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Abstract

The classical problem of maximization of the
aircraft range is considered. The solution is
based on using the Pontryagin maximum
principle. New analytical solutions are obtained
within a framework of the approximate pseudo-
conservative model of the motion. Realizability
and efficiency of the obtained optimal
oscillatory  trajectories are shown in
comparison with the traditional steady cruise
flight.

1 Introduction

The maximum range problem is a classical
problem in aircraft design. Traditionally, an
airplane trajectory consists of three main
segments: the climb, cruise flight at nearly
constant altitude and descent to a landing point.
The cruise is the longest and well-studied phase
of flight. Therefore, the optimization problem
for cruise flight has become a subject of
authors’ interest.

The aim of this paper is to present the
obtained qualitative results of the problem study
on the base of the Pontryagin maximum
principle [1], including investigation of the
optimal control law, especially alternative to the
traditional steady solution, and its dependences
on the functional, constraints and other
parameters of the problem.

The principal feature of this optimization
problem is possible degeneration with
increasing the flight duration as local changes of
control variables (the angle of attack and thrust)
have a weak influence on distant trajectory
sections and the functional.

Usually,  some  simplifications  are
introduced into equations of motion to
overcome this difficulty.

One of the most often used simplification
for the cruise phase is the hypothesis of quasi-
stationarity [2]:

y=0,y~0, (1.1)

where y is the path angle and y is its time-

derivative. The range x of the level flight is
defined by the Breguet formula [3]:

x:[ﬁjmﬂ, (1.2)
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where K is the lift-to-drag ratio, v is the
velocity, c. is the specific fuel mass
consumption, m is the mass, sub-indexes “i”
and “f” correspond to initial and final points.
From (1.2) the well-known result follows about
the optimality of the cruise flight at the
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The cruise minimum fuel consumption
problem at constant altitude and fixed-time
flight is considered in [4]. This is a mutual
problem with relation to the maximum range
problem at fixed mass consumption. The thrust
is taken as a control variable. The problem is
solved using the Pontryagin  maximum
principle. By calculation for this problem
authors demonstrate the existence of a singular
arc for the optimal thrust control.

A qualitative analysis of the maximum
range problem is performed in [5]. The problem
is solved by the energy approach, where altitude
and thrust are taken as control variables. There
are considered two statements: for a given fuel
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consumption with free flight time and for given
flight time with free fuel consumption.

Speyer seems to be the first [6] who
doubted reasonably about optimality of the
steady level flight in the considered problem
and proved that it fails the optimality conditions
in terms of classical calculus variations. It was
also shown that the oscillatory trajectory can
reduce the fuel consumption when compared
with the level flight.

The minimum fuel consumption problem
of subsonic aircraft with constant mass by using
an oscillatory trajectory is considered in [7].
The boundary conditions imply the equality of
initial and final velocity and altitude. The
problem is solved by selection of parameters of
a sine law for altitude changes. On the basis of
numeric calculations authors show the existence
of such oscillatory trajectories that give the less
fuel mass consumption as compared with the
level flight.

Shepard and Bilimoria [8] considered the
problem of minimizing both the fuel mass
consumption Am; and time of flight ¢ by
introducing the penalty function:

@ = (7 + Am, ).

In the model the following simplifications,
which correspond to the conditions of stationary
flight, are made: the weight equals the lift and
the drag equals the thrust. The velocity and
altitude are taken as the control variables. The
problem is solved by using the Pontryagin
maximum principle. It is shown that increasing
the penalty factorz, i.e. a relative rise of a role
of the time in comparison with the mass, the
average velocity increases at the optimal
trajectory, and the average altitude first
increases and then decreases.

In [9] authors minimize the fuel mass
consumption and flight time for the functional
that is similar to [8]:

d= S dex = min,
X¢ 5 VCOSy
where 7], ¥ are actually the penalty factors.

The initial and final velocity and altitude are
considered as equal. Thrust and lift coefficient
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are taken as control variables. Aircraft is
considered as a point with a constant mass. The
problem is solved by using the Pontryagin
maximum principle. By calculation for different
values of 77, ¥ periodic solutions are shown
with singular arc and bang-bang control.

A more detailed overview of fundamental
results on this topic can be found, for example,
in [10], [11].

In contrast to the above mentioned works
in this paper a priori assumption (1.1) of the
quasi-stationary character of motion is not used

and 7 and J may be arbitrary. The path angle
Y is considered as the control variable without
any constraints. The analytical optimal solutions
are obtained in the framework of the
approximate pseudo-conservative motion
model. It is shown that the solutions have
oscillatory character that gives gain in the range
in comparison with the level flight. Then,
generalizations of the problem are considered
with constraints on the velocity, altitude and
fuel mass consumption. The optimization
problem with the last constraint is solved
numerically using the continuation method.
Finally, the obtained approximate analytical
optimal solutions are tested on the more
comprehensive model of the motion for typical
maneuverable aircraft. Their good agreement on
the functional and efficiency of the oscillatory
trajectories in comparison with the traditional
level cruise flight are demonstrated.

2 Problem statement

Consider the aircraft maximum range problem.
Movement of aircraft is considered in a flat
homogeneous gravitational field as a mass
point, which is described by following
equations:
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. T-D
V=————gsiny,
m
7_L_gcos;/
Somvv (2.1)
h=vsiny,
X =VC0Sy,
m=-c.T,

where T is the thrustt D=c,qgS is the
aerodynamic drag, L=c,gS is the aerodynamic

lift, g is the acceleration of gravity, h is the
altitude, cy is the drag coefficient, c, is the lift
coefficient, g is the dynamic pressure, S is the
reference area.

Let us use the dimensionless variables:

R Jdim x/(goR)dim

t_td'm\( jdlm m:(r:]i)dim’
! =(m;r90]dim' DZ( I[;OJdum
[mil_goldim’ X:(;jdim’

where the index «dim» designates dimensional
variables, go is the gravity acceleration at sea
level, R is the average radius of the Earth, m; is
the initial mass of aircraft.

Then, equations (2.1) take the form:

(2.2)

L

V= —siny,

L cosy

oo ’ (2.3)
h=vsiny,
X =VCOoSy,
m=-—c,T.

Due to the mass is slowly changing variable, we
follow for the many previous works, including
mentioned above, and neglect the influence of
mass changes in the right sides of (2.3).

Because ) is the rapidly changing variable
in comparison with v, h and x, itis convenient to
take Y as the control variable and to rule out
the differential equation for 7 .

Let us introduce new phase coordinates as

follows: w is the pseudo-velocity, v is the
pseudo-path angle, which are associated with
the initial variables by the following
relationships:

wi =

WCOSL =VCOSy,

wsinov =vsin y.
Note that the pseudo-velocity can take negative
values, and the pseudo-path angle may differ
from ) by 180°.

For brevity, below we omit the word
"pseudo™ in names of the new variables where it
cannot lead to misunderstandings.

The system (2.3) with the new variables
takes the form:

W=T —-D-sinv,
h =wsino, (2.4)
X =WCOoSv.

We use the following boundary conditions.
At the initial time t;=0:

w(t,)=w;,h(t)=h, x(t)=0. (2.5)
At the final time t:
ty = fix,w(t; )=w;,hlt; )=h. (2.6)

Equality of v and h at the beginning (2.5)
and end (2.6) of the trajectory does not matter,
but in this work it allows to consider the level
flight as one of the possible solution and
compare it with the optimal solutions obtained.

The performance criterion is the range:

P =X(t;) = max. 2.7)

3 Optimality conditions

According to the maximum principle [1] the
optimal control is determined from the
condition:



Upelt) = argmax H , (3.1)

where H =ATf is the Hamiltonian of (2.9), f
is the vector of the right sides of equations (2.4),

A" ={A,, 4,4} is the vector of conjugate

variables corresponding to the variables of the
phase vector x = {w, h, x} and satisfies the

equation:
.
- _[ﬁj _ (3.2)
X
Taking into account (2.4) and (3.2) we obtain:
iw :—ﬁ:—/ihsinu—/lx COSU—AWM,
N ow
i H_, ar-D) (3.3)
%1 oh
A, =—ﬁ=0
X

The transversality conditions are [12]:
(6P —Ha+a); =0, (3.4)

where variations are taken on admissible
variety. For (3.3), (3.4) the transversality
conditions are reduced to one condition on the
right end of the trajectory:

At )=1. (3.5)

To determine the optimal control v, let

us select a part H" of the Hamiltonian that is
clearly dependent on the control:

H” =(4,w-A4,)sinv+wcosv. (3.6)

From (3.1) and (3.6) we obtain the optimal
control low:

Sinvy, =

A cosy, =
JAZ+w? Vopt = A2+ WP (3.7)

where A= A4,W—A4,,.

Five phase conditions (2.5) and (2.6) at the
boundary points and one transversality
condition (3.5) enclose boundary value problem
for the system of six differential equations (2.4)
and (3.3). Thus, the Pontryagin maximum
principle allows to reduce the original
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optimiztion problem in the functional space to
the boundary value problem: it is required to

find three values 4,,, 4, 4, on the left end, so
to satisfy three conditions (2.6) and (3.5) on the
right end of the trajectory.

The phase system (2.4) is autonomous, SO
the first integral takes place at the optimal
control:

H = const. (3.8)

Lopt

Note that the same integral holds at a constant
control:
= const. (3.9)

v=const ~

H|

The property (3.9), as was shown in [12], is
useful for verification of a mathematical model
of an optimization software package (more
details on this subject will be discussed below in
Section 8).

4 Analytical solutions for the pseudo-
conservative model

Let us make the following assumptions:

» the thrust is equal to the aerodynamic
drag,

« on the considered time interval the
change of aircraft mass can be neglected
to the structure of the optimal control,

« the path angle as a fast variable is taken
as the control.

The assumptions are quite appropriate for
studying the motion of aircraft with high
aerodynamic efficiency. Moreover, the first two
assumptions  are  consistent  with  the
quasistationary  conditions, and the third
assumption significantly broadens the class of
acceptable trajectories in comparison with
quasistationary trajectories because it doesn’t
confine the path angleo.

After these simplifications, the equations
(2.4) take the form:

W=-sinv,
h=wsino, (4.1)
X =WCO0Sv.

The Hamiltonian for (4.1) is:
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H=-4,sino+ A wsino+Awcosv. (4.2)

According to (3.2) (4.2) the conjugate
system is:

A, =—A, sino— A cosv,
A, =0, (4.3)

A, =0.

From (4.3) we obtain the following
solutions:

A, =const, A, =const, (4.4)
and due to the transversality condition (3.5):
A, =1. (4.5)
According to (3.1):
SiNU,,, = AW ﬂzv ,
JAW=2,F +w
(4.6)
W
cosv,

" WA

Substituting (4.6) in (4.2) and taking into
account (3.8), we obtain for the optimal
trajectory:

H =\/(Aﬁw—ﬂbw)2 +w? =const >0. (4.7)

Substituting (4.6) in (4.3) and (4.1) and taking
into account (4.7), we obtain:

- 1+ 2 A
Ay =—""T"W+ "4,
v H H &
V'\/=——W—|—iﬂw.

H H

(4.8)

Differentiating the second equation in (4.8) and
substituting it into the first equation of (4.8)
with (4.4) and (4.7), it results in:

w
w+—=0. 49
. (4.9)

The equation (4.9) has the solution:

W=C13in(%_|)+ C, cos(%_'). (4.10)

IN THE AIRCRAFT MAXIMUM RANGE PROBLEM

where the constants C,, C, are determined from

the boundary conditions (2.5) and (2.6).
Substituting (4.10) into (4.8), we obtain:

A, =C, cos(%_| )—Czsin%). (4.11)

The optimal control (4.6) with (4.10) and
(4.11) takes the form:

sin Ugpt =%sin%)—%cos%)
w(t)

(4.12)
COS Uy =

The Hamiltonian by substituting (4.7) into
(4.10) - (4.12) takes the form:

H=,/C?+C} =const. (4.13)

For C;, C, we have the conditions:
Clsin(t%j =W, [1—005['[%3 C,=W. (4.14)

Consider the case t%=27zn, where n is
integer. Then, from (4.13) and (4.14):

C, =+ H? —w?. (4.15)

If t% #2/m , from (4.14):

ofy)
=g

Substituting sinv, cosv from (4.12) into
the equality:

C =

(4.16)

d, . do
—(sinv)=cosv—,
dt dt

and taking the derivative of sinv it is obtained:

do 1
—=— 14.7
dt H (14.7)
So the optimal pseudo-path angle has linear
dependence from time:



1
v=v +—t. 14.8
H ( )

5 Analysis of optimal oscillatory solutions

According to (4.10) the optimal trajectories are
periodic oscillatory. The local extremals
(satisfying necessary optimality conditions of
the maximum principle) are not unique and their
quantity is determined by the quantity of
solutions of following equations for H, C;:

H=,C+w,
w, =C, sin(t%j + W, cos[t% ] .5

A part of the solutions (5.1) is obvious, they are
written in the form:

H =t%ﬂn’ 52)

where n is integer. The quantity of solutions
with (5.1) and (5.2):

tf
N < Lﬂwi } (5.3)

where [f] is the nearest to f integer not
exceeding f.
The other solutions are obtain from:

H :\/Wi2 tan(t%HJ+wf = m. (5.4)

Equation (5.4) has the following geometric
interpretation (Fig. 1). The quantity of
intersections of the liney=xwx with the

function y= cos(0.5tfx), where  X= %—I )

corresponds to the quantity of solutions of (5.4).
Angle of the slope is directly proportional to w;
and when it increases the quantity of solutions
decreases. The oscillation frequency is directly
proportional to t; and when it increases the
quantity of solutions increases too.

The (5.1) shows that the local extremals
depend on w; and time of flight =t-t;. The
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relative change of the functional

opt Xor _ . .
AX = ———=, where Xnor=W;z, is determined
Xhor

1= . )
Fig. 1 Geometric interpretation of the number of
solutions

by a change of the generalized parameter wi

Fig. 2 shows the dependencies A){Lj for
W.

different extremals. As can be seen from Fig. 2,

AX increases with increasing 7z and with
decreasing w;. In the considered range of the
AX
8_

7_

6_

5_

4 —

3 —

2 —

1 —

1 extremal
2 extremal
3 extremal
4 extremal

T

D- lyl I I I I I I I_

10 20 30 40 50 Wi

" Fig. 2 Dependence of relative increment of range
from generalized parameter.

parameter Wi the first extremal always has the
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gain in the functional as compared with the
level flight.

The solutions are demonstrated on the
example with following parameter values:

_ m _
mg_-240//g,r-800& (5.5)

As it can be seen from Fig. 3, the optimal
periodic trajectories have almost five-fold flight
range advantage in comparison with the level
cruise. Total in case (5.5), there are 16 local
extremals. Seven of them have the advantage of
the functional under the level flight from 496%

AX
4

5— 496
4_
4 3.69
3_
2 -
E 1.65
1 0.98
i 0.57
. }0'33i0.19\
- 205 iz |
-0.32 034
1T 1T 1T 17T 17T T T T T T1
6 1 2 3 4 5 6 7 8 9 10 11 12

extremal number

Fig. 3 The relative increment of the range for different
extremals

h, km

)
ey

100

1 20.
203,146 114 901 75 576 507
| 1 SR

T T T T T 1
2 3 4 5 6 7 8 9 10 11 12

extremal number

Fig. 4 The altitude change for different extremals

(the extremal no.1) to 18% (no.7). These
trajectories are characterized by changes of
altitude from 364km to 7km (Fig.4),
indicating possible areas of their application:
from space and hypersonic vehicles to airplanes.
It is obvious that the global extremum delivers
the extremal no. 1 only.

6. Analytical solution with constraints of
velocity and altitude

Consider the maximum range problem with
constraint on state variables w and h in the
pseudo-conservative statement.

The equations of motion coincide with
(4.1). We assume the boundary conditions to be
(2.5) and (2.6). The control variable is the path
angle o.

Firstly consider the constraint on w:

W S Wcon ' (6'1)
On the constraint arc:

Sl =W—Wg, :0’
1 (6.2)
S, =-sinv=0.

According to (6.2) the Hamiltonian has the
form [14]:
H=-4,sinv+ A wsinv+A,weosv—usino,  (6.3)

where x=0 beyond the constraint arc.

At the point of entry to the constraint arc t;
the next condition for the conjugate system and
Hamiltonian must be satisfied:

Au(ty) = 4,(t7) + 7,
Zn(ty) = A (1)),
A () = A4,(t),
H(t) = H(t).

(6.4)

From (4.1) and (6.2) we have the following

solution on the constraint arc:
v=0 (6.5)
W=W_,. '

From (6.3) - (6.5) we obtain:



Ht )=H(E )=H =w,,. (6.6)

The solution before the constraint arc is
obtained from (3.2), (4.1) and (6.3):

w=C, sin(%vmj +C, COS(%VCOJ . (6.7)

From (2.5) and (6.5) it is followed:

W,

con

C, =W tan( b j (©8)

W

con

Wi
t, = w,,, arccos| —— |,

C,=w,.

The solution after the constraint arc is
obtained from (3.2), (4.1) and (6.3):

w=_C, sin(%vconj +C, cos(%vcon). (6.9)

From (2.6) and (6.5) itis resulted in:

W

con

W.
t,=t, - Wconarccos[—'}

C4=wconcos[ L j (6.10)

con

(0t
C,=w,, sm[ .
Wcon

Now, consider the constraint on h:

h S hcon' (611)

On the constraint arc:

Szzh_hconzo'

: ] (6.12)
S, =wsinv=0.
The Hamiltonian has the form:
H =(-4, + 4, W+ mv)sinv+A,weosv, (6.13)

where =0 beyond the constraint arc.

At the point of entry to the constraint arc t;
the next condition for the conjugate system and
the Hamiltonian must be satisfied:
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A, () = 4, (1),
An(ty) = A () + 7,
A, () = A(L),
H(t) =H ().

From (4.1) and (6.12) we have the
following solution on the constraint arc:

(6.14)

(6.15)

w=w, =2(h —h,, )+ W,

where w; is the velocity at the constraint arc.
From (6.13), (6.14) and (6.15) we obtain:

Hit )=H(t)=H =w,. (6.16)

The solution before the constraint arc is
followed from (3.2), (4.1) and (6.13):

w=_C, sin(%vh) +C, cos(%vh),

W W (6.17)
h=—+h ——.
2 2
From (2.5) and (6.15) we obtain:
W
t, =w, arccos(—'}
Wh
6.18
C =w, tan(t—l} (6.18)
Wh
C,=w,.

The solution after the constraint arc is
obtained from (3.2), (4.1) and (6.15):

w=C, sin(%vh ) +C, cos(%vhj,

w2 w?

h=—-+h ——.
2 2

From (2.6) and (6.15) it is resulted in:

(6.19)
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W,
t, =t, —w, arccos[—'}

Wh
C, =w, cos| —= |,
Wh

C,=w, sin(t—z}
Wh

7. Statement of the problem with constraint
on fuel mass consumption

(6.20)

Consider the maximum range problem in
pseudo-conservative statement (4.1) taking into
account the fuel mass constraint:

m, —m, =Am,
where Am is the given mass of fuel consumed.
The equations of motion take the form:

W =-sinv,

h =wsino,

, (7.1)
X =wcosv,

m=—c,T.

According to the assumption T=D the
equation for the mass in (7.1) takes the form:

m=-c,D=-Bpw*, (7.2)

where B =0.5c.c,S.

The path angle v is the control variable.
We use the following boundary conditions.
At the initial time t;:

wlt)=w, bt )=, x(6)=0m(t)=m. (7.3
At the final time t;
t, = fix, wt, )= w;, hit, )=h.mlt,)=m,.  (7.4)
The functional is the range:
® = x(t;) = max. (7.5)
Note that the problem covers a wide class
of mutual problems. These include:

e maximizing the range with a given flight
time and a given mass of fuel,

e minimization of flight time with a given
range and a given mass of fuel,

e minimization the fuel consumption with
a given range and a given flight time.

8 Accuracy analysis

One of the important advantages of the
Pontryagin maximum principle is a capability to
obtain the objective information about
correctness of the various parts of the program
and the accuracy of calculations. Objective
ways to diagnose the correct operation of the
basic blocks of the program responsible for the
formation of the phase and conjugate systems of

Table 1 Hamiltonian change vs integration step under
constant control

At (0.000125/0.00025| 0.0005 | 0.001
IAH(2.94E-132.42E-121.95E-11]1.58E-10

—

equations, the optimal control in the indirect
optimization problem are justified in [13]. Using
these procedures can not only reliably diagnose
the presence of analytical mistakes or
programming errors, but also localize them in
the program.

Following [13] the integration on a
constant control allows to check the correctness
of programming the conjugate system. In the
numerical integration  the Hamiltonian
variations along the trajectory at a constant
control should be determined only by the
integration step, i.e. the method error of
numerical integration. In this paper the Runge-
Kutta integration method of the 4th order is
used. It is characterized by a decrease of one or
two orders of magnitude errors keeping the
integral (3.9) with decreasing integration step At
twice [13] (see Table. 1). (This is true only if At

Table 2 Hamiltonian change vs integration step under
optimal control

At (0.000125/0.00025{0.0005| 0.001
AH| 7.19E-8 |2.89E-7|1.19E-6/6.18E-6

=3

is not very small and the method error
dominates the rounding error [15]).

At the optimal control the Hamiltonian has
also to be constant (see (3.9)). A rational choice
of the integration step for phase and conjugation

9



systems of equations can be based on the
following condition, which uses the physical
meaning of conjugate variables as influence
functions of phase variables on the functional
and the Hamiltonian meaning as the influence
function of time [13]:

[AH|At ~ A® << @, (8.1)

where AH is the maximum H-change at the
optimal trajectory, caused by errors of
integration with step At, A® is the given
allowable error of the calculation of the
maximum flight range. If there is no mistakes in
account of optimality conditions the integration
step reduction in two times follows to the error
reduction of H in an order (see Table. 2).

9 Numerical procedure of BVP solution

Technique of indirect optimization based on the
Pontryagin maximum principle is implemented
in the program complex "ASTER" [16]. The
complex "ASTER" includes:
The modified Newton method for
solving the multipoint boundary value
problem. It enables a high-speed
convergence of the iterative process of
solving the boundary value problem in a
neighborhood of the extremum.

» The continuation method and the method
of local extremals selection, which
regularizes procedure to obtain the
optimal solution far from a known
solution.

In this paper, the initial solution for the
continuation method for solving the problem
(7.1) — (7.4) was the analytical solution obtained
in the framework of the pseudo-conservative
statement described in Section 4. In this case,
the homotopy parameter y = [0, 1] is entered as:

Am = yAm, +(1- x)Am,, (9.1)

where Am is the current mass of consumed fuel,
Amy is the final mass of consumed fuel, Amj, is
the mass of consumed fuel obtained by the
analytical solution. In Fig. 5 trajectories with
different y are shown.

In Fig. 6 the quantity Njscobni Of iterations
with calculations of the Jacobi matrix versus the
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h, km
120 —
7=0
a0 - 7=0.99
r=1
40
0 —T——T 1 1 1t
0 0.1 0.2 0.3 0.4 0.5
Fig. 5 Solutions for different homotopy
parameter
NJacobi
14 —
13 -
12 -
1
10
9_-
8_-
S
6
5_-
] —
3]
2_-
1_-
R IS s m e 4
0 0.2 0.4 0.6 0.8 1

Fig. 6 The number of iteration Njacopi VS
different homotopy parameter y
homotopy parameter y is shown for the global
extremal no. 1.

Note, the analytical solution for this
extremal has a big altitude amplitude (Fig. 4),
therefore the consumed mass for initial (y=0)
and final (y=1) variants are differed in five
orders. Nevertheless, the complex “ASTER”
provided a regular convergence for solution of
this problem.

10
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10 Analysis of extremals with the fuel mass
consumption constraint

The computation of optimal trajectories with
constraints on the flight time and fuel mass
consumption was provided according to the
statement in Section 7. The Pontryagin
maximum  principle lets to reduce the
optimization problem to the two-parametric
boundary value problem. The last is solved by
the program complex “ASTER”.

The obtained approximate optimal solutions
are compared with the level cruise in Fig. 7. The
rignt ~parts of optimal  dependencies
X¢ max (AM, 7 = fix) related to the cross points are

displayed lower than the line of the level flight
due to different flight time on compared curves.
The left parts of optimal dependencies

X¢ max (AM, 7 = fix) are higher than the line of

the level flight. In the domain above the line for
the level flight the maximal range (at the
optimal trajectory) is more then the range of the
level flight at the same mass consumption. The
example of the optimal trajectory, which
parameters correspond to the pink cross in
Fig. 7, is shown in Fig. 8.

Xf
0.03 4
the level cruise flight
0.02 —
7=0.4
7 0.3
0.01 0.2
O T I T I T I T I T I Am
0 0.0002 0.0004 0.0006 0.0008 0.001

Fig. 7 Comparison of the optimal solutions with the
level flight

The envelope of the family of functions
Ximx (AM, 7= fix) for a =zinterval is the

dependence of the maximal range on the fuel
mass consumption with free flight duration.

h, km

8.8 —

8.4 —

. — T 1T T T T 1t
0 0.1 0.2 0.3 04

Fig. 8 The optimal trajectory with the range
advantage to the level flight

11 Analysis of aerodynamic loads at the
extremals

Let us return to the maximum range problem
with the fixed flight time (see Section 4). It is
shown in Fig. 4 that the oscillatory trajectories
have the wide diapason of the altitude change.
Since the constraints to the aerodynamic load
factor were not considered it is necessary to
ascertain that aerodynamic load factor is in
reasonable limits. Using the analytical solutions
(4.10) and (4.12) let wus estimate the
aerodynamic load factor at the extremal
trajectories.
The normal aerodynamic load factor:
c,aS

n, === (11.1)

From another side, according to Eq. (2.3):

n,=wo+cosv, (11.2)
where (see (4.17)):
.1
=—, 11.3
o= (11.3)

Substituting (4.12) and (11.3) to (11.2) it is
obtained:
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n, =2cosv. (11.4)

So the aerodynamic load factor at the optimal
trajectories from (11.4) is:

‘ny‘SZ.

Note that this result (for the used model of
motion) is independent ~ of  aircraft
characteristics.

12 Demonstration of advantage of oscillatory
trajectories

Let us show advantage of oscillatory
trajectories. Consider the local extremal no. 7
from the Section 5 in detail. The realizability of
this trajectory is verified by numerical modeling
of flight with more complete equations of
motion (2.1) with the control that follows up the
extremal. Although it is not the global optimal
solution, but the gain in range in comparison
with the level flight is significant: 18%. It has
oscillatory character with altitude change of
14 km. It is achievable for maneuver aircrafts.

For example, consider aircraft which
characteristics are given in the Appendix. The
follow initial values are used:

v, =240m/s, h, =12800m.

The angle of attack and thrust are the
control:
0<T<T,,(v,h)
0<a<20°.

The ideal flight director system (FDS) that
follows up the nominal trajectory (the extremal
no. 7) is developed. The linear feedback control
compensation is written as:

aFDS = aopt + kl(y - 70pt)+ k2 (h - hopt)’
TFDS = Topt + k3 (V - Vopt)’
k, =200, k, = —10000, k, = —100,

where ooy Is determined by following for the
extremal no. 7:

AE. SAGALAKOV, AS. FILATYEV

_ Vopt7}opt + 9 COS ¥y
- a 2 !
Cy pvopts

2m

opt

and Top=D(v,h) in according to assumptions of
section 4. So the control variables are:

Qeps, 0 < Appg < Ay

a= amax ’ aFDS > amax !

0,05 <0
TFDS ' 0 < TFDS < Tmax
T = Tmax ’TFDS > Tmax

0,T.ps <O

(12.1)

Simulation of maneuver aircraft with real
aerodynamic data and FDS (12.1) that follows
up the extremal no. 7 is made. In Fig. 9 the
comparison between the obtained trajectory and
the nominal trajectory is shown.

The difference between the obtained
trajectory and the nominal trajectory due to the

h, km "follow-up" trajectory
18 —---- nominal extremal

16

0""I""I""It’s

0 100 200 300
Fig. 9 Comparison of the nominal extremal

with follow-up trajectory of maneuver aircraft
with FDS

differences in physical models and constraints
does not lead to significant changes in range.
Mathematical simulation of aircraft motion with
FDS confirms increment in range to 18% in
comparison with the level flight. The program
(12.3) ensures the expected gain in range with
accuracy up to 1%.
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NEW PERIODIC SOLUTIONS IN THE AIRCRAFT MAXIMUM RANGE PROBLEM

13 Summary

The maximum range problem with the fixed
flight time and fuel consumption is considered.
Also the constraints to the altitude and velocity
are taking into account. This problem is mutual
to the minimum time-fixed fuel-fixed time
problem and the minimum rang-fixed time-fixed
fuel problem.

In framework of the pseudo-conservative
model the analytical solutions based on the
Pontryagin maximum principle are obtained. All
the local extremals that satisfy the necessary
optimality conditions are obtained. They have
the oscillatory character. The quantity of the
extremals depends on parameters of problem. It
is shown that the maximum range depends on
generalized parameter.

It is proved that the aerodynamic load

factor on the oscillatory trajectories: ‘ny‘ <2.

Analysis of realizability of the extremal on
the complete equation of maneuver aircraft
motion with the simplified flight director system
is provided. The flight director system follows
up the extremal that gives the gain 18% in
range.  The  simulation includes real
aerodynamic constraints on the angle of attack
and thrust which are the control variables. A
high accuracy in the range (up to 1%) of the
analytical solutions with numerical simulation is
shown.

For the maximum range problem with the
given flight time and mass fuel consumption the
numerical solutions are investigated by the
continuation method with the analytical
solutions as the first approximation.
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Appendix

Table 1. Dependence ofangle of attack from lift coefficient

0| 2 | 4|6 (81012 )|14|16 |18 | 20

0(0.17|0.35/0.52(0.7(0.86|0.99|1.09|1.16|1.21|1.28

Table 2 Dependence of thrust (kg) with afterburning from
Mach number and altitude

h, m

0 3000 | 6000 | 9000 |12000 | 15000

M

0.7/16800| 12890 | 9200 | 6135 | 3583 | 1769
0.9|19100| 14777 | 10900 | 7462 | 4783 | 2774
11|21400| 17078 | 13100 | 94000 | 5922 | 3466

1.3/21000| 19970 | 15500 | 11365 | 7804 | 5091
1.5/20760| 21477 | 18454 | 13504 | 9865 | 6911
1 7|21000| 21794 | 21000 | 15811 | 11859 | 8411
1.9[21116| 21838 | 22030 | 18116 | 13744 | 9565
b 1/21079| 21825 | 21938 | 20094 | 15385 | 10468
b 5/21000| 21798 | 21500 | 21380 | 16628 | 11247
b 5/20971| 21788 | 21330 | 21743 | 17379 | 12004
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