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Abstract  

The classical problem of maximization of the 

aircraft range is considered. The solution is 

based on using the Pontryagin maximum 

principle. New analytical solutions are obtained 

within a framework of the approximate pseudo-

conservative model of the motion. Realizability 

and efficiency of the obtained optimal 

oscillatory trajectories are shown in 

comparison with the traditional steady cruise 

flight. 

1 Introduction 

The maximum range problem is a classical 

problem in aircraft design. Traditionally, an 

airplane trajectory consists of three main 

segments: the climb, cruise flight at nearly 

constant altitude and descent to a landing point. 

The cruise is the longest and well-studied phase 

of flight. Therefore, the optimization problem 

for cruise flight has become a subject of 

authors’ interest.  

The aim of this paper is to present the 

obtained qualitative results of the problem study 

on the base of the Pontryagin maximum 

principle [1], including investigation of the 

optimal control law, especially alternative to the 

traditional steady solution, and its dependences 

on the functional, constraints and other 

parameters of the problem.  

The principal feature of this optimization 

problem is possible degeneration with 

increasing the flight duration as local changes of 

control variables (the angle of attack and thrust) 

have a weak influence on distant trajectory 

sections and the functional. 

Usually, some simplifications are 

introduced into equations of motion to 

overcome this difficulty. 

One of the most often used simplification 

for the cruise phase is the hypothesis of quasi-

stationarity [2]: 

0, 0   , (1.1) 

where  is the path angle and   is its time-

derivative. The range x of the level flight is 

defined by the Breguet formula [3]: 
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where K is the lift-to-drag ratio, v is the 

velocity, ce is the specific fuel mass 

consumption, m is the mass, sub-indexes “i” 

and “f” correspond to initial and final points. 

From (1.2) the well-known result follows about 

the optimality of the cruise flight at the 

maximum of expression 








ec

Kv
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The cruise minimum fuel consumption 

problem at constant altitude and fixed-time 

flight is considered in [4]. This is a mutual 

problem with relation to the maximum range 

problem at fixed mass consumption. The thrust 

is taken as a control variable. The problem is 

solved using the Pontryagin maximum 

principle. By calculation for this problem 

authors demonstrate the existence of a singular 

arc for the optimal thrust control. 

A qualitative analysis of the maximum 

range problem is performed in [5]. The problem 

is solved by the energy approach, where altitude 

and thrust are taken as control variables. There 

are considered two statements: for a given fuel 
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consumption with free flight time and for given 

flight time with free fuel consumption. 

Speyer seems to be the first [6] who 

doubted reasonably about optimality of the 

steady level flight in the considered problem 

and proved that it fails the optimality conditions 

in terms of classical calculus variations. It was 

also shown that the oscillatory trajectory can 

reduce the fuel consumption when compared 

with the level flight. 

The minimum fuel consumption problem 

of subsonic aircraft with constant mass by using 

an oscillatory trajectory is considered in [7]. 

The boundary conditions imply the equality of 

initial and final velocity and altitude. The 

problem is solved by selection of parameters of 

a sine law for altitude changes. On the basis of 

numeric calculations authors show the existence 

of such oscillatory trajectories that give the less 

fuel mass consumption as compared with the 

level flight. 

Shepard and Bilimoria [8] considered the 

problem of minimizing both the fuel mass 

consumption mf and time of flight  by 
introducing the penalty function: 

 
fm  .  

In the model the following simplifications, 

which correspond to the conditions of stationary 

flight, are made: the weight equals the lift and 

the drag equals the thrust. The velocity and 

altitude are taken as the control variables. The 

problem is solved by using the Pontryagin 

maximum principle. It is shown that increasing 

the penalty factor, i.e. a relative rise of a role 
of the time in comparison with the mass, the 

average velocity increases at the optimal 

trajectory, and the average altitude first 

increases and then decreases. 

In [9] authors minimize the fuel mass 

consumption and flight time for the functional 

that is similar to [8]: 

min
cos
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where ,  are actually the penalty factors. 

The initial and final velocity and altitude are 

considered as equal. Thrust and lift coefficient 

are taken as control variables. Aircraft is 

considered as a point with a constant mass. The 

problem is solved by using the Pontryagin 

maximum principle. By calculation for different 

values of ,  periodic solutions are shown 

with singular arc and bang-bang control. 

A more detailed overview of fundamental 

results on this topic can be found, for example, 

in [10], [11]. 

In contrast to the above mentioned works 

in this paper a priori assumption (1.1) of the 

quasi-stationary character of motion is not used 

and  and   may be arbitrary. The path angle 

  is considered as the control variable without 

any constraints. The analytical optimal solutions 

are obtained in the framework of the 

approximate pseudo-conservative motion 

model. It is shown that the solutions have 

oscillatory character that gives gain in the range 

in comparison with the level flight. Then, 

generalizations of the problem are considered 

with constraints on the velocity, altitude and 

fuel mass consumption. The optimization 

problem with the last constraint is solved 

numerically using the continuation method. 

Finally, the obtained approximate analytical 

optimal solutions are tested on the more 

comprehensive model of the motion for typical 

maneuverable aircraft. Their good agreement on 

the functional and efficiency of the oscillatory 

trajectories in comparison with the traditional 

level cruise flight are demonstrated. 

2 Problem statement 

Consider the aircraft maximum range problem. 

Movement of aircraft is considered in a flat 

homogeneous gravitational field as a mass 

point, which is described by following 

equations: 
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(2.1) 

where T is the thrust, qScD x  is the 

aerodynamic drag, qScL y  is the aerodynamic 

lift, g is the acceleration of gravity, h is the 

altitude, cx is the drag coefficient, cy is the lift 

coefficient, q is the dynamic pressure, S is the 
reference area.  

Let us use the dimensionless variables: 
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(2.2) 

where the index «dim» designates dimensional 

variables, g0 is the gravity acceleration at sea 

level, R is the average radius of the Earth, mi is 

the initial mass of aircraft.  

Then, equations (2.1) take the form: 
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(2.3) 

Due to the mass is slowly changing variable, we 

follow for the many previous works, including 

mentioned above, and neglect the influence of 

mass changes in the right sides of (2.3). 

Because   is the rapidly changing variable 

in comparison with v, h and x, it is convenient to 

take   as the control variable and to rule out 

the differential equation for  .  

Let us introduce new phase coordinates as 

follows: w is the pseudo-velocity,  is the 
pseudo-path angle, which are associated with 

the initial variables by the following 

relationships: 

.sinsin

,coscos

,





vw

vw

vw







 

 

Note that the pseudo-velocity can take negative 

values, and the pseudo-path angle may differ 

from   by 180.  

For brevity, below we omit the word 

"pseudo" in names of the new variables where it 

cannot lead to misunderstandings.  

The system (2.3) with the new variables 

takes the form: 

.cos

,sin

,sin







wx

wh

DTw












 (2.4) 

We use the following boundary conditions. 

At the initial time ti=0: 

      .0,,  iiiii txhthwtw  (2.5) 

At the final time tf: 

    ififf hth,wtw,fixt  . (2.6) 

Equality of v and h at the beginning (2.5) 

and end (2.6) of the trajectory does not matter, 

but in this work it allows to consider the level 

flight as one of the possible solution and 

compare it with the optimal solutions obtained. 

The performance criterion is the range: 

 
max)(  ftxΦ . (2.7) 

3 Optimality conditions  

According to the maximum principle [1] the 

optimal control is determined from the 

condition: 
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  Htopt maxarg , (3.1) 

where fλTH   is the Hamiltonian of (2.4), f  
is the vector of the right sides of equations (2.4), 

 xhw

T  ,,λ  is the vector of conjugate 

variables corresponding to the variables of the 

phase vector x = {w, h, x} and satisfies the 

equation: 

T
H


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 . (3.2) 

Taking into account (2.4) and (3.2) we obtain: 
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(3.3) 

The transversality conditions are [12]: 

  0
i

f

t

t
tH xλ , (3.4) 

where variations are taken on admissible 

variety. For (3.3), (3.4) the transversality 

conditions are reduced to one condition on the 

right end of the trajectory: 

  1fx t . (3.5) 

To determine the optimal control opt  let 

us select a part H of the Hamiltonian that is 
clearly dependent on the control: 

 cossin)( wwH wh  . (3.6) 

From (3.1) and (3.6) we obtain the optimal 

control low: 

2222
cos,sin

wA

w

wA

A
optopt





  , (3.7) 

where whwA   . 

Five phase conditions (2.5) and (2.6) at the 

boundary points and one transversality 

condition (3.5) enclose boundary value problem 

for the system of six differential equations (2.4) 

and (3.3). Thus, the Pontryagin maximum 

principle allows to reduce the original 

optimiztion problem in the functional space to 

the boundary value problem: it is required to 

find three values w , 
x  

h  on the left end, so 

to satisfy three conditions (2.6) and (3.5) on the 

right end of the trajectory. 

The phase system (2.4) is autonomous, so 

the first integral takes place at the optimal 

control: 

.constH  
opt

 
(3.8) 

Note that the same integral holds at a constant 

control: 

. constH const 

 
(3.9) 

The property (3.9), as was shown in [12], is 

useful for verification of a mathematical model 

of an optimization software package (more 

details on this subject will be discussed below in 

Section 8). 

4 Analytical solutions for the pseudo-

conservative model  

Let us make the following assumptions:  

• the thrust is equal to the aerodynamic 

drag,  

• on the considered time interval the 

change of aircraft mass can be neglected 

to the structure of the optimal control, 

• the path angle as a fast variable is taken 

as the control. 

The assumptions are quite appropriate for 

studying the motion of aircraft with high 

aerodynamic efficiency. Moreover, the first two 

assumptions are consistent with the 

quasistationary conditions, and the third 

assumption significantly broadens the class of 

acceptable trajectories in comparison with 

quasistationary trajectories because it doesn’t 

confine the path angle. 

After these simplifications, the equations 

(2.4) take the form: 
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The Hamiltonian for (4.1) is: 
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 cossinsin wwH xhw  . (4.2) 

According to (3.2) (4.2) the conjugate 

system is: 
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(4.3) 

From (4.3) we obtain the following 

solutions: 

consth  , constx  , (4.4) 

and due to the transversality condition (3.5): 

1x . (4.5) 

According to (3.1): 
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(4.6) 

Substituting (4.6) in (4.2) and taking into 

account (3.8), we obtain for the optimal 

trajectory: 

0)( 22  constwwH wh  . (4.7) 

Substituting (4.6) in (4.3) and (4.1) and taking 

into account (4.7), we obtain: 
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(4.8) 

Differentiating the second equation in (4.8) and 

substituting it into the first equation of (4.8) 

with (4.4) and (4.7), it results in: 

0
H

w
w . (4.9) 

The equation (4.9) has the solution: 

   ,cossin 21 H
tC

H
tCw   

(4.10) 

where the constants 21, CC  are determined from 

the boundary conditions (2.5) and (2.6). 

Substituting (4.10) into (4.8), we obtain: 

   
H

tC
H

tCw sincos 21  . (4.11) 

The optimal control (4.6) with (4.10) and 

(4.11) takes the form: 
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The Hamiltonian by substituting (4.7) into 

(4.10) - (4.12) takes the form: 

constCCH  2

2

2

1 . (4.13) 

For C1, C2 we have the conditions: 
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Consider the case n
H

t f 2 , where n is 

integer. Then, from (4.13) and (4.14): 

.22

1 iwHC 
 (4.15) 

If n
H

t f 2 , from (4.14): 
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 (4.16) 

Substituting  cos,sin  from (4.12) into 

the equality: 

 
dt

d

dt

d 
 cossin  , 

 

and taking the derivative of sin it is obtained: 

Hdt

d 1



. (14.7) 

So the optimal pseudo-path angle has linear 

dependence from time: 
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t
H

i

1
 . (14.8) 

5 Analysis of optimal oscillatory solutions  

According to (4.10) the optimal trajectories are 

periodic oscillatory. The local extremals 

(satisfying necessary optimality conditions of 

the maximum principle) are not unique and their 

quantity is determined by the quantity of 

solutions of following equations for H, C1: 
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(5.1) 

A part of the solutions (5.1) is obvious, they are 

written in the form: 

n
tH f

2


, (5.2) 

where n is integer. The quantity of solutions 

with (5.1) and (5.2): 
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where [f] is the nearest to f integer not 

exceeding f. 

The other solutions are obtain from: 
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(5.4) 

Equation (5.4) has the following geometric 

interpretation (Fig. 1). The quantity of 

intersections of the line xwy i  with the 

function  xty f5.0cos , where 
H

x 1 , 

corresponds to the quantity of solutions of (5.4). 

Angle of the slope is directly proportional to wi 

and when it increases the quantity of solutions 

decreases. The oscillation frequency is directly 

proportional to tf and when it increases the 

quantity of solutions increases too. 

The (5.1) shows that the local extremals 

depend on wi and time of flight =tf-ti. The 

relative change of the functional 

hor

horopt
_

x

xx
x


 , where xhor=wi, is determined 

by a change of the generalized parameter 
iw


. 

Fig. 2 shows the dependencies 









iw
x

_
 for 

different extremals. As can be seen from Fig. 2, 

x
_

 increases with increasing  and with 
decreasing wi. In the considered range of the 

parameter 
iw


 the first extremal always has the 

iw


 

x

L
 

Fig. 2 Dependence of relative increment of range 
from generalized parameter. 
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Fig. 1 Geometric interpretation of the number of 

solutions 
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gain in the functional as compared with the 

level flight.  

The solutions are demonstrated on the 

example with following parameter values: 

.800,240 s
s

mwi    
(5.5) 

As it can be seen from Fig. 3, the optimal 

periodic trajectories have almost five-fold flight 

range advantage in comparison with the level 

cruise. Total in case (5.5), there are 16 local 

extremals. Seven of them have the advantage of 

the functional under the level flight from 496% 

(the extremal no. 1) to 18% (no. 7). These 

trajectories are characterized by changes of 

altitude from 364 km to 7 km (Fig. 4), 

indicating possible areas of their application: 

from space and hypersonic vehicles to airplanes. 

It is obvious that the global extremum delivers 

the extremal no. 1 only.  

6. Analytical solution with constraints of 

velocity and altitude  

Consider the maximum range problem with 

constraint on state variables w and h in the 

pseudo-conservative statement.  

The equations of motion coincide with 

(4.1). We assume the boundary conditions to be 

(2.5) and (2.6). The control variable is the path 

angle . 
Firstly consider the constraint on w: 

conww  . (6.1) 

On the constraint arc: 
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S
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
 (6.2) 

According to (6.2) the Hamiltonian has the 

form [14]: 

,sincossinsin   wwH xhw

 
(6.3) 

where µ=0 beyond the constraint arc. 

At the point of entry to the constraint arc t1 

the next condition for the conjugate system and 

Hamiltonian must be satisfied: 
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(6.4) 

From (4.1) and (6.2) we have the following 

solution on the constraint arc: 

.

,0

conww 


 

(6.5) 

From (6.3) - (6.5) we obtain: 

h, km 

extremal number 

Fig. 4 The altitude change for different extremals 

x  

extremal number 

Fig. 3 The relative increment of the range for different 
extremals 
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    conwHtHtH  

11 . (6.6) 

The solution before the constraint arc is 

obtained from (3.2), (4.1) and (6.3): 
















concon w

tC
w

tCw cossin 21
. (6.7) 

From (2.5) and (6.5) it is followed: 

.

,tan

,arccos

2

1
1

1

i

con

i

con

i
con

wC

w

t
wC

w

w
wt























 
(6.8) 

The solution after the constraint arc is 

obtained from (3.2), (4.1) and (6.3): 
















concon w

tC
w

tCw cossin 43
. (6.9) 

From (2.6) and (6.5) it is resulted in: 

.sin

,cos

,arccos

2
3

2
4

2































con

con

con

con

con

i
conf

w

t
wC

w

t
wC

w

w
wtt

 
(6.10) 

Now, consider the constraint on h: 

conhh  . (6.11) 

On the constraint arc: 

.0sin

,0

2

2





wS

hhS con


 (6.12) 

The Hamiltonian has the form: 

,cossin)(  wwwH xhw   (6.13) 

where µ=0 beyond the constraint arc. 

At the point of entry to the constraint arc t1 

the next condition for the conjugate system and 

the Hamiltonian must be satisfied: 

).()(

),()(

,)()(

),()(

11

11

11

11

















tHtH

tt

tt

tt

xx

hh

ww







 
(6.14) 

From (4.1) and (6.12) we have the 

following solution on the constraint arc: 

 

,

,2

,0

2

con

iconih

hh

whhww







 (6.15) 

where wh is the velocity at the constraint arc. 

From (6.13), (6.14) and (6.15) we obtain: 

    hwHtHtH  

11 . (6.16) 

The solution before the constraint arc is 

followed from (3.2), (4.1) and (6.13): 

.
22

,cossin

22

21

w
h

w
h

w
tC

w
tCw

i
i

hh


















 

(6.17) 

From (2.5) and (6.15) we obtain: 

.

,tan

,arccos

2

1
1

1

i

h

i

h

i
h

wC

w

t
wC

w

w
wt























 
(6.18) 

The solution after the constraint arc is 

obtained from (3.2), (4.1) and (6.15): 

.
22

,cossin

22

43

w
h

w
h

w
tC

w
tCw

i
i

hh


















 

(6.19) 

From (2.6) and (6.15) it is resulted in: 
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.sin

,cos

,arccos

2
3

2
4

2































h

h

h

h

h

i
hf

w

t
wC

w

t
wC

w

w
wtt

 
(6.20) 

7. Statement of the problem with constraint 

on fuel mass consumption 

Consider the maximum range problem in 

pseudo-conservative statement (4.1) taking into 

account the fuel mass constraint:  

mmm fi  ,  

where m is the given mass of fuel consumed. 

The equations of motion take the form: 

.

,cos

,sin

,sin

Tcm

wx

wh

w

e





















 (7.1) 

According to the assumption T=D the 

equation for the mass in (7.1) takes the form: 

2wBDcm e  , (7.2) 

where SccB xe5.0 . 

The path angle  is the control variable.  
We use the following boundary conditions. 

At the initial time ti: 

        iiiiiii mtmtxhthwtw  ,0,, . (7.3) 

At the final time tf: 

      ffififf mtmhthwtwfixt  ,,, . (7.4) 

The functional is the range: 

 
max)(  ftx . (7.5) 

Note that the problem covers a wide class 

of mutual problems. These include: 

 maximizing the range with a given flight 
time and a given mass of fuel,  

 minimization of flight time with a given 
range and a given mass of fuel,  

 minimization the fuel consumption with 

a given range and a given flight time. 

8 Accuracy analysis 

One of the important advantages of the 

Pontryagin maximum principle is a capability to 

obtain the objective information about 

correctness of the various parts of the program 

and the accuracy of calculations. Objective 

ways to diagnose the correct operation of the 

basic blocks of the program responsible for the 

formation of the phase and conjugate systems of 

equations, the optimal control in the indirect 

optimization problem are justified in [13]. Using 

these procedures can not only reliably diagnose 

the presence of analytical mistakes or 

programming errors, but also localize them in 

the program. 

Following [13] the integration on a 

constant control allows to check the correctness 

of programming the conjugate system. In the 

numerical integration the Hamiltonian 

variations along the trajectory at a constant 

control should be determined only by the 

integration step, i.e. the method error of 

numerical integration. In this paper the Runge-

Kutta integration method of the 4th order is 

used. It is characterized by a decrease of one or 

two orders of magnitude errors keeping the 

integral (3.9) with decreasing integration step t 

twice [13] (see Table. 1). (This is true only if t 

is not very small and the method error 

dominates the rounding error [15]). 

At the optimal control the Hamiltonian has 

also to be constant (see (3.9)). A rational choice 

of the integration step for phase and conjugation 

Table 1 Hamiltonian change vs integration step under 
constant control 

t 0.000125 0.00025 0.0005 0.001 

H 2.94E-13 2.42E-12 1.95E-11 1.58E-10 

 

Table 2 Hamiltonian change vs integration step under 
optimal control 

t 0.000125 0.00025 0.0005 0.001 

H 7.19E-8 2.89E-7 1.19E-6 6.18E-6 
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systems of equations can be based on the 

following condition, which uses the physical 

meaning of conjugate variables as influence 

functions of phase variables on the functional 

and the Hamiltonian meaning as the influence 

function of time [13]: 

ΦΦt H , (8.1) 

where H  is the maximum H-change at the 
optimal trajectory, caused by errors of 

integration with step t,   is the given 
allowable error of the calculation of the 

maximum flight range. If there is no mistakes in 

account of optimality conditions the integration 

step reduction in two times follows to the error 

reduction of H in an order (see Table. 2). 

9 Numerical procedure of BVP solution 

Technique of indirect optimization based on the 

Pontryagin maximum principle is implemented 

in the program complex "ASTER" [16]. The 

complex "ASTER" includes: 

• The modified Newton method for 

solving the multipoint boundary value 

problem. It enables a high-speed 

convergence of the iterative process of 

solving the boundary value problem in a 

neighborhood of the extremum.  

• The continuation method and the method 

of local extremals selection, which 

regularizes procedure to obtain the 

optimal solution far from a known 

solution. 

In this paper, the initial solution for the 

continuation method for solving the problem 

(7.1) – (7.4) was the analytical solution obtained 

in the framework of the pseudo-conservative 

statement described in Section 4. In this case, 

the homotopy parameter χ = [0, 1] is entered as: 

,)1( ab mmm    
(9.1) 

where m is the current mass of consumed fuel, 

mb is the final mass of consumed fuel, ma is 
the mass of consumed fuel obtained by the 

analytical solution. In Fig. 5 trajectories with 

different χ are shown.  

In Fig. 6 the quantity NJacobi of iterations 

with calculations of the Jacobi matrix versus the 

homotopy parameter  is shown for the global 

extremal no. 1. 

Note, the analytical solution for this 

extremal has a big altitude amplitude (Fig. 4), 

therefore the consumed mass for initial (=0) 

and final (=1) variants are differed in five 

orders. Nevertheless, the complex “ASTER” 

provided a regular convergence for solution of 

this problem. 

 

Fig. 5 Solutions for different homotopy 

parameter 

t 

h, km 

 

NJacobi 

Fig. 6 The number of iteration NJacobi vs 

different homotopy parameter  
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10 Analysis of extremals with the fuel mass 

consumption constraint  

The computation of optimal trajectories with 

constraints on the flight time and fuel mass 

consumption was provided according to the 

statement in Section 7. The Pontryagin 

maximum principle lets to reduce the 

optimization problem to the two-parametric 

boundary value problem. The last is solved by 

the program complex “ASTER”.  

The obtained approximate optimal solutions 

are compared with the level cruise in Fig. 7. The 

right parts of optimal dependencies 

),(max fixmx f   related to the cross points are 

displayed lower than the line of the level flight 

due to different flight time on compared curves. 

The left parts of optimal dependencies 

),(max fixmx f    are higher than the line of 

the level flight. In the domain above the line for 

the level flight the maximal range (at the 

optimal trajectory) is more then the range of the 

level flight at the same mass consumption. The 

example of the optimal trajectory, which 

parameters correspond to the pink cross in 

Fig. 7, is shown in Fig. 8.  

The envelope of the family of functions 

),(max fixmx f    for a -interval is the 

dependence of the maximal range on the fuel 

mass consumption with free flight duration. 

11 Analysis of aerodynamic loads at the 

extremals  

Let us return to the maximum range problem 

with the fixed flight time (see Section 4). It is 

shown in Fig. 4 that the oscillatory trajectories 

have the wide diapason of the altitude change. 

Since the constraints to the aerodynamic load 

factor were not considered it is necessary to 

ascertain that aerodynamic load factor is in 

reasonable limits. Using the analytical solutions 

(4.10) and (4.12) let us estimate the 

aerodynamic load factor at the extremal 

trajectories. 

The normal aerodynamic load factor: 

m

qSc
n

y

y  . (11.1) 

From another side, according to Eq. (2.3): 

 cos wny , (11.2) 

where (see (4.17)): 

H

1
 . (11.3) 

Substituting (4.12) and (11.3) to (11.2) it is 

obtained: 

h, km 

Fig. 8 The optimal trajectory with the range 
advantage to the level flight  

t 

Fig. 7 Comparison of the optimal solutions with the 
level flight 

fx  

m  
0 0.0002 0.0004 0.0006 0.0008 0.001

0

0.01

0.02

0.03

the level cruise flight

=0.4

0.3

0.2
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cos2yn . (11.4) 

So the aerodynamic load factor at the optimal 
trajectories from (11.4) is: 

2yn .  

Note that this result (for the used model of 

motion) is independent of aircraft 

characteristics.  

12 Demonstration of advantage of oscillatory 

trajectories 

Let us show advantage of oscillatory 

trajectories. Consider the local extremal no. 7 

from the Section 5 in detail. The realizability of 

this trajectory is verified by numerical modeling 

of flight with more complete equations of 

motion (2.1) with the control that follows up the 

extremal. Although it is not the global optimal 

solution, but the gain in range in comparison 

with the level flight is significant: 18%. It has 

oscillatory character with altitude change of 

14 km. It is achievable for maneuver aircrafts. 

For example, consider aircraft which 

characteristics are given in the Appendix. The 

follow initial values are used: 

.m12800,m240  ii hsv  
 

The angle of attack and thrust are the 

control: 

 

.200

,,0 max







hvTT  
 

The ideal flight director system (FDS) that 

follows up the nominal trajectory (the extremal 

no. 7) is developed. The linear feedback control 

compensation is written as: 

   
 

,100,10000,200

,

,

321

3

21







kkk

vvkTT

hhkk

optoptFDS

optoptoptFDS 

 
 

where opt  is determined by following for the 

extremal no. 7: 

m

Svc

gv

opty

optoptopt

opt

2

cos
2










, 

 

and Topt=D(v,h) in according to assumptions of 

section 4. So the control variables are: 

.

0,0

,

0,

,

0,0

,

0

maxmax

max

maxmax

max,

































FDS

FDS

FDSFDS

FDS

FDS

FDSFDS

T

TTT

TTT

T









 
(12.1) 

Simulation of maneuver aircraft with real 

aerodynamic data and FDS (12.1) that follows 

up the extremal no. 7 is made. In Fig. 9 the 

comparison between the obtained trajectory and 

the nominal trajectory is shown.  

The difference between the obtained 

trajectory and the nominal trajectory due to the 

differences in physical models and constraints 

does not lead to significant changes in range. 

Mathematical simulation of aircraft motion with 

FDS confirms increment in range to 18% in 

comparison with the level flight. The program 

(12.3) ensures the expected gain in range with 

accuracy up to 1%.  

 

Fig. 9 Comparison of the nominal extremal 

with follow-up trajectory of maneuver aircraft 

with FDS  

t, s 
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13 Summary 

The maximum range problem with the fixed 

flight time and fuel consumption is considered. 

Also the constraints to the altitude and velocity 

are taking into account. This problem is mutual 

to the minimum time-fixed fuel-fixed time 

problem and the minimum rang-fixed time-fixed 

fuel problem. 

In framework of the pseudo-conservative 

model the analytical solutions based on the 

Pontryagin maximum principle are obtained. All 

the local extremals that satisfy the necessary 

optimality conditions are obtained. They have 

the oscillatory character. The quantity of the 

extremals depends on parameters of problem. It 

is shown that the maximum range depends on 

generalized parameter. 

It is proved that the aerodynamic load 

factor on the oscillatory trajectories: 2yn . 

Analysis of realizability of the extremal on 

the complete equation of maneuver aircraft 

motion with the simplified flight director system 

is provided. The flight director system follows 

up the extremal that gives the gain 18% in 

range. The simulation includes real 

aerodynamic constraints on the angle of attack 

and thrust which are the control variables. A 

high accuracy in the range (up to 1%) of the 

analytical solutions with numerical simulation is 

shown. 

For the maximum range problem with the 

given flight time and mass fuel consumption the 

numerical solutions are investigated by the 

continuation method with the analytical 

solutions as the first approximation. 
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Appendix 

Table 1. Dependence of angle of attack from lift coefficient 

 0 2 4 6 8 10 12 14 16 18 20 

сy 0 0.17 0.35 0.52 0.7 0.86 0.99 1.09 1.16 1.21 1.28 

 
 Table 2 Dependence of thrust (kg) with afterburning from 

Mach number and altitude 
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М 
h, m 

0 3000 6000 9000 12000 15000 

0.7 16800 12890 9200 6135 3583 1769 

0.9 19100 14777 10900 7462 4783 2774 

1.1 21400 17078 13100 94000 5922 3466 

1.3 21000 19970 15500 11365 7804 5091 

1.5 20760 21477 18454 13504 9865 6911 

1.7 21000 21794 21000 15811 11859 8411 

1.9 21116 21838 22030 18116 13744 9565 

2.1 21079 21825 21938 20094 15385 10468 

2.3 21000 21798 21500 21380 16628 11247 

2.5 20971 21788 21330 21743 17379 12004 


