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Abstract

Results of creep and thermal fatigue experiments
on five heat resistant single crystal superalloys
with various crystallographic orientations under
different  temperatures are obtained and
discussed with aim to improve models of inelastic
deformation and fracture. The dependence of the
failure  modes  (crystallographic  or non-
crystallographic) on loading regimes is analyzed.
The deformation-type criteria of damage
accumulation are introduced for the lifetime
prediction under static and thermocyclic loading
conditions. Experimental results are predicted
with acceptable accuracy by using proposed
criteria and adequate viscoelastoplastic models
of single crystal materials. The proposed criteria
of thermal fatigue crack initiation and crack
propagation are implemented in the finite
element procedure. The results of step-by-step
finite element simulations of crack growth under
creep and thermal fatigue conditions in the
corset specimens are presented and discussed.

1 Introduction

Using of the single crystal superalloys for the
manufacturing of gas turbine engine blades
allowing a significant increase in the gas
temperature before turbine, leads to the
necessity to develop more accurate models of
inelastic deformation, durability and fracture
prediction with aim to improve the reliability of
the stress and strength analysis. At the present
time there is no any universal justified thermal
fatigue criterion and the durability analysis of

the single crystal blades of modern gas turbines

requires solving the following problems:

e development and selection of the optimal
viscoelastoplastic models, which take into
account influence of crystallographic
orientation (CGO) on mechanical properties;

e  development of the strength criteria, which
allow to predict static and thermocyclic
crack initiation;

e development of the fracture criterion,
which allows to calculate crack growth
process in the single crystal under
thermocyclic loading.

In the present paper the experimental
results and theoretical issues of deformation and
fracture models under static and thermocyclic
loading are discussed.

2 Materials, research methods and
experimental results

The method of thermal fatigue experimental
investigation on the corset samples (see Fig. 1)
[1,2] in vacuum condition with and without
lateral thermal barrier coatings is widespread in
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Fig. 1. Corset specimen for thermal fatigue tests.



Thermal fatigue experiments for different
temperature regimes, with and without dwells
under maximum cycle temperature [2, 3] and
creep for five single crystal alloys grades
ZhS32, ZhS36, VZhM4, VZhMS5U [4] and
Alloy 3 with different crystallographic orienta-
tion, using for manufacturing of high
temperature gas turbine blades are carried out
(Fig. 2). The test results are number of cycles to
macrocrack  initiation and crack rate
propagation.
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Fig. 2. Curves of thermal fatigue crack growth in the
samples [001] from ZHS32 for cycle with Tp.x = 750 °C.

Euler angles and Shmid factor are
calculated for all specimens. During
experiments the formation of the slip bands,
initiation and propagation of the microcracks,
the macrocrack growth rate were observed using
%260 magnification microscope and logged.

Fractography analysis of the failure cross
sections (crack propagation zones), rupture type
identification and measurement of irreversible
deformation (due to ratcheting) were carried out
after experiments. The dependence of fracture
modes (crystallographic and noncrystallographic)
(Fig. 3 and 4) on test regimes is defined based on
obtained experimental results. The dependence of
the fracture mode on the crystallographic
orientation of specimen is also observed.

Along with thermal fatigue tests on corset
samples the creep experiments on cylindrical
specimens were carried out with aim to identify
material parameters. Fig. 5 shows, as example,
the short-term creep curves of the single alloy
VZhM5U. Note on the pronounced dominance
of III creep stage. The creep curves are obtained
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for VZhM4, VZhM5U and Alloy 3 at
temperatures from 975 °C to 1100 °C. Results of
creep tests for the alloys ZhS32 and ZhS36 are
given in [1] and [3].
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Fig. 3. Map of fracture mechanisms for samples of alloy

ZHS36 with the orientations near to [011].

[ m Crystallographic
<> Non-crystallographic

T T T T 812
900 | ! 31 552
800 |
11
10-1m14-1
700 72
)
< 600 -
=
-
500 -
400 711 ]
&8-1
300 . T T T T
900 950 1000 1050 1100

T ('C)
Fig. 4. Map of fracture mechanisms for samples of alloy
ZHS32 with orientations near to [001].
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crystallographic orientation near to [001] at 1050 °C.
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3 Static loading fracture criteria

The strength of single crystal superalloys under
monotonic loading for the complex multiaxial
stress state is evaluated by the deformation
criteria of Makhutov N.A. [5] or Hancock J.W.,
Mackenzi A.C. [5,6]:

Ceog ~ Sf<001>1.7exp [_ 156#] =0, (1)
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where sf<001> is a plastic deformation at rupture,

which is determined experimentally under short-
term tension in the direction (oo1), K. is a

characteristic of the material state (in a brittle
state K.=1, in a viscous state K.=1.2),
Cpean =3(0,+0,+0.), the equivalent strain

mean

measure is defined as follows
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equivalent stress is defined by the expression
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The computation of stress-strain state
requires application of inelastic material models
accounting plastic and creep effects. The
pronounced anisotropy of mechanical properties
is exhibit by the elastic and inelastic
deformation processes [7]. Neglecting of this
fact in some cases leads to the meaningful errors
in calculations of stress-strain state. One of the
simplest phenomenological plasticity criterion
widely used in practice [8-12] for single crystal
heat resistant nickel based superalloys is
quadratic Hill criterion [13].

Using of the Hill criterion [13, 14]

s--‘M--s-1=0, (6)

where s is a deviator of the Cauchy stress tensor
o, *M is 4™ order anisotropy tensor, leads to
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the next yield condition formulation for cubic
symmetry crystals:

\/%[(Un —022)2 +(0n -0y )2 +(os _0'1)2]+ (7)

2 2 2\ _
+K, (rlz +75, +r31) =0,

There are two arbitrary stress states
experiments is enough to defining of the yield
criterion constants o, and K,. For isotropic

body K, =3 and instead of (6) we got the von
Mises criteria. The dependences of K, on

temperature for single crystal alloys are showed
in Fig. 6.
The coefficient K, is defined by the yield

stresses for two orientations as follows

2
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or alternatively by the expression
2
(e}
K, = 3[mJ . (8b)
o Tiin
—A—7hS32 [7]

5 - —8—ZhS36 [7]
—— VZhM4 [18]
1| —%— VKNA-1V [19]
44 MD2 [20]
—¥—PW1480 [21]

T T T T T T T T T T T
0 200 400 600 800 1000 1200
T,°C
Fig. 6. Temperature dependence of K »

Shmid criterion [15, 14]
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where P“ =%(n”l“+l“n“) denotes a Shmid

tensor, is used as plasticity criterion in the
micromechanical models [16, 17 etc.], which
take into account that the deformation process is
a result of slipping in active crystallographic
slip systems.
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Fig. 7. Comparison of yield stresses for Shmid and Hill criteria with experimental data ([21-23]) for uniaxial tension under

different loading orientation to the crystallographic direction [001] in the plain (100).

The performed investigations are shown
the advantage of Shmid micromechanical model
than Hill phenomenological model (see Fig. 7).

The more complex phenomenological
plasticity criterion proposed in [14]

sz--4N--s2—(s--4M--s)2—1:0 (10)

as Hill criterion generalization with aim to
improve prediction accuracy.

4 Thermal fatigue damage criteria

The prediction of TMF failure of single
crystal materials is performed on the basis of the
deformation criterion [24-26]. The macrocrack
initiation criterion is a condition for achieving
critical value of the total damage initiated by
different mechanisms:

Dl(Agfq)+D2(A82q)+D3(sfq)+D4(82q):1 (11)

The criterion (11) is based on a linear
damage summation of: cyclic plastic strain
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cyclic creep strain
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one-sided accumulated plastic strain
P
D, = max — (14)

0<t<tpax gf (T)
and one-sided accumulated creep strain

c
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where C,, C,, k, m, ¢’, ¢ are material
parameters, depending on the temperature and a
crystallographic orientation. Usually the relations
=2, m=5/4, ¢, =(e’f, ¢, =(3e:)" are used [24].

4%
The different norms of strain tensor are
considered as equivalent strain in the criteria (11)
for single crystal alloys, among them there are:
the maximum shear strain in slip system with
normal n,, to slip plane and slip direction Loy

€ :nml}'s'l<011>’ (16)

the maximum principal strain  (maximum
eigenvalue of the strain tensor)

g, =&, =maxarg{det(e—A1)=0}, (17)

eq

the strain intensity von Mises
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the strain intensity of Hill
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and the maximum shear strain
€oy :%[51 _33]- (20)

The equivalent strains (16) and (19)
correspond to the crystallographic failure mode,
while equivalent strains (17), (18) and (20)
correspond to the non-crystallographic failure
mode. In (19) K, .is defined by (5).

(SX &y )2 +(8y & )2 +(82 _Sx)2 "é (Y)zcy"’_ vz +Y§x) > ( 1 8)

+1;(ﬁy+@z+y§x) (19)
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S Finite element computation of the stress-
strain state of single crystal corset specimens

In order to verify the thermal fatigue criterion
(11) the nonlinear stress-strain analysis of single
crystal corset samples (see Fig. 1) was carried
out using the finite-element (FE) program
PANTOCRATOR [27] with an application of
micromechanical models of elastoplasticity and
viscoelastoplasticity. These material models
take into account that the inelastic deformation
occurs in accordance with crystal slip systems
by a slip mechanism and therefore deformation
is strongly sensitive to the crystallographic
orientation. The elastoplastic and viscoelasto-
plastic material models [16, 17] with nonlinear
kinematic and isotropic hardening also
accounting the selfhardening on each system
and the latent hardening [28] between slip
systems are used in FE simulations. The
application of viscoelastic models leads to
unrealistically overestimated levels of stress.

The obtained results for inhomogeneous
stress, strain and damage fields allow to find the
location of crack initiation. The damage field is
obtained by the criterion (11) on the basis of
analysis of strain field evolution using the
experimental data on creep and elastoplastic
deformation curves. The typical damage field
distribution  after  10™  thermal cycle
(20°C— T11ax=900°C> T1,in=150°C) is presented
in Fig. 8 for the sample from alloy VZhM4 with
the orientation near to (001). The best prediction
(in a comparison with experiment) of the number
of cycles for the crack initiation is given by the
strain measure (16) in this loading case.

Undamaged zones
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localization

0%
Fig. 8. Damage field distribution after 10™ cycle for the
sample 43 from alloy VZhM4 with the crystallographic
orientation near to (001) .
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The results of the FE simulations show that
the crystallographic orientation has a significant
influence on the stress-strain state of the
samples (see Fig. 9), as also confirmed by the
experiments [2, 26].

The results of verification of criterion (11)
for alloy ZhS36 are given in Fig. 10. The
computed number of cycles of crack initiation
demonstrates satisfactory accuracy.
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Fig. 9. Influence of crystal orientation on cyclic stress-strain curve.

Results of finite-element simulations for thermal cycles with

Tnin=150°C and T ,,= 900°C (central point of specimen).
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Fig. 10. Comparison of the number of cycles until a
macrocrack initiation in the samples of alloy ZHS36 using
deformation criterion (11) and the experimental results.

6 Thermal fatigue crack propagation

The direction of the crack propagation in a
single crystal is defined by the crystallographic
structure (typically it is a plane (111) for
considered alloys [29, 30]) at crystallographic
mode of failure and correspondingly the
direction is defined by the stress state at non-
crystallographic failure mode (high tempe-
rature).



The criterion of thermal-fatigue crack
propagation [31, 32], which is based on linear
summation of the contributions from the fatigue
and creep, is used in order to determine the rate
of crack propagation and number of cycles to
failure. The criterion is based on using stress

intensity factor AKX, (for the description of the

fatigue) and C*-integral (for the description of
the creep during the holding time at the
maximum temperature of the cycle). A
mathematical formulation of the criterion
represents a generalization of Paris power type
equation by taking into account two
mechanisms of cracking [31]:

da . R
E:B(AKW) +£A(c (0)'dr, (@1
where 4, B, m, g are material constants, which

are defined separately from fatigue experiments
da

as W(AKW.) and creep experiments as %(C*)
crack growth data.

The crack propagation process in the corset
sample (see Fig. 1) from alloy ZhS36 is direct
cycle by cycle simulated using FE program
ABAQUS [33]. The specimen has CGO near to
(001) . The deviation from the axial orientation is
5.47°, from azimuthal is 41.97° (Euler’s angles
for rotations ZX'Z: @=354.7°, 0=41.7°,
y=89.8°). The CGO was determined by Laue’s
diffraction patterns.

The location of crack initiation is defined by
FE damage analysis (see section 5) and it also
corresponds to the experimentally observed. The
crack propagates in the plane (111) (see Fig. 11)
except the rupture stage. The crack propagation
process is simulated only in the plane (111)
without out-plane deviations by means step-by-
step technique with FE remeshing at environment
of a crack front at the every step. The initial crack
front is taken elliptic form. AJ,, integral is used to

calculate AK,, . Fracture zone is established by

comparison calculated J integral with J;. value.
The details of simulation are described in [31, 32].

In the experiment the sample failed after 560
thermal cycles (7Tmin=150°C>T1x=900°C), in
which the registered crack initiation stage lasted
435 cycles and crack propagation stage was 125
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cycles. The comparison of the computed
number of cycles for crack propagation stage
with experimental results is given in Table 1.
The results of FE simulations of the crack
growth in single crystal corset specimen are
presented in Fig. 12. Note on the extended
plastic zones in the crack growth area.

The simulated crack front evolution is shown
in Fig. 13a. It demonstrates a good correlation
with data of fractography analysis (Fig. 13b).

Location of crack initiation

1000pm

Fig. 11. Specimen from alloy ZhS36 after failure:
a) left half, b) right half.

Table 1. Comparison of the estimated number of cycles for
crack propagation stage with experimental results

(alloy ZhS36).
Number of cycles
FE computation 192
Experiment 125

+0.000+00

Fig. 12. Plastic strain intensity field distribution in the
specimen from alloy ZhS36 with crack of length 0.5 mm.
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. The high sensitivity of the thermal fatigue durability
to the crystallographic orientation and to the thermal
cycle parameters is observed experimentally and also
in the corresponding finite-element simulations on
corset specimens.

5. The proposed crack propagation criterion (21) under
thermal cyclic loadings demonstrates satisfactory
accuracy in comparison with the experimental number
of cycles to failure and the crack front evolution by
data of the fractography analysis.

Location
of crack
initiation
6. The reliable analysis of thermal fatigue strength and
durability of single crystal blades of GTE requires
further detailed studies the materials characteristics in
wide range of temperatures, including the crack

resistance parameters.
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