and performance, plays an important
role.

Parameters defining flight missions are
usually related to regions to fly over, desired
flight altitudes on targets. The operational
scenario also provides constraints depending on
take-off and landing areas, no-fly zones, the
presence of mountains or adverse climatic
conditions, minimum/maximum distance from
base stations or cooperating vehicles. Finally,
constraints related to the specific aircraft used,
like maximum climbing rate, maximum and
minimum speed, minimum turning radius, range
and endurance etc., have to be enforced.

Due to the complexity of the problem, non-
conventional,  nature-inspired  optimization
methods received much attention in the last

decade. These non-deterministic methods have
shown their effectiveness and robustness in a
wide range of optimization problems, taking
advantage from some specific features such as
the capability to handle mixed-type design
variables accounting for a large number of
constraint  functions, and a parallel-like
searching method leading to a greater
effectiveness in finding global minimum within
the design space. An example of hybrid
techniques applied to the optimization of a
space plane re-entry trajectory problem can be
found in [1]. Hybrid soft computing and
evolutionary techniques was used in [2] to
compute optimum flight path for unmanned air
vehicles under several aerodynamic constraints.
Different applications of Particle Swarm
Optimization algorithms can be found in [3,4,5].
A real-time free flight path optimization based
on improved genetic algorithms is reported in
[6]. A numerical potential field method
combined with a genetic optimizer has been
applied for mobile robot path planning in [7].

The objective of this paper is the
development of a Genetic Algorithm procedure
for flight path optimization compliant with
operational constraints aimed at the coverage
area  maximization and path length
minimization. Assuming a typical surveillance
mission, environmental constraints are defined
in terms of no-fly zones, take-off and landing
areas. Flight paths are described through a
discrete number of waypoints interpolated by
cubic Catmull-Rom splines. Each individual of
the genetic population represents a sequence of
vectors defining the waypoints. Trajectory starts
from a specified point with a given direction
and ends on a selected landing area.



Both single-objective and multi-objective
optimization procedures have been
implemented. The former minimizing total
flight path length was aimed mainly at tuning
some of the optimization parameters; the latter
besides the path length minimization also try to
maximize the trajectory length covered over
specified target areas. To this end a novel
coverage model, based on the evaluation of a so
called coverage potential field, is proposed. A
noticeable advantage deriving from the
application of this model is the possibility to
handle target areas of any shape.

Sensitivity studies with increasing problem
complexity are performed changing number and
position of both targets and no-fly zones. The
proposed tests allow validating the procedure
effectiveness as well as the final solution
reliability.

The paper is organized as follows. In
Section 2 basic concepts of genetic algorithms
are introduced. In Section 3 the trajectory
optimization problem is formulated, then the
spline-based approach used in flight path
definition and the proposed novel coverage
model are described as well.

In Section 4 the proposed algorithm is
applied to solve different optimization problems
in 2D and 3D scenarios.

Final conclusions and remarks are reported
in Section 5.

2 Genetic Algorithm

2.1 Basic Concept

Genetic algorithm (GA) is an optimization
technique based on the Darwinian principles of
evolution. Inheriting genetics and natural
selection paradigms, a GA can describe a set of
possible solutions, or individuals, making them
to evolve towards the optimum maximizing a
fitness function (i.e. minimizing or maximizing
specific objective functions). A finite set of
solutions is called population.

Such evolution is achieved over following
epochs, or generations, until a termination
criterion is not met.
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Let X;,X,, ..., X,, be subsets of n Euclidean
spaces, denoted as search space, with X; &
R,i=1..n.

In this frame, each individual of the
population, s, is characterized by a n-tuple of
design variables, s = (x1,x5,...,x,)", Where
X; € Xi1 i = 1, .

As in nature each individual differs from
another one thanks to its own DNA, in the
algorithmic counterpart each individual is
represented by a string (chromosome) of n
binary-coded numbers (genes) each related to a
specific design variable (Fig.1).

Population

Chromosome/Individual

Chromosome/Individual

Chromosome/Individual

—

Gene 10010111000

Fig. 1. Population encoding in a GA

The genetic algorithm consists of several
steps, as shown in Fig. 2.

- Population initialization: a set of
solutions are randomly generated in the
search space.

- Fitness computation: at this step
objective function and constraints are
evaluated to sort individuals and get the
best solution (Fig. 3).

- Termination criterion: usually two
criteria are defined in a GA, the first
one based on the maximum number of
generations and the second one based
on the maximum number of
generations without improvements of
the best fitness. In this paper the first
criterion has been used.
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Selection: couples of parents are
selected for mating among the sorted
population on a probabilistic basis.
Two selection methods have been
implemented: roulette wheel and
tournament based. According to the
roulette wheel selection method, each
individual has a probability to be
chosen proportional to its fitness. As
for the tournament-based selection, the
same criterion is applied on population

subsets in a sort of knockout
tournament.
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Fig. 2. Genetic algorithm flowchart
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Fig. 3. Fitness computation

Crossover: on selected parents, a binary
crossover operator is applied to create
two new individuals (Fig. 4).

Mutation: to  avoid  premature
stagnation of the algorithm a mutation
operator is used, randomly changing a
bit of the just created chromosomes.

Mutation probability can be a variable
parameter during evolution.

Single-Cut Crossover

Parentl 1{1/1/0|0|0 0|1 1/1/1j1/1/0/0|0|0|0O
Parent2 0/0[0|1|1]|1 10 0/0/0jO|Of1{1|1/1]|1
Child1 1{1/1(/0|0|0 0|1 1{1|1(0|0|1(1]1]|1]1
Child2 0/0{0[|1/1|1 10 0j0j0j1|1|0(0|0|0O
Multi-Cut Crossover
Parent1 1[1[1]ofoJo] [0|1] [1]z]a]1]1]o]o]o]o]0
Parent2 0/0(0|1]1|1 1|0 000001|1111
Child1 1{1]1]o0]1]1] [0]o] [1]1]2]2]2]o]2]1]1]1
child2 o/ofo/1/o/o [1/1] [0/0o/o/o0/1]0/0/00
Bit-by-Bit Crossover
Parentl 1{1/1(0|0|0 01 1{1|1(1|1{0(0|0]|0|0O
Parent2 0/0{0|1|1|1 10 0/j0oj0|O0|Of1[1(1/1]1
Child1 1[1]/ofo]1]o} [2/0] [1]o][o[1][0[0]0[1]0]0
Child2 0/0[1/1/0]|1 01 0/1/1|0/1|1|1/0|1|1

Fig. 4. Crossover operator

3 The optimization problem formulation

3.1 Problem description

The optimization problem consists in finding
the shortest path starting from a take-off point
and ending on a selected destination point
compliant with operational constraints due to
environment (e.g. obstacles) as well as specific
aircraft performance (e.g. maximum turn
radius).

Moreover, to completely plan a typical
UAV surveillance mission, one or more
coverage areas to explore or supervise must be
defined too [8]. That’s why both the total
trajectory length and the covered area have been
included in the selected figure of merit (fitness)
of the optimum solution.

To this end, the following objective
functions have been defined: the first one (f1)
relates to the trajectory length to be minimized,
the second one (f,) relates to the coverage of
target areas to be maximized. In particular, a
coverage area index has been defined ranging
from 0 (maximum coverage) to 1 (no coverage).

fi = length(S) 1)
area.,s — area
_ tot @)

fa=

are;o;



where area;,; IS the total area to be
covered whereas area is the area supervised by
the aircraft, taking into account the on-board
camera cone of vision.
The fitness function (fit) to be maximized
has been defined as follows:
€1 C2

fit=}71+f2_|_1 (3)

where ¢; and c, are user-defined weights
balancing objective functions f; and f, of the
optimum solution.

As usual, the constrained optimization
problem has been treated as an unconstrained
one by means of proper defined penalty
functions that degrade fitness value whenever
one or more constraints are violated. The
penalized fitness fit; related to the i-th
trajectory (or individual) can be calculated as:

_ fit;
i = ———+
fit; A (4)
where P is the total number of constraint
functions. In particular, two constraint functions
(P=2) have been considered: one related to the
maximum flight path curvature and one related
to the presence of obstacles or no-fly zones.

Let ¢(S) = max |V . (% be the
maximum curvature of the generic path and
Cmax the curvature maximum allowable value.
According to eq. (4), coefficient K; related to
the first constraint can be defined as:

Y
. p<c<5)> () > G

()

max
1 c(S) < cmax

As for obstacle avoidance, let g(S) be the
number of obstacles the generic path passes
through. Coefficient K, related to the second
constraint can be defined as:

p(g(S) + 1)  interference
K, = (6)
1 no interference
where p € [1,+00] and y € [1,+] are

user-defined  coefficients  enforcing  the
strengthen of the penalty function.
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It is worth noticing that possible safety
margins can be easily taken into account
properly changing the obstacles border.

3.3 Waypoints position model

Let A=(Xa, Ya)' and B=(xgs, ys)' be the
starting and ending point respectively. Let
X XY = [x4,x5] X [y4,y5] be the search space
and p; = (x;, )T € (X X Y) the i-th waypoint
withi =1,...nsuchthatpy =Aand p,1 =B

For trajectory planning, waypoints position
cannot be generated using an absolute position
model related to a global reference frame
(0G,XG,Ys), because a lot of unfeasible
trajectories would result, spending a lot of time
to compute useless solutions. To improve the
algorithm effectiveness, a relative position
model has been used by introducing a more
suitable local reference frame (o, XL,yL).

Let M x ® =[0,1] x [0, ] and
(m;, ¢;) € (M x ®) be the search space and
design variables respectively. The i-th waypoint
position, p; = (x;,y;)T, can be computed

starting from waypoint p;_; as:

COS a;
Pi = Pi-1 T M, {sin ail} (Eend - Eo) (7)
with a; = Apin + d)i(amax - amin)

where a,,;, and a,,,, are computed once the
local reference frame is set by tracing the line
joining the waypoint p;,_, (center of the local

reference frame) and the destination point Pend
(Fig. 5).

A Pend ®
Ya "l
.0
Ri
o) 3>
G XG

Fig. 5. Waypoint position model
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With such a type of waypoints selection
algorithm will be forced to trace trajectories
going towards the destination point, thus
improving its effectiveness.

3.2 Potential field-based coverage model

The basic idea of this new model consists
in taking into account the presence of one or
more target areas by means of a potential field
built at the beginning of the optimization task.
This potential field generates an attractive
action in the neighborhood of each target area
that can be used to modify spline control points
selection.

To simplify definition of the coverage area
as well as computation of the related potential
field, only circular areas are considered.
Nevertheless, this model can be applied to areas
of any shape, as will be shown in paragraph 4.4.
Potential field F(x,y) is defined as:

1
(1 + (r * d(x, y))z)2

where  d(x,y) = /(x — x)% + (¥ — ¥.)?
is the distance of the arbitrary point (x,y) from
the center (x.,y.) of the circular target area
with radius r.

To increase the probability of paths passing
over the target area, equation (7) is modified as
follows:

F(x,y) = )

cos a;
Pi = Pi-1 tm; {sin ai} (Pend — Po) 9)
VxF
With a; = apmin + Pi(Amax — Amin) ™"
where V,F and V, F denote gradients of
function F(x,y) computed respectively on the
local reference frame axes x; and y; , centered

in p;_; (Fig. 5).

3.3 Spline-based trajectory definition

Once waypoints are chosen on the search
domain, aircraft trajectory is built by means of a
Catmull-Rom spline [9]. This family of cubic
interpolating splines ensuring C* continuity is
formulated such that the tangent at each point p;
is calculated using the previous and the next

control points, i.e. T(Piz1 — Pi—1)- The
geometry matrix is given by:

S =003 t2 t 1)

0o 1 0 0 Bi—z\
11—z o T 0 Pi-1 (10)
212t -3 3-21t -1 bi

-1 2—7T T—2 T Pi+1

The t parameter, known as “tension”,
allows to control the sharpness of the curve
bending at the interpolated control points. In
this paper a value of 0.5 is set.

Depending on the specific operational
scenario, tangents at initial point, p,, and

destination point, p,, , are defined by the user.

Thus equation (10) allows to trace the
aircraft trajectory interpolating n waypoints
P1, D2, ---, Pn Whose position is frozen at the end

of the optimization task.

4 Applications and results

Both single-objective and  multi-objective
optimization procedures have been implemented
and applied to different scenarios. The former
aimed at the minimization of the flight path
length has been preliminarily carried out to tune
the optimization parameters. The latter tries also
to maximize the coverage of specified target
areas. Only normalized dimensions have been
used throughout the examples presented in this
chapter.

4.1 Single-objective application - Scenario 1

Consider a rectangular area (x,y) €
[0,1] x [0,1] with the starting point A placed at
(0,0) and the destination point B placed at
(1,1). 19 circular obstacles of radius 0.05 are
placed in a grid pattern resembling in same way
a sort of urban scenario (Fig. 6).

Path length has been selected as the
objective function to be minimized (f;). As
previously said this application was mainly
aimed at the optimization parameters tuning.
Selected values are summarized in Table 1.



Table 1. GA parameters (Single-objective

application)
Parameter Value
Population size 100
Generations 100
Crossover probability (%) 100
Crossover type Multi-cut
Mutation probability* 0.01-0.1

Max curvature 50
Penalty function parameter, p 4
Penalty function parameter,y 3
Fitness weight, c; 1
Fitness weight, ¢, 0

1.2

T
——Obstacles

1+

O

0.8f

0.6F
>

0.4f

0.2

O
O

033 0 0.2 0.4 0.6 0.8 1 12
X

Fig. 6. Scenario 1 — Optimized paths over 8
runs (min length)

In Fig. 6 best paths computed over 8 runs
are shown. As can be seen, optimized paths
appears quite similar in terms of both shape and
length. Table 2 summarizes results in terms of
minimum length (best value) and average
length, showing a good reliability as well.

Table 2. Single-objective optimization results

Value
Min path length 1.4226
Average length over 8 runs 1.4245+0.0021
Computational time (s)* 29.5

Fig.7 shows the population-averaged
objective function f; evolution obtained over 8
runs. The selected number of epochs is quite

! Mutation probability is linearly increased during the
evolution to avoid premature stagnation of the algorithm
2 Test on an Intel Core i3 @1.3GHz, 8GB RAM
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enough to provide a good convergence of the
path length to the minimum; as can be seen, the
algorithm actually takes less than 20 epochs to
identify the optimum solution.

2

10

4

average f

0 1lD 210 3.0 4ID 5ID SIO 7I0 810 96 100
epoch

Fig. 7. Scenariol - Average objective function

f1 evolution over 8 runs

4.2 Multi-objective application - Scenario 2

This scenario is obtained adding 1 circular
target area centered at point (0.3,0.7) with
radius 0.1 to Scenario 1. To compute the related
potential field, searching domain has been
meshed using a (50 x 50) grid with 2500
elements.

The minimum path length maximizing the
coverage of target area has to be identified by
the algorithm. As for optimization parameters,
same values used in the previous application
have been selected (see Tab. 1) with the
exception of fitness weights (c; = ¢, = 1).

Fig. 8 shows best paths obtained over 8
runs. Also in this application a sufficient
reliability was obtained showing most of the
paths a similar shape. Table 3 summarizes
results related to the best solution as well as the
average one over 8 runs.

Evolution of both objective functions, f;
and f, , related to the best run are shown in Fig.
9. As can be seen, this applications is much
more demanding in terms of number of
generations: the algorithm takes almost all the
100 epochs to find the optimal path.
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Fig. 8. Scenario 2 — Optimized paths over 8
runs (min length + max coverage)

Table 3. Multi objective optimization results
(Scenario 2)

Value
Best solution: length 1.5180
coverage 0.3707
Average solution: length 1.5525+0.0432
(over 8 runs) coverage 0.3793+0.0276
Computational time (s) 46.4
10" ;
7f1 - Length

—1, - Coverage Area Index

0 2.0 4‘0 6‘0 8‘0 100
epoch

Fig. 9. Scenario 2 - Objective functions f;

and f, evolution

4.3 Multi-objective application - Scenario 3

This scenario was obtained adding 1 more
circular target area centered at point (0.7,0.7)
with radius 0.1 to Scenario 2. In order to test the
optimization procedure sensitivity to different
fitness weights values, three optimization tasks
have been performed balancing in a different

way objective functions f; and f,. The first one,
(c; =0;c, =1) was aimed at finding the
trajectory with the minimum coverage index
(i.e. maximum coverage area), the second one,
(c; = 1;c¢, = 1) was aimed at finding the mean
solution equally balancing path length and
coverage area. Finally the third one, (c; =
1;c, = 0) was aimed at finding the minimum
length trajectory.

Table 4 summarizes GA parameters and
final results obtained at the end of the three
different optimization tasks in terms of path
length and coverage index.

Table 4. Multi-objective optimization — GA
parameters and results (Scenario 3)

Parameter Value
Population size 100
Generations 200
Crossover probability (%) 100
Crossover type Multi-cut
Mutation probability 0.01-0.05
Nr. Waypoints 10
Max curvature 50
Penalty function parameter, p 4
Penalty function parameter, y 3
Max coverage path: length 1.6233
coverage 0.0953
Mean solution: length 1.4745
coverage 0.5000
Min length path: length 1.4281
coverage 0.6286

Optimized trajectories related to the three
different tasks are shown in Fig.11.

It is worth noticing that the minimum
length path is consistent with the single
objective solution previously shown in Section
4.1. Nevertheless, compared with Scenario 2, a
double number of generations was generally
required to solve a multi-objective optimization
problem with this more complex scenario.

4.4 Multi-objective application - Scenario 4

A specific scenario with non-convex obstacles
has been defined to assess algorithm capability
in finding optimum path through obstacles with
a more general shape.

A rectangular area (x,y) € [0,1] X [0,1]
with the starting point placed at (0,0) and the

7



destination point placed at (0.8,0.8) has been
considered.

1.2

1k

0.8f

0.6

>

0.4F

02 — Trajectory

Coverage Bound
——Obstacles

——Coverage Areas |1
o \Waypoints

oF

032 0 0.2 0.4 0.6 0.8 1 12
X

Maximum coverage solution (c; = 1;¢, = 0)
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Minimum length solution (c; = 0;¢, = 1)
Fig. 11. Scenario 3 — Optimized paths

Two non-convex obstacles have been
placed close to the starting point and destination
point respectively. Moreover, a target area has
been placed inside the concavity of the obstacle
near the destination point to further increase the
complexity of this scenario (Fig. 12).

Objective functions f; and f, have been
equally balanced setting ¢; = 1and ¢, = 1.
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Fig. 12. Scenario 4 — Optimized path
1010
_f1 - Length
. —f2 - Coverage Area Index
10
10° H
10°
10° b
10°
10'2 i i I
0 50 100 150 200

epoch

Fig. 13. Scenario 4 - Objective functions f;
and f, evolution

Table 5. Multi-objective optimization — GA
parameters and results (Scenario 4)

Value

Population size 200
Generations 200
Crossover probability (%) 100
Crossover type Multi-cut
Mutation probability® 0.01-0.05
Nr. Waypoints 15

Max curvature 50

Penalty function parameter,p 5
Penalty function parameter, y 8

Computational time (s) 187
Best solution: length 1.5160
coverage 0.0870

¥ Mutation probability is linearly increased during the
evolution to avoid premature stagnation of the algorithm

8
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Optimum path is shown in Fig. 12. As can
be seen the algorithm was able to find a way out
the concave obstacle reaching the destination
point B. Evolution of objective functions f; and
f, is shown in Fig. 13. As can be seen the
selected number of generations allows a
satisfactory convergence to the optimum
solution. In Table 5 selected GA parameters and
results are summarized.

4.5 Multi-objective application - Scenario 5

To assess algorithm capability to solve three
dimensional real-world problems an extension
of waypoints relative position model described
in Section 3.3 is proposed.

Llet Mx®x0=1]01] x [0,7] X [0, ]
and (m;, ¢;,6;) € (M x ® x ©) be the search
space and design variables respectively.
Position of the i-th waypoint, p; = (x;, v, z)7,
can be computed as:

cos a;
Bi = Ei_l + m; {Sln ai} (Eend - BO) (11)

SinBi o
UxF

whit @i = Omin T+ ¢i(amax - amin)VyF
Bi = Bmin + 0i (ﬁmax - Bmin)
where Bin and B4, are computed once

the local reference frame is set by tracing the
line joining the waypoint p;,_; (center of the

local reference frame) and the destination point
Pena (Fig. 14).

A
Zg

Fig. 14. Extended waypoint position model

Let (x,y,z) €[0,1,1] X [0,1,1] be the
search space with the starting point A placed at
(0.2,0.2,0) and the destination point B placed at
(0.8,0.8,0). 13 obstacles are placed like a sort of
mountain scenery with the target area placed in

a valley (Fig. 15). Objective functions f; and f,
have been equally balanced setting ¢; = 1 and
Cz == 1

Table 6. Multi-objective optimization — GA
parameters and results (Scenario 5)

Value
Population size 1000
Generations 500
Crossover probability (%) 100
Crossover type Multi-cut
Mutation probability* 0.01-0.05
Nr. Waypoints 7
Max curvature 50

Penalty function parameter,p 2
Penalty function parameter, y 3
Computational time (s) 2157

Best solution: length 2.3520
coverage 0.7013
Table 6 summarizes selected GA

parameters and results whereas the optimized
path is shown in Fig. 15.

As we can see the algorithm was able to
find a feasible trajectory passing over the
specified target area and reaching the
destination point. As expected, to maximize
coverage area balancing at the same time path
length, the algorithm tried to selected the
altitude as high as possible just over the target
being coverage bound the result of the flight
altitude.

The proposed approach appears to be
effective also in a three dimensional scenario.
On the other hand a considerable increase in the
computational effort resulted compared with
previous applications even though a quite
simple scenario has been defined.

4.6 Multiple trajectories optimization

Possibility to identify multiple trajectories
has been deemed an interesting problem to be
investigated especially when a single aircraft
could be not sufficient to cover large areas. In
particular the optimization procedure has been
applied to identify two trajectories minimizing
total length and maximizing total coverage of

* Mutation probability is linearly increased during the
evolution to avoid premature stagnation of the algorithm
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specified target areas. Same scenario used in
Section 4.3 (Scenario 3) has been considered.
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Fig. 15. Scenario 5 — 3D Optimized path

As this preliminary application concerns an
off-line path planning, it is worth emphasizing
that no aircraft collision avoidance model has
been developed for the time being.

Fitness function has been defined equally
balancing objective functions f; and f, (c; =
1;c, =1); moreover to take into account
multiple trajectories both functions f; and f,
have been modified as follows:

fi = length(S;) + length(S,) (12)

areag,; — area; — area,

f2= ared;,; (13)

where S; and S, are the two different paths,
area, is the area covered by the first aircraft
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and area, is the area covered by the second
aircraft.

In order to properly evaluate the objective
function f, , any possible overlap of the second
aircraft trajectory just over the target area do not
contribute to area, increment.

In Table 7 selected GA parameters and
results are summarized whereas the best path is
shown in Fig. 17.

Table 7. Multiple trajectories optimization —
GA parameters and results

Parameter Value
Population size 500
Generations 1000
Crossover probability (%) 100
Crossover type Multi-cut
Mutation probability 0.01-0.05
Nr. Waypoints 6

Max curvature 50

Penalty function parameter, p 4

Penalty function parameter, y 3

Computational time (s) 2543

Best solution:  length 1.5709+1.4408
coverage 0.1365

1 ocoo/S
O
®

0.7F

0.6
—— Trajectory #1

O
7 OO
O/VO O (7 meeniz

0.3fF

o2k Waypoints #2
Coverage Bound #1

01}k O O Coverage Bound #2
—— Coverage Area
- A
L L L L
0 0.2

—— Obstacle
L

Fig. 17. Multiple optimized trajectories

As can be seen the final solution appears
much more effective in terms of coverage index
compared with the mean solution obtained in
Section 4.3 (Tab. 4) and rather comparable with
the max coverage solution. On the other hand
this application appears much more demanding
in terms of both population size and generations
number.
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A MULTI-OBJECTIVE GENETIC ALGORITHM FOR A MAX
COVERAGE FLIGHT TRAJECTORY OPTIMIZATION IN A
CONSTRAINED ENVIRONMENT

5 Conclusions

In this paper, a Genetic Algorithm
procedure for off-line flight path optimization
has been presented.

Flight paths have been described through
a discrete number of waypoints interpolated by
means of cubic Catmull-Rom splines. Path
length and coverage area are the selected
objective functions to be minimized and
maximized respectively.

Assuming typical surveillance missions,
different scenarios have been defined to test the
procedure effectiveness in finding near-optimal
solutions compliant with operational constraints.
Results show the algorithm is able to provide
quite good solutions also in the presence of non-
convex obstacles.

Finally a preliminary assessment of
optimization procedure capability in handling
multiple trajectories has been carried out. Such
capability could represent an important feature
usable whenever mission effectiveness is
affected by poor aircraft range performance and
it should be further investigated with much
more complex scenarios.

As for computational effort, additional
work should be devoted to reduce
computational time in order to make this
procedure suitable for possible 3D on line
application. For the time being it could be rather
used as a pre-flight path planner working with a
real time optimizer devoted to the refinement of
such pre-defined trajectories.
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