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Abstract

Nowadays flight load exceedance monitoring is
an important task to the aircraft manufacturer as
well as the operator. The estimation of flight
loads is required during development and oper-
ation of an aircraft. The requirements are usu-
ally different for e.g. calculation of design loads
for certification and operational loads monitor-
ing of stress and fatigue. The ability to deter-
mine aircraft operational loads (more) precisely
may reduce the time in maintenance and is an en-
abler for e.g. loads/fatigue monitoring at operator
level.

In this paper the system identification method
of local model networks is applied to the field of
flight loads estimation targeting on-board aircraft
systems. The design and development process of
a flight loads estimation algorithm based on de-
sign and flight test data is presented.

1 Introduction

A committee of the Aerospace Industries Asso-
ciation (AIA) and the Air Transport Association
(ATA) evaluated existing special inspection pro-
cedures for high load events like severe turbu-
lence encounter or extreme manoeuvreing [1].
Instructions for such events are typically spec-
ified in aircraft maintenance manuals (to detect
aircraft damage following an in-service event)
and are typically referred to as “Unscheduled
Maintenance” or “Special Inspections”. The ad-
dressed safety recommendations by the National

Transportation Safety Board (NTSB) raise con-
cerns that structural damage due to high load
events may not be found before returning the air-
craft to service.

As a result, the committee has concluded that
there are areas where improvements can be im-
plemented. In particular, the recommendations
include “the introduction of additional objective
criteria using flight data to assist in the evalua-
tion of events” and “the development of refined
algorithms by the manufacturer that use multiple
data parameters to arrive at improved evaluations
of the severity of the loads actually experienced,
and corresponding required actions”.

An estimation of the loads acting on the air-
craft during normal and abnormal operation is
necessary. Targeting on-board systems several
indirect methods with their own advantages and
disadvantages exist. As the resources are gener-
ally restricted on-board an aircraft, efficient algo-
rithms with a small resource footprint are desired.

Existing methods presented in the first sec-
tion of this paper show a respectable perfor-
mance. Methods like artificial neural networks
(ANN’s) provide a good compromise between
estimation quality and resource consumption.
Their memory consumption and computation
time at run-time are very low, making a realtime-
application in an aircraft during flight possible
and feasible. Unfortunately such methods often
lack aspects relevant for certification like trans-
parency of the models.

Within [6] ANN’s have been compared to
a novel approach using local model networks
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(LMN). Within the focus of this paper the ap-
proach based on local model networks is further
investigated. Local model networks can be seen
as a bridge between classical white-box methods
and black-box methods like ANN’s. The concept
of local model networks will be explained in this
publication and applied to estimating load quan-
tities with the focus on events where high flight
loads occur.

After a section dedicated to provide the prob-
lem description, special attention is paid to the
data selection and the training process to obtain
the models. While in [6] only flight test data has
been used, within this paper a 2-step-approach
will be presented. At first, output data of de-
sign calculations is used to create a sophisticated
database for training and validation. The data
selection depends on the addressed load quan-
tity, i.e. the load component at a structural air-
craft part. Special care must be taken to address
the whole flight envelope, for example depending
on altitude and true air speed which is especially
only available in the data of design calculations.

The modelling or training process to ob-
tain the models to estimate flight loads is ex-
plained. This includes a description of problem-
specific adaptations and parametrisation to the lo-
cal model network approach. The character of
the models is explained and it is shown, how a-
priori knowledge can be applied to achieve bet-
ter performance. An analysis of the structure and
model parameters allows for an estimation of the
robustness and quality of the model. In a second
step the models are tuned using flight test data as
it becomes available. This accounts for a typical
aircraft development process, where load estima-
tors are developed even before flight test data is
available.

The results of applying the methodology to
derive models for flight load estimation are pre-
sented. A comparison of the models created with
data of design calculations and data from flight
tests shows the quality of the estimation and pro-
vides an example, of how flight test data can be
used for to update the existing models to im-
prove the performance for an application in an
real aircraft with real sensor input. The results are
quantified with respect to the aircraft’s limit loads

(LL) and information is provided about what es-
timation quality can be achieved using the pro-
posed method.

A summary concludes the results and pro-
vides an outlook for future research and applica-
tion of the methodology in real-world scenarios
and processes.

2 Existing methods

Flight loads can be measured directly by instru-
menting an aircraft with strain gauges at ded-
icated points of the aircraft structure. While
for test aircrafts this is the case, such measure-
ments are not available on standard aircraft due
to weight, high maintenance effort and costs.
Therefore, indirect approaches are used instead.
In this section a short overview about existing in-
direct methods to estimate flight loads with rele-
vance to this paper is given.

In [7] a prototype of an indirect loads esti-
mation at the wing butt line of a Grumman F-
14B based on neural networks is presented. The
model is based on measurement data obtained
from an flight test program with standard struc-
tural manoeuvres and typical fleet operations.
Several variables were monitored during flight,
including the vertical load factor, Mach number,
altitude, wingsweep angle, roll rate, angle of at-
tack and the strain at butt line 10 of the aircraft.
The results were evaluated by comparing the cor-
relation coefficients between the predicted and
measured strains. The conclusion is made that
the neural network approach offers a viable alter-
native to standard regression analysis for predict-
ing strains on airframes.

In [10] neural networks were used to predict
strains resulting from manoeuvre loads in the em-
pennage structure of a Cessna 172P. The purpose
was to develop a methodology for the prediction
of strains in the tail section of a general avia-
tion aircraft that would not require installation of
strain gauges. Linear accelerometer, angular ac-
celerometer, rate gyro, and strain gauge signals
were collected in flight, filtered and used to train
the neural networks. This methodology has been
improved in [11] based on manoeuvre recogni-
tion using neural networks with the focus on both
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cost saving and improving the horizontal tail pre-
dictions.

In [2] neural networks were used to model
wing bending-moment loads, torsion loads, and
control surface hinge-moments of the Active
Aeroelastic Wing aircraft. Accurate loads models
are required for the development of control laws
designed to increase roll performance through
wing twist while not exceeding load limits. In-
puts to the model include aircraft rates, accelera-
tions, and control surface positions. Neural net-
works were chosen because they can account for
uncharacterised nonlinear effects while retaining
the capability to generalise. Flight data for rolls,
loaded reversals, wind-up-turns, and individual
control surface doublets was used for load ex-
citation. Results are presented for models of
four wing loads and four control surface hinge
moments. However, in [5] it is mentioned that
the method based on neural networks was aban-
doned, because the high extrapolation required
could not be easily analysed for uncertainty.

In [15] the development of a parametric-
based indirect aircraft structural usage monitor-
ing system using artificial neural networks is
described. Flight data, obtained during strain-
based operational loads measurement campaigns
have been used to predict strains or stresses at
key structural locations for several military air-
craft types. It is concluded that this technol-
ogy could provide the basis for accurate, cost-
effective structural usage monitoring systems.
Consequently in [16] and [17] a structural health
and usage neural network (SHAUNN) monitor-
ing system is proposed to predict stresses, strains,
loads, or fatigue damage from flight parameters.

Another general overview of different publi-
cations in this field is also presented in [18].

Common to all the neural network based
methods is while providing models with a good
accuracy their lack of a robust extrapolation be-
haviour. In [6] it could be shown that local
model networks are more robust due to their lo-
cal linear models and a controllable extrapola-
tion behaviour. It was summarised that local
model networks clearly outperform neural net-
works. Therefore, within this paper local model
networks are the preferred indirect approach and

further developed.

3 Local model networks

The local model network (LMN) approach has
been described by [12], [13], [14] and others. It
makes use of a decomposition of the input-space
to allow a specific modelling of different regions
in the input-space, the local models or subspaces.
While the models are obtained in an iterative,
self-organising process to cluster the input space
the model structure allows for physical interpre-
tation and specific adaptation.

While different clustering algorithms exist
[3], an axis-orthogonal decomposition of the in-
put space is used in this paper. The local mod-
els are represented by rectangles, or, for problems
of high dimensionality, by hyper-rectangles. The
behaviour of the system is modelled locally by
considering only the training-data samples which
lie within a specific subspace.

For a specific subspace i out of m subspaces,
a locally valid linear model is determined by a
linear, multivariate least squares approximation.
The vector of regression coefficients w is deter-
mined by a least squares approach from the ma-
trix of input parameters U and the vector of out-
put parameters y.

w = (UUT )−1UT y . (1)

For a system of k dimensions and an input vector
u, the linear model yi is

yi(u) = w0 +
k

∑
j=1

w j ·u j . (2)

Due to the linear approximation, the locally de-
termined linear model yi will extrapolate for
input-samples beyond the subspace used to deter-
mine the model. The activity of the linear model
is controlled by a weighting-function which is de-
fined by normalised, specific Gaussians for each
dimension. The center c of each Gaussian lies in
the center of the local model. The standard devi-
ation σ is chosen to cover the range of the sub-
space in the respective dimension, while asymp-
totically becoming zero outside of the subspace.
For an input u of a system, the combined activity
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of all Gaussians for the current model i is deter-
mined by the local activation µi as

µi(u) = exp
(
− 1

2

k

∑
j=1

(u j− ci, j

σi, j

)2)
. (3)

The normalised weighting-function Φi is deter-
mined as

Φi(u) =
µi(u)

∑
m
j=1 µ j(u)

. (4)

The equation for the local model network follows
to

ŷ(u) =
m

∑
i=1

(
Φi(u)[wi,0 +

k

∑
j=1

wi, j ·ui, j]
)
. (5)

The structure of the resulting model is depicted
in figure 1. Due to the overlapping character of
the Gaussians, the predictions made by the dif-
ferent locally accurate models are superimposed
in boundary regions leading to a steady transition
between adjacent local models. As stated in [9]
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Fig. 1 Structure of a local model network

the physical interpretability of local model net-
works is a clear advantage over classical ANN’s.
In each local model the effect of each input pa-
rameter is interpretable.

The input-space decomposition is an iterative
process leading to a steadily increased accuracy
of the local model network. The decomposition
is based on an initial global model by bisect-
ing the input-space orthogonally to each input di-
mension, resulting in two new local models per

input dimension. The bisection, or "cut" which
leads to the largest reduction in the global predic-
tion error is chosen. The decomposition stops at
either a certain prediction error or a certain max-
imum number of local models.

4 Problem definition

The structural loads occurring during flight at the
root of the vertical tail plane (VTP) of a trans-
port aircraft are modelled using the LMN ap-
proach. The flight loads generally considered are
the bending moment Mx, the torsional moment
Mz and the lateral force Fy (see figure 2). These
loads, with special attention drawn to high load
occurrences, shall be modelled using aircraft sys-
tem parameters available during flight, not requir-
ing any additional sensors. As the lateral force

VTP

Fin

Rudder

Fig. 2 Load components at the root of a VTP

features a high correlation with the bending mo-
ment, it has been excluded for this paper as it
does not give a significant gain in understand-
ing the aspects of the considered modelling ap-
proaches.

The structural loads arise as a result of ex-
ternal loads caused by the interaction of the air-
craft with the environment. They are classed by
their dynamic character into steady loads as in
steady flight conditions and incremental loads,
induced by manoeuvres or inhomogeneous flow
conditions caused by gusts. At any position of
the structure the local structural load Floc in flight
is the result of the superimposed external loads,
namely aerodynamic loads FAero, propulsional
loads FProp, inertial loads FInert and gravitational
loads FGrav:

Floc = f (FAero +FProp +FInert +FGrav) . (6)
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In this paper the loads to be determined are inter-
nal structural loads, assuming the knowledge of
the external loads as well as a mathematical rep-
resentation of the mapping function represented
by the aircraft so that aircraft system parameters
represent the occurring external loads. The task is
to identify the character of the mapping function
as a mathematical formulation. The mathemati-
cal formulation is derived by applying the LMN
approach and has been introduced in [6].

4.1 Data selection

For methods using training data like artificial
neural networks and local model networks the
selection of the data for training and validation
is vital to achieve a good model accuracy. Ide-
ally the input range is evenly sampled as within
regions where less or no data is available the
models will interpolate or extrapolate which can
cause problems [6]. With flight test data this is
not the case so special attention has to be paid to
prepare good training data.

A data base containing the aircraft system pa-
rameters from a specific transport aircraft is used.
It was gathered through structural design cal-
culations and in different flight test campaigns.
For the flight test campaigns, the aircraft was
equipped with additional sensors to determine the
structural loads at specific stations of the vertical
tail plane for the reference.

The synchronised data base covers about
4400 of so-called load cases of design calcula-
tions [19] and 6 hours of flight test data for dif-
ferent flight conditions, the latter only within a
safe flight envelope [4] and not distributed homo-
geneously. Only the data of normal aircraft flight
operations will be considered for modelling. Ma-
noeuvres used to stimulate failure cases like one
engine out events are not considered. The explicit
knowledge about the covered manoeuvres allows
to select data with similar manoeuvres for train-
ing and validation. Figure 3 shows such classi-
fication. The manoeuvres of the design calcula-
tions are grouped and represent a good coverage
of the speed/altitude range.

The advantage of design calculations over
flight test data is that they account for extreme
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Fig. 3 Altitude/speed of design calculations

load cases. In real flight tests, flight loads are
usually below 80% limit load. Models based only
on flight test data would extrapolate at high loads
which usually leads to less accuracy. In [6] only
flight test data was used to create flight load mod-
els which caused an uncertainty for high loads
as such were not sufficiently present within the
data. To cope with such, a 2-step approach is
proposed hereby. First, data from design calcu-
lations is used to create and train the models fo-
cussing on high loads. Second, flight test data is
used to refine the models. 1

All samples within both data bases are copied
and mirrored in lateral direction as the aircraft
can be assumed as being symmetrical. There-
fore the lateral symmetry of the aircraft can be
taken into account to extend the coverage of
the data bases. Only parameters with lateral
character such as the bending moment, lateral
acceleration, sideslip angle, rudder-angle, roll
rate/acceleration and yaw rate/acceleration are
copied with reverted signs, the other parameters
(like the angle of attack, dynamic pressure and
mass) are copied without manipulation similar to
[2] and [6].

The data selection out of the data of the de-
sign calculations makes use of a-priory knowl-
edge as following: For each characteristic flight
condition the data of the related manoeuvre is
removed completely and added to the validation

1The first step can also be seen as a model reduction.
The data from the design calculations it based on several
complex non-realtime models using large parameter data
bases [19].
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data to ensure an independency between training-
and validation data. With the remaining data, to
focus on high loads, data below a certain limit
load threshold is greatly reduced. In [6] a method
was used that completely removed data below a
certain threshold with respect to the 1D limit load
for each load component (the maximum allow-
able load).

This approach has been improved by taking
correlated 2D load envelopes for combined loads
into account. The occurrence of load combi-
nations can stress structural components signifi-
cantly more. An example for this is the structural
load on an aircraft wing spar generated by shear
and torsion. The 2D load envelopes are available
throughout the aircraft structural design and de-
scribe the relation between two load components
such as bending (MX ) and torsional moment (MZ)
by means of the maximum allowable loads as de-
picted in figure 4. In the image it can be seen that

positive 1D limit loadarea of interest

negative 1D limit load

Fig. 4 2D load envelope torsional/bending moment

an amount of -50% in MX and +50% 1D limit
load in MZ can already stress the aircraft struc-
ture to the limit at that point. For the data driven
modelling approach enough training data in re-
gions at the border of the load envelope should
be made available (as depicted with the “area of
interest” in figure 4). Additionally all data points
that form the convex hull with respect to the 2D
load envelopes for each of the 4400 design calcu-
lations are kept in the training data for both load
components. Thus it is ensured that the training
data covers the areas with highest loads with re-
spect to the load envelope for each manoeuvre.

The resulting data base is divided into train-

ing data where round-about 80% of the data base
is used, and the remaining 20% added to the val-
idation data.

For local model networks, the data selection
is done iteratively in the presented approach. One
of the strengths of local model networks is their
transparent character that can help to visualise
model deficits. The following example shows
how such insight has been incorporated to im-
prove the training data and therefore the estima-
tion. As explained in a previous section local
model networks are a compound of local linear
models with a gaussian function defining the ac-
tivity of the linear model. Figure 5 shows for
one of the independent validation data sets (ma-
noeuvres) the simulation results with respect to
the reference values in the upper part and the in-
fluence of the two most dominant local models
(no. 2 and 10 out of 15) based on their weighting
functions in the lower part. Large outliers can be
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Fig. 5 Model weights with respect to outliers

observed in the simulation results (for example
at appr. index 1700) that obviously correspond to
the local model no. 10. Investigating this partic-
ular local model reveals that its local linear ap-
proximation function for this particular subspace
is based on only a few samples leading to a high
gradient in one dimension (the load factor Ny in
that case). Providing more samples into this sub-
space or even manually tune the parameters of the
local linear approximation function reduces such
outliers significantly.
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4.2 Parameter selection

To model the loads by means of a mapping func-
tion it is necessary to identify parameters, which
describe the state of the aircraft sufficiently with
respect to the considered target loads and is based
on the approach as presented in [6], similar to
[10], [15] and [16].

Most significantly for loads on the vertical
tail plane are the rudder angle δr (depending on
the aircrafts angle of attack α), the sideslip an-
gle β, the rate of roll p, true airspeed VTAS, the
aircraft mass W and the lateral load factor Ny.

Table 1 summarises the selected parameters
used within this study for each of the considered
load components.

Table 1 Selected parameters to model VTP loads
Description Symbol
Angle of attack α

Sideslip angle β

Elevator trim angle δi
Elevator angle δq
Rudder angle δr
Longitudinal load factor Nx
Lateral load factor Ny
Vertical load factor Nz
Roll rate p
Roll acceleration ṗ
Yaw rate r
Yaw acceleration ṙ
Dyn. pressure qdyn
Aircraft mass W
True airspeed VTAS

To simplify obtaining a mapping function de-
scribing the relation between the input and the
output parameters combinations of selected input
parameters are used such as the lateral acceler-
ation Ny is weighted with the aircrafts mass W ,
giving a lateral force

Fy =W ·Ny , (7)

or angle of attack is weighted with the dynamic
pressure qdyn as the lift L generated by a refer-
ence wing area S is proportional to the dynamic

pressure qdyn and the airfoils angle of attack α

[8].
As presented in [6] parameters like the air-

crafts mass and the dynamic pressure show a
static behaviour in comparison with the bending
moment. Some parameters like the lateral load
factor, the angle of attack and the yaw accelera-
tion show a dependency with a highly linear char-
acter. Others like the rudder input, yaw or roll
rate show no clear dependency in the first place.
Nevertheless such parameters play a significantly
role to separate the input space with respect to
the flight condition for the local model network
approach.

The output parameters (loads) are normalised
to 100% limit load, a load of 1 denotes 100%
limit load.

5 Results

In this section, the 2-step modelling process for
the bending moment MX using the LMN ap-
proach is presented. The LMN approach pro-
vides only a few parameters to adjust, explained
in the following:

1. The splitting ratio defines how often a sub-
space is split in each iteration step. A ratio
of 1:1 means it is split exactly in the mid-
dle resulting in two equally sized new local
models. A ratio of 1:2 results in actually 2
splits being computed with 1/3 to 2/3 and
2/3 to 1/3 respectively. This can lead to a
faster convergence as the algorithm is able
to adapt to non-linear and non-centered re-
gions more quickly. In this study a ratio of
1:5 has been chosen.

2. The smoothness factor controls the over-
lapping effect of local models by means of
the width of the Gaussian weighting func-
tion. A smoothness factor smaller than 1
narrows the respective Gaussian leading to
more sharp contours while a smoothness
factor larger than 1 increases the smooth-
ness by widening the Gaussians leading to
a more continuous contour between local
models. As a potential drawback, the latter
may degrade a good local linear adaption in
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the subspace due to the increased influence
of the local models in the direct neighbour-
hood. In this study a smoothness factor of
0.8 has been selected.

3. The maximum number of models is the ter-
mination criteria to stop the training. In
this study it has been set to 15.

To visualise the results with respect to the 2D
envelopes, a new 2D criteria has been developed
that considers the models for torsional and bend-
ing moment together and is explained hereby.

It is based on a radial coefficient where each
correlated load condition is determined by two
load components C1 and C2 provided by the the
respective load envelopes. Such load condition
can be defined by the angle ϕ and the absolute
value of its distance to the origin as visualised in
figure 6.
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Fig. 6 Definition of radial coefficient

For a comparison to the limit load, this line
is lengthened until it intersects the envelope. The
distance of the intersection point to the origin is
the limit load for this load condition. The radial
coefficient is the ratio of the load condition and
the limit load at this angle and is given by

RC =

√
C12 +C22

E(ϕ)
. (8)

The value of RC ≤ 1 represents loads lower than
limit load and RC > 1 when limit load is ex-
ceeded. By plotting these values for the model
and reference a correlation graph is created that
visualises the quality of the estimation with re-
spect to both load components. A good estima-
tion results in a distribution within a small band

near the diagonal. Offsets or a twisting of the
distribution against the diagonal give information
about the behaviour depending on loads levels.

For the pair of torsional and bending moment
the achieved local model networks for these load
components successfully generalise on the data.
Figure 7 shows the result for the training session
with regard to the training and validation data set
based on the data of the design calculations using
the beforehand mentioned correlation graph.
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The dotted lines mark a tolerance range of 10
and 20% estimation error. It can be seen that us-
ing the models for bending and torsional moment
the 2D criteria can be satisfied using the local
model networks. No major outliers are observed,
all values are within the tolerance range of 10%.
This is superior to the approach presented in [6]
where correlated loads were not considered.

So far, the models are based on data from de-
sign calculations. When applying these models
to flight test data one would expect a good per-
formance. To show the characteristics a special
VTP manoeuvre of type rudder multi-step is cho-
sen. During this manoeuvre the pilot commands
steps of different amplitudes to the rudder which
results in a large lateral load factor Ny and causes
large bending moments on the VTP. As shown in
figure 8 the simulation results are very noisy.

The reason is, that within the data from de-
sign calculations there is no (sensor) noise on the
input data. For flight test data that is not the case.
Sensitive input parameters to the model like the
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Fig. 8 Manoeuvre simulation with flight test data

load factors Nx, Ny and Nz are quite noisy, as
shown in figure 9.
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Fig. 9 Characteristic of sensitive input parameters

To deal with this, the second step of the pro-
posed 2-step approach is needed and explained
hereby. For data-driven methods there are gener-
ally several possibilities. For example, the flight
test data could be directly included in the train-
ing data in the first place or based on the knowl-
edge about sensor noise the training data could
be modified by applying a similar noise ratio.

Within this study, the best results have been
achieved by re-training the existing models based
on a modified training data base. Assuming that
the mapping function of the local LMN is gen-
erally correct the structure is kept fixed and all
parameters of the local models are re-estimated
using the original training data expanded with
new training data from flight tests. The flight test
data is pre-processed as explained for the data of
the design calculations to cover the available in-

put range best. The result for the updated mod-
els with respect to the manoeuvre from above is
shown in figure 10.
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Fig. 10 Man. sim. with F/T data & improved models

The noise level and therefore the error for this
manoeuvre has been greatly reduced. To com-
pare the overall performance the correlation be-
tween the local model network and the flight test
data with respect to the bending moment MX is
analysed.

Figure 11 shows the results for the complete
flight test based validation data before the param-
eter update in contrast to 12 which shows the re-
sults after.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

local model network

fli
gh

t t
es

t d
at

a

 

 

M
X,LMN

 − M
X,FT

Fig. 11 Correlation original LMN and F/T data

The plots show for each sample of the flight
test data (the red dots) the values for the bending
moment normalised to the limit load by means
of a correlation plot. Additionally the blue line
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Fig. 12 Correlation improved LMN and F/T data

marks the convex hull of the data points to bet-
ter visualise maximum outliers. Again, two dot-
ted lines mark an estimation error of 10 and 20%
respectively. While with the original model the
error margin is exceeded, the optimised model
shows a better performance although the error
margin of 10% is slightly exceeded. As men-
tioned initially and also depicted in the figures,
the flight test data rarely exceeds 80% limit load.
Similar observations can be made with the tor-
sional moment MZ .

6 Summary

The development of loads monitoring systems
in aircrafts is driven by the intention to allow
specific component loads monitoring without re-
quiring complex and costly installations for di-
rect loads measurement. For the purpose of indi-
rect modelling approaches, neural networks are
well known from the literature. By using avail-
able flight parameters, the considered loads can
be formulated by different modelling approaches,
while typically so-called multi layer perceptrons
are used.

In [6] a new approach based on local model
networks has been presented to estimate flight
loads targeting on-board aircraft systems. It
is based on a data driven system identification
method similar to neural networks. The training
data used to develop the models is vital to achieve

good results as interpolation and extrapolation is
the weak spot of such methods. Inspired from
the literature in [6] only flight test data has been
used to create the training data the model is based
on. The drawback is that flight test data rarely ex-
ceeds flight loads by more that 80% of the limit
load. Focussing on high loads this is a disadvan-
tage.

Within this paper the concept is improved by
introducing a 2-step approach. It makes use of
data from structural design calculations to create
initial flight load estimators that cover the flight
envelope of the targeted aircraft as good as pos-
sible including high loads. Such data is usually
available even before the aircraft exists [19]. In
the second step the models are refined and opti-
mised based on data from flight tests to account
for the characteristics of measurements from on-
board aircraft sensors. While data from design
calculations is free of noise, flight test data is not
which affects the estimation quality. Therefore
using the existing models a parameter update is
carried out based on an extended training data
base that includes flight test data.

Previous work addressed models for single
load components successfully. However, there
are cases where a combination of load compo-
nents stresses the aircraft structure even more.
Combined loads are expressed by tables repre-
senting load envelopes that evolve during the de-
sign process of the aircraft structure. In this
study, to account for combined loads a 2D crite-
ria based on such load envelopes has been intro-
duced and the models for each load component
are no longer developed and assessed indepen-
dently.

During modelling, the transparent character
of local model networks helps to address model
deficits. Each local model of a local model com-
pound has influence to its neighbours in the re-
lated subspace of the input data. It has been
shown that local models can be identified that
cause outliers when applying the overall model
to validation data. Providing additional train-
ing data or adjusting model parameters manually
helps to resolve such issues.

The results for developing flight load estima-
tors for a load station at the vertical tail plane of

10



FLIGHT LOADS ESTIMATION USING LOCAL MODEL NETWORKS

an aircraft have been presented. The models gen-
eralise well on both: data from design calcula-
tions and flight test data. For the models devel-
oped within this study an error margin of 10%
limit load is rarely exceeded but is always below
20% limit load.

To help with modelling aspects based on local
model networks an in-house software framework
has been developed and utilised. By means of a
modelling assistant it helps to setup the training
and validation data, modelling parameters and
provides methods to assess the results accord-
ingly.

Further studies will investigate the applica-
tion of this concept to different structural parts of
an aircraft, namely horizontal tail plane, fuselage
and wing.
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