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Abstract

This work focuses on targeted flight of Rotary-
Wing Micro Aerial Vehicles (RW MAV) in in-
door environments. In such missions, Global Po-
sitioning System (GPS) signals may be unavail-
able and a map of the environment is unknown
prior to the flight. Thus, the MAV should be able
to estimate its position, build a map of the en-
vironment, and plan an obstacle-free flight path
towards the target, while taking into consider-
ation its maneuverability limitations. This pa-
per presents a modular system that comprises re-
quired components for these tasks. The proposed
methodology relies on using a single laser range
scanner. We present the components of the pro-
posed system and algorithms, including a high
level module for mission planning and decision
making. The system was checked in different
simulated environments under the realistic level
of disturbances and system noise. The obtained
results illustrate the effectiveness of the system
for GPS-denied navigation of RW MAVs.

1 Introduction

Nowadays, RW MAVs may be considered as an
attractive autonomous platform for various in-
door flight missions because of their small size,
superior agility, high maneuverability, and hov-
ering capability. Development of a system that
enables a RW MAV to fly autonomously in in-
door environments is a challenging task. Such a
system should consist of numerous algorithms in-
cluding but not limited to: mission planning, mo-

tion planning, sensing, position estimation, map-
ping and path planning. The existence of sys-
tem errors, disturbances, uncertainty and changes
in the environment during the flight add compli-
cations to the development of the required algo-
rithms and to the ability to combine these algo-
rithms.

Indoor environments imply additional dif-
ficulties while developing algorithms for au-
tonomous flight since one may not rely on GPS
signals for position data, due to poor reception,
or no reception at all, of the signal. In such
missions, the generation of a map of the un-
known environment, while simultaneously local-
ization of the vehicle, based only on available
sensory observations is required. This task is
commonly known as Simultaneous Localization
and Mapping (SLAM) [1]. Existed SLAM al-
gorithms make use of certain features of flight
missions like returning to previously visited lo-
cations. With the aid of loop closure algorithms,
they are able to significantly improve the accu-
racy of vehicle’s position estimation and the qual-
ity and consistency of the generated map. How-
ever, these algorithms are not suitable for a tar-
geted flight, i.e. a problem of navigating a ve-
hicle from a known initial position to a defined
goal location, since the vehicle may not return to
a previously visited area.

In this paper, we present a comprehensive
approach for targeted autonomous flight of RW
MAVs in a GPS-denied environment where the
map of the environment is a priori unknown. We
assume that only the initial position and orienta-



tion of the MAV are given, as well as the goal
position and orientation, which are defined by
relative distance and azimuth. The primary on-
board sensor is a lightweight laser range finder.
The methodology presented here is modular and
generic in the sense that each of its components
is internally uncoupled with the others. We also
present simulation results on a single rotor he-
licopter showing the capability for a fully au-
tonomous targeted flight.

2 Related Work

As mentioned earlier, a system for an au-
tonomous flight of RW MAVs in GPS-denied,
unknown environments should include several
essential algorithms for vehicle’s position esti-
mation, simultaneously with building and updat-
ing a map of the environment; planning a path
towards the goal, while avoiding obstacles dis-
covered along the path; and motion planning
including calculation of control commands that
will lead a vehicle along the desired trajectory.
A significant progress has been made in each
of the above listed tasks. The SLAM task has
been studied both for ground robots [2, 3, 4]
and aerial vehicles [5, 6, 7]. For path planning,
there are a plenty of algorithms including graph
search methods [8, 9, 10] and probabilistic plan-
ning methods [11, 12]. The motion planning task
may be solved by optimal control techniques [13]
or using motion primitives [14], to name a few.
In this work, we develop an Autonomous In-
door Targeted Flight System (AITFS) that com-
prises several modules and algorithms. For solv-
ing the SLAM problem, the system makes use
of a novel algorithm based on representation of
the environment in form of “occupancy grid”
(OG) [15]. The advantage of OGs is their ability
to represent any obstacle without relying on pre-
defined features or forms. OGs also maintain in-
formation about undiscovered or unobserved ar-
eas of the environment, which can be essential
in the path planning task. To estimate the ve-
hicle’s position, we employ an adaptive direct
search method [16]. The path planning method
of the AITFS includes an A* search algorithm [8]
and a Potential Field method [17], combination
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of which allows the system to plan an obstacle-
free path while taking into account vehicle’s ma-
neuverability limitations. Several essential fea-
tures are added to these methods to maintain low
computational load and to guarantee feasibility of
the solution. For computing control commands,
an Inverse Simulation (IS) approach [18] is ap-
plied, while the generation of the required trajec-
tory is provided by a novel scheme that takes into
account the current flight regime (flight, hover,
etc.) of the RW MAV.

3 Methodology Description

We present now an overview of our methodol-
ogy and of the modular system that executes it.
A schematic diagram of the system and of its
components is depicted in Fig. 1. The system
includes a “Simultaneous Localization and Map-
ping module” (SLAM module), a “Path Planning
module” and a “Motion Planning module”. The
system architecture is modular so that each pair
of its components or even each single component
can be used independently of the others as well.
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Fig. 1 The main modules of the proposed system
(AITFS).

The obtained control commands are executed
in a “simulator”, a test-bed simulative tool for
autonomous helicopters that includes a detailed
simulative helicopter model. This model ac-
counts for the execution errors and external dis-
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turbances, such as wind gusts. The simulator is
considered as part of the proposed system, but is
utilized also for the simulation of the real laser
range finder and for providing the comparison
between actual and estimated helicopter perfor-
mances, position estimation and map quality. In
real missions two blocks that simulate the heli-
copter platform and the laser range finder are re-
placed by the actual physical components. The
detailed description of the system modules and
algorithms is given in Section 4.

In the AITFS, two main reference frames
are used: the global East-North-Up (ENU) co-
ordinate system and the body coordinate sys-
tem Fig. 2. The global ENU coordinate sys-
tem is an inertial Earth-fixed frame and is used
for navigation and motion planning. The ori-
gin is arbitrarily fixed to a point on the Earth
surface, the X,-axis points toward the East, the
Y,-axis points toward the North, and the X -axis
points upwards. In this frame, the position vec-
tor X, = {Xe, Ve, 2.} ! and the velocity vector v, =
{Vres Vye, vze } are defined.

The body coordinate system is fixed to the
body of the vehicle and is used to define the
forces and moments of the helicopter. The ori-
gin Oy, is located at the center of gravity (CG)
of the helicopter, the Xj-axis points forward, the
Y,-axis points to the left side of the vehicle, the
Zp-axis points upward. It was assumed that CG
is located at a constant position relative to the ve-
hicle geometry. In this frame, the linear velocity
vector of the vehicle v, = {u,v,w} and the angu-
lar velocity @, = {p,q,r} are defined. The orien-
tation of the helicopter or, more specifically, the
orientation of the body-fixed frame with respect
to the global frame is described by Euler angles
VY, 0 and ¢.

In the SLAM and Path Planning modules, we
assume a static 2D environment and use the pla-
nar projection of the aforementioned coordinate
frames. In this case, the vehicle pose p = {x,y, ¥}
that consists of the vehicle’s coordinates {x.,y.}
and orientation (azimuth angle) v is defined as
well.

The main steps of computing a flight path ac-

'Hereinafter bold stands for vectors.
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Fig. 2 The helicopter coordinate systems: the
global ENU frame and the body frame.

cording to our methodology may be described
as follows. Initially, the MAV is located at a
start pose po. A laser range finder provides ini-
tial data about the obstacles ahead. Then, the
Path Planning module is employed to provide
a desired path towards a target that is free of
collision with the obstacles and represents a se-
quence of poses P = {po, ..., Prarger }- The Mo-
tion Planning Module takes this path P, trans-
forms it to a trajectory Q by time parameteriza-
tion technique and calculates a sequence of con-
trols U = {u(#;)} for each time instance #; that
are needed to fly along this trajectory. After the
execution of the control commands for the next
time step, the vehicle will be located at a pose
Prrue = (X7, s, ;) that is unknown and subject to
be found. The SLAM modules outputs the es-
timated vehicle’s pose pess = (xe, Ve, We) based
on the sensor measurements, taken from the ac-
tual pose, and the virtual map of the environment
stored in the memory. Simultaneously, the map
updating process is executed. On the next itera-
tion, all the above stages are repeated, until arriv-
ing at the target.

4 Main Modules of the System

41 SLAM

As mentioned above, navigation in a priori un-
known GPS-denied environments requires build-
ing a map of the environment simultaneously



with an estimation of the vehicle position within
this map. These two problems can be solved
apart relatively easily, assuming either the pres-
ence of a map of the environment, for the lo-
calization problem, or knowing the vehicle pose
(e.g. by using a GPS), for the mapping problem.
However, when there is no map of the environ-
ment and the pose of the vehicle has to be esti-
mated, the two problems must be solved simulta-
neously by a SLAM method.

The proposed SLAM method consists of sev-
eral essential algorithms: a virtual scan, a scan
matching procedure, and a map building and up-
dating algorithm. The algorithm uses the OG,
each cell of which contains the number of “hits”
of the laser scan registered for the correspond-
ing sub-area of the environment. The OG is also
used for performing a virtual scan of the envi-
ronment produced by a series of ray casting op-
erations, searching for occupied cells along the
virtual laser ray. Fig. 3 shows the proposed solu-
tion schematically. At each time point, the vehi-
cle is located at the “true” (actual) pose Psrue =
(x¢, Y1, ¥ ). From this point, the laser range finder
senses obstacles in the environment and produces
an actual scan of the environment. In order to
estimate the vehicle position, an initial “guess”
POSE Pguess = (Xg,Yg, Wg) is provided by the Mo-
tion Planning Module. The virtual scan of the en-
vironment is produced from this guessed position
and is similar to the actual scan. The difference
between the virtual and actual scans is served as
a basis for the position estimation obtained by
the scan matching procedure. The scan match-
ing algorithm matches the scans one against an-
other and searches for a shift between the ac-
tual and guess vehicle’s poses that minimizes a
cost function using the adaptive direct search al-
gorithm [16]. The cost function represents the
discrepancy between the roto-translated and in-
terpolated real scan and the virtual scan, only for
the range covered by both [19]. This means that
the virtual scan points with range values out of
scanner FOV are not matched with the appro-
priate points from the real scan, and vice versa.
The cost function is normalized by the number of
valid points N,4;4. This enables to normalize the
total cost values for different matching attempts
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with different number of contribution points:
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Fig. 3 The SLAM problem statement.

After the scan matching algorithm completes
with the estimates of the position of the MAYV,
the map updating process is performed only if
the matching succeeds, i.e. the result of the scan
matching is below a defined threshold. This is
required since the OG serves as an average of all
previous laser scans and thus, if the virtual scan
is not accurate enough, the updating of the OG
will not be accurate as well. This would lead to a
rapidly growing error in the position estimation.

In order to measure the quality of the SLAM
algorithm, we use the following measure that
estimates the weighted mean distance from the
points in the virtual map to the real obstacles
while taking into account the hit values of the

cells:
N; Nj
Y Y wid;j
i=1j=1
N; Nj

Y Y wij

i=1j=1

ME = : ()

where w;; is the hit value of the OG’s cell ij; d;;
is the distance from the cell center to the nearest
real obstacle; N;,N; is the number of the cells in
the OG along the X, and Y, axes, respectively.
The simulation test-bed that was constructed
in this work and described in Section 4.4 enables
to calculate such measure in contrast with the
case of real experiments where exact information



AUTONOMOUS TARGETED FLIGHT OF A ROTARY-WING MICRO AERIAL VEHICLE IN

about the true positions of the obstacles may be
hardly achievable.

4.2 Path Planning

As mentioned above, the path planner combines
an A* algorithm and a Potential Field Method
(PFM). The A* algorithm provides a global path
from the current vehicle’s position towards the
goal position based on the currently available in-
formation of the environment. Once the global
path is found, the waypoint as a farthest visible
point along the A* path, within line of sight with
respect to the current MAV location, is calcu-
lated, and the PFM method is employed to plan a
path to that waypoint. In the case the goal is lo-
cated in the field of view of the vehicle, the wai-
point and the goal become identical.

In this module, the A* algorithm is applied
over a coarse occupancy grid using significantly
larger cells, as compared to the SLAM OG. Eight
directions of movement (North/South/West/East,
and diagonals) are allowed. The algorithm makes
use of the diagonal heuristic function [20]:

h = Dgjhg+ Dy (hs —2hy), 3)

where D; = \/§ is the traverse cost along the di-
agonal, Dy = 1 is the traverse cost in the straight
direction, h; is the number of diagonal steps; A
is the number of straight steps. In order to main-
tain admissibility of this heuristics, the diagonal
cost should be less than the cost of two straight
steps: Dy < 2D;.

The PFM considers the vehicle as a point
mass, moving in a force field produced by repul-
sive forces from the obstacles, and a single attrac-
tive force to the goal (or waypoint). In this work,
the intensity of the attractive force is positive and
constant over all possible position of the vehicle.
Each occupied cell in the OG is considered as an
obstacle, producing a repulsive force with nega-
tive intensity, and proportional to the occupancy
value of that cell, and inversely proportional to
the distance from the cell’s center to the vehicle’s
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position:
X | —X
goa )
Fgoal = lgoal— 7 >
dgoal
4)
X;—X
F,= obs Wi =

where Iy, is the constant positive intensity level
of the goal, Xgoq1 = (Xgoat, Vgoat) is the goal posi-
tion, x = (x,y) is the current (estimated) vehicle
position obtained by the SLAM module, dgo is
the distance from the current UAV position to the
goal position. Similarly, 7,5 1s the negative in-
tensity level of the obstacle, d; is a distance from
the cell center to the center of mass of the vehi-
cle, w; is the hit count of the cell, and x; is the
position of the cell center.

Additionally, the PFM considers only cells
that are located in the fore third of the field of
view. This was done to reduce effects of areas
that are no longer between the vehicle and its next
waypoint.

4.3 Motion Planning

In this work, the notion “motion planning” stands
for the task that combines two problems: the gen-
eration of a continuous time sequence of vehi-
cle’s positions and velocities from one given lo-
cation to another specific location, in addition to
the computing of the time history of control com-
mands that will move the vehicle to a desired
position. This module is the only module that
works with the actual model of the vehicle since
it feeds the specific helicopter characteristics to
the whole system. The development of a simu-
lation model (linear or non-linear) is therefore a
prerequisite for further use in any of the motion
planning methods.

We use both nonlinear and linear representa-
tions of the helicopter model. The nonlinear and
linear dynamic models have 6 DOF and the fol-
lowing state and control vectors:

S = {u7v7w7p7q7r?l|‘[7e7¢};

5)
u={60,01.,01,6;},

where 0 is the main rotor collective pitch angle;
01c, 01, are the main rotor lateral and longitudinal



cyclic pitch angles; 6;, is the tail rotor collective
pitch angle.

It was assumed that the main rotor has rigid
blades with uniformly distributed mass along the
blade and linear twist. The blades have an ad-
ditional DOF of flapping. At each blade section
the lift and drag forces are calculated using non-
linear aerodynamic tables. The total lift and drag
forces are obtained by integrating the forces of
each blade section along the blade. The tail rotor
blades are assumed to be rigid and non-flapping.
The expressions for tail rotor forces and moments
are similar to those for the main rotor but include
the interaction effects. We assume a quasi-steady
flapping dynamics, according to which the rotor
responses to cyclic commands is extremely fast.

The proposed methodology for motion plan-
ning and control task includes two-phase algo-
rithm. Firstly, a desired trajectory Q that will
be used as an input within the IS algorithm is
developed based on a predefined path from the
Path Planning Module. This trajectory is con-
structed to maintain the principal geometry of
the path while providing smooth changing of the
desired parameters and vehicle command limita-
tions. The second phase is the IS algorithm that
calculates a sequence of controls U that are re-
quired to fly along the planned trajectory. In this
paper, the integration-based inverse simulation
method is used [18]. It initially guesses the con-
trol inputs, integrates the vehicle motion equa-
tions, to achieve the desired output vector at the
next iteration. The difference between the actual
flight vector and the desired flight vector is then
used to calculate the estimation of the control in-
puts for the next path computation step. In this
work, the dimension of the control sequence is
equal to the dimension of the trajectory sequence
that consists of three velocities and the azimuth

angle q = {vxe, Vye, Ve, W} [19].

4.4 Integration of the System Modules

In this section, the main components of the
methodology described in the previous subsec-
tions are combined to an Autonomous Indoor
Targeted Flight System (AITEFS) for RW UAVs.
The modular structure of the system allows inde-

SVETLANA POTYAGAYLO* , OMRI RAND*

pendent creation and usage of the system mod-
ules, clear and flexible design, and multiple func-
tionalities. In the proposed system, each module
is aimed towards one specific function, and this
enables studying the effects and performance of
a specific module individually.

However, the integration of the system com-
ponents is not a trivial task since interconnect-
ing links between modules have to be set in or-
der to enable the collective operation of the sys-
tem modules. In addition, a high decision making
level has to be developed to ensure achievement
of the mission goal and to plan actions that will
diminish negative outcomes in cases of uncer-
tainties of the environment and the vehicle state.
The two problems that may arise from such sit-
uations and lead to interruption of the common
flow “position estimation and map updating —
path planning — trajectory and command com-
putation” will be discussed.

For example, there may be situations in which
arrival to the predefined goal location is impossi-
ble due the obstacles discovered during the flight.
In this case, a MAV has to make an appropriate
decision whether to fly back, to fly to the position
nearest to the goal or to remain over a specific
location. One additional situation that requires
special attention is faults, i.e. difficulties of the
system modules to produce their outputs. In the
proposed AITFS, the A* algorithm and the PFM
used in the Path Planner Module are known to be
complete if a goal (or a waypoint) is reachable.
The IS algorithm used in the Motion Planning
Module has very high convergence since the tra-
jectory generation method produces smooth tra-
jectories with small changes of the required pa-
rameters. However, the SLAM algorithm may
produce solutions with non-minimal values of the
cost function due to a bad initial guess or a small
mutual area of actual and virtual scans. Isolated
instances of this fault do not affect the overall
performance of the system since in the next steps
the vehicle will localize itself and the map up-
dating will be resumed. However, such a fault in
several consecutive steps may lead to divergence
and vehicle loss. To prevent this, the high level
module causes the vehicle to slow down, to hover
or to search for the best azimuth position until the
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SLAM algorithm will succeed to estimate the ve-
hicle’s pose. These situations will be illustrate by
examples in Section 5 in details.

To assess the effectiveness of the proposed
system, a simulation test-bed was developed. The
test-bed includes a simulation model of a conven-
tional configuration helicopter and a simulation
model of a real laser range finder along with real-
istic levels of execution errors and external distur-
bances. The simulation test-bed is implemented
using MATLAB®. The computational cost of
the system modules was evaluated in terms of the
percentages of the total running time. The run-
ning time of the SLAM module, including the
Virtual Scan, the Scan Matching procedure and
the Map Updating, is approximately 60% of the
total cost, while the running time of the Motion
Planning is about 20% of the total cost and the
running time of the Path Planning is about 2%.

5 Results and Discussion

5.1 Simulation Setup

The helicopter and the real laser rangefinder
we chose as prototypes is the SR RTF heli-
copter, manufactured by Blade, Horizon Hobby,
Inc. [21] and the Hokuyo laser rangefinder [22].
The main parameters of the helicopter, laser
range finder and algorithms are given in Table 1.

Table 1 The values of the main parameters.

Parameter Value

Helicopter main rotor diameter [mm] 552

Helicopter tail rotor diameter [mm] 82
Helicopter weight [g] 340
Helicopter length [mm] 485
Minimum detection radius [mm)] 25
Maximum detection radius [mm]| 30000
Angular resolution [deg] 0.25
Maximum bearing angle [deg] +135
OG resolution [mm] 10
A* OG resolution [mm| 500

Trimming of the helicopter model was car-
ried out using the RAPiD rotorcraft analysis soft-
ware package [23] that is designed to model and
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analyze general rotorcraft and rotary-wing based
configurations. The simulations were carried out
assuming the realistic level for sensor errors of
1.5% and for execution errors of 1%.

5.2 Simulation Results

We will start with the discussion of two spe-
cial cases mentioned earlier: the problem of the
SLAM algorithm failure and the problem when a
goal location is unreachable. Fig. 4 presents two
snapshots of a simulated structured environment.
The scenario was realistic and included the MAV
autonomous flight from the known start position
to a given goal location. In the first case (left side
of Fig. 4), the vehicle had to enter a room to ar-
rive to a goal. This part of the flight represents a
quite challenging task for autonomous platforms
with an only environment sensor. While enter-
ing a new closed segment of the unmapped envi-
ronment, the changes between the map already
stored in the memory (or virtual scan) and the
real scan of a new area may be dramatic. Such
discrepancies may lead to difficulties in position
estimation and, as a consequence, to the failure
of the SLAM algorithm. This situation may be
observed on Fig. 5(a) where values of the cost
function are shown for the entire flight. Note,
that the admissible threshold for the cost func-
tion was 30 mm. To resolve the problem, the high
level of the AITFS causes the vehicle to slow
down, hover and change only its heading angle
to successfully complete the position estimation
and map updating processes.

The problem when the MAV can not reach a
goal position due to inaccessibility of full infor-
mation of the environment is shown on the right
side of Fig. 4. In this case, the goal was located
in the closed room. The MAV had to explore all
the environment in order to ensure that there are
no possible paths to the goal. The corresponding
values of the cost function are shown on Fig. 5(b)
and they are much lower for this case.

The map quality for this case is approxi-
mately ME = 8.8 mm. This measure is within the
order of magnitude of the OG’s cells (10 mm),
i.e. the resultant virtual map is highly accurate.

Fig. 6 presents three snapshots of another
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complicated environment and the evolving map,
planned paths, and executed path. During the
flight, the estimated A* and PFM paths are un-
remittingly checked for obstacle avoidance, with
respect to newly detected obstacles, and update
accordingly. This evolution of the map and paths
is illustrated by consecutive snapshots. For ex-
ample, at the first time step (Fig. 6(a)), the A*
algorithm estimates the path towards the target
based only on the first obtained scan. The vehi-
cle begins to turn left to go around the nearby
obstacle. After 4 more steps, the passageway

becomes too narrow, the updated underlying A*
occupancy grid therefore detects an obstructed
path, and recalculates (Fig. 6(b)). This path is
in turn updated further, and the process repeats.
Fig. 6(c) presents the final estimated and actual
paths along with the final map.

6 Conclusions

We presented a comprehensive, modular system,
designed for a targeted flight of autonomous RW
MAVs in unknown GPS-denied environments.
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Fig. 6 Snapshots of the map and path evolu-
tions for a simulated environment. A* planned
path is in solid cyan line, asterisk shows the next
way point, while red dots mark the PFM locally
planned path, black circles an ‘x” marks show the
vehicle estimated and true positions, respectively.

The proposed system consists of independent
modules for simultaneous estimation of vehicle’s
position and mapping of the environment, plan-
ning a feasible and obstacle-free path towards
a goal, and generation a trajectory and control
commands required to fly along that trajectory.
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The system also includes an additional module
that exposes such features as mission planning,
situation awareness, and decision making. The
main challenges in the task of a targeted flight
were the following: (1) Localization of the ve-
hicle in a priory unknown environments without
additional aid of external sensors or algorithms
for loop closure. (2) Avoidance of collision of the
MAV with obstacles while keeping the flight path
to be as short as possible (3) Taking into consid-
eration maneuvering limitations of the vehicle.

The simulation results of autonomous MAV
flight in several simulated environments were
presented as well. These results demonstrated
that the system modules provide highly accu-
rate results and successful arriving of the MAV
to goal positions without significant accumulated
drift. As part of future work, the AITFS will
be fully validated with an aerial platform in real
world environments.
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