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Abstract

A simulation and system identification prob-
lem is discussed for aircraft as nonlinear con-
trolled dynamical system. The main goal is
to demonstrate capabilities for semi-empirical
models combining theoretical domain-specific
knowledge with training tools of artificial neu-
ral network field as applied to the aircraft mo-
tion simulation problem. The obtained results
confirm efficiency of the proposed simulation ap-
proach.

1 Introduction

A behavior of aerospace vehicle is characterized
by possible unpredictable changes during its op-
eration. This feature should be taken into account
in the course of vehicle models development, oth-
erwise usage of resulting model in vehicle on-
board systems can lead to emergency conditions.
One of possible ways to solve this problem is
generation of models with adaptability feature.

Such adaptive models can be obtained us-
ing the semi-empirical modeling approach [1],
which allows us to combine theoretical knowl-
edge about the concerned system with empiri-
cal model refinement methods. The theoretical
knowledge is represented in this case by differ-
ential equations describing operation of the sys-
tem. Model refinement procedures are based on
learning techniques for artificial neural networks.
The results of computational experiments for a
simple problem presented in [1] confirm high
efficiency of semi-empirical modeling approach

in contrast to traditional empirical (“black box”)
models such as NARX.

A simulation and system identification ap-
proach is discussed in the paper for nonlinear
controlled dynamical systems under multiple and
diverse uncertainties including knowledge imper-
fection concerning simulated plant and its envi-
ronment exposure. The uncertainty can be caused
by the plant failures and damages as well. The
main goal of the paper is an advance on semi-
empirical dynamical models combining theoret-
ical knowledge for the plant with training tools
of artificial neural network field. Simulation is
carried out to confirm efficiency of the proposed
approach.

Traditional artificial neural network based
models (ANN-models) are pure empirical ones
(black box models) they are based only on exper-
imental data describing a behavior of the simu-
lated dynamic system [2]. Modular dynamic net-
works proposed in the paper take into account
both experimental data and theoretical knowl-
edge. These networks can be classified as semi-
empirical models (gray box models) [1, 3, 4].

Development process for semi-empirical
adaptive ANN-model in the form of modular dy-
namic network consists of the following stages:

1. development of continuous-time theoreti-
cal model for the considered dynamic sys-
tem as well as acquisition of experimental
data about behavior of the system;

2. accuracy evaluation for the theoretical
model of the dynamic system using the col-
lected data;
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3. conversion of the original continuous-time
model into a discrete-time model [5];

4. generation of ANN-representation for the
discrete-time model [6, 7];

5. training of the ANN-model [8, 9, 10];

6. structural adjustment of the ANN-model to
fit modeling accuracy requirements.

2 Semi-empirical ANN-model for a simple
dynamic system

We consider a controlled continuous-time dy-
namic system as a simulated plant. The theoreti-
cal model of the system is a set of ordinary differ-
ential equations (ODE). The original continuous-
time model is conversed into discrete-time mod-
els using Euler and Adams difference schemes.

Semi-empirical ANN-model generation pro-
cess can be demonstrated using the simple dy-
namic system as an example [3]:

ẋ1(t) =−(x1(t)+2x2(t))2 +u(t)
ẋ2(t) = 8.322109sin(x1(t))+1.135x2(t).
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Fig. 1 Structural organization of semi-empirical
ANN-model for dynamic system given by Eq. 1
according to the Euler difference scheme

Insufficient accuracy of a model based on the
theoretical domain-specific knowledge about the

simulated system is caused usually by some fac-
tors which are significant for the system but they
are not included into the model. Experimental
data about behavior of the system allow to refine
the model by means of its tuning or training, in
ANN terms. If the training process does not lead
to a model with required accuracy level then it
means that structural modifications of the model
are needed. These modifications are based on
some hypothesis about possible causes of simu-
lation failures.

Suppose that we know exactly only the first
equation in Eq. 1. We will write initially the sec-
ond equation in some simplified form to simu-
late our imprecise knowledge about considered
dynamic system:

ẋ2(t) = 8.32x1(t). (2)

Behavior analysis for the modified system
(system Eq. 1 with Eq. 2 instead of the sec-
ond line in it) using ODE numerical integration
shows unacceptable results. The MSE values are
0.13947 and 0.07143 for Euler and Adams dif-
ference schemes respectively. These results are
much more than 0.01 specified as the target MSE
value.

Obviously this failure is caused by the kind
of equation Eq. 2. The possible reasons are:

• inaccurate value of numerical parameter in
Eq. 2;

• inadequacy of linear dependence on x1 in
Eq. 2;

• absence of dependence on x2 in Eq. 2.

Semi-empirical form of the ANN-model al-
lows us to include required changes using some
subnet as the module implementing a needed
nonlinearity.

Simulation results for the semi-empirical
model related to the Eq. 1 system with all neces-
sary modifications in it are presented in Table 1.
Some abbreviations are used in this table: ODE
— results for the system Eq. 1 with Eq. 2 instead
of the second line in it; ANN-1, ANN-2, ANN-3
— results for the initial model after first, second
and third modification stages; Opt — results for
the best version of the NARX model related to
Eq. 1 system.
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As we can see from the column marked
“ANN-1” in Table 1 tuning of the numerical pa-
rameter value as the first step of the modifica-
tion process for the model does not enhance sig-
nificantly the accuracy of the simulation results.
Let’s try to implement the second modification
stage. We need to replace linear relationship
Eq. 2 in the second line of Eq. 1 system by a non-
linear one depending on x1. This modification is
carried out using some nonlinear MLP-type ANN
module embedded in the original ANN-model in-
stead of the single neuron corresponding to the
linear relationship described by Eq. 2. Simula-
tion results presented in Table 1 were obtained for
the one-hidden-layer MLP module. There are 10
sigmoidal neurons in the hidden layer, this value
was stated by means of computing experiments.

The column marked “ANN-2” in Table 1
shows us that the second modification stage is
not successful as well as the first one. It seems
that we lack dependency on second variable x2,
hence we add connection from the corresponding
input to MLP’s hidden layer. As we can see from
the column marked “ANN-3” in Table 1 the third
modification stage allows us to obtain acceptable
simulation accuracy level for the Eq. 1 system.

Simulation results for the NARX-type empir-
ical model are presented in the column marked
“Opt” of Table 1. The best simulation accuracy
was obtained for the NARX network with 3 sig-
moidal neurons in one hidden layer and 5 feed-
back delays. The data from Table 1 show clearly
the superiority of semi-empirical models over the
empirical one. We see that even for models based
on the Euler difference scheme MSE value is
0.01394 against 0.02821 for the NARX case. The
accuracy level is higher for the Adams difference
scheme and it equals 0.01219.

Similar analysis was carried out for two more
versions of the Eq. 1 system with appropriate
simulation results presented in Table 2 and Ta-
ble 3. The first version uses an equation with har-
monic members in it

ẋ2(t)= 8.322109sin(x1(t))+0.7cos(1.33πx2(t))
(3)

instead of the second relationship in Eq. 1. The
second version of the Eq. 1 encloses slightly

more complex mixture of harmonics as compared
to Eq. 3:

ẋ2(t)= 8.322109sin(x1(t))+0.7cos(1.33πx2(t))
2

(4)
A structure of semi-empirical ANN-model cor-
responding to Eq. 1 is presented on Fig. 1 for
the Euler difference scheme case. The semi-
empirical model structure based on the Adams
difference scheme looks similarly. The model
is structurally adjusted by means of appropri-
ate selection of the yellow-marked model sub-
system which corresponds to multilayer percep-
tron (MLP) with one hidden layer. The train-
ing set for the MLP is obtained by numerical in-
tegration of Eq. 1 original mathematical model
using random signal as an input. This model
is trained in the Matlab Neural Network Tool-
box using Levenberg-Marquardt optimization al-
gorithm. The Jacobian matrix needed to run this
algorithm is calculated by means of RTRL (Real-
Time Recurrent Learning) technique [9, 10].

As it was mentioned already, accuracy char-
acteristics are compared for traditional empiri-
cal NARX (Nonlinear AutoRegression with eX-
ogeneous inputs) type model and the proposed
semi-empirical model with the structure shown
on Fig. 1. Obtained results confirm efficiency of
the proposed simulation approach in comparison
with traditional ANN-based empirical approach.
For example, value of the mean square error
(MSE) for a typical simulation run is 0.01394 for
the semi-empirical ANN-model based on the Eu-
ler difference scheme and 0.02821 for the NARX
model. Replacement of the Euler scheme by the
Adams difference scheme [5] leads to a slight en-
hancement of the semi-empirical ANN-model ac-
curacy. The MSE value is 0.01219 for this case.
The difference between MSE for semi-empirical
an empirical models increases with complexity
growth of a simulated system. Simulation data
contained in Table 1, Table 2 and Table 3 demon-
strate this tendency for Eq. 1 system and its ver-
sions.
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Table 1 Simulation error for the system described by Eq. 1
ODE ANN-1 ANN-2 ANN-3 Opt

Euler 0.13947 0.13593 0.12604 0.01394 –
Adams 0.07143 0.07104 0.03883 0.01219 –
NARX – – – – 0.02821

Table 2 Simulation error for the case with second equation Eq. 3
ODE ANN-1 ANN-2 ANN-3 Opt

Euler 0.15684 0.15224 0.14079 0.01400 –
Adams 0.07931 0.07858 0.05312 0.01185 –
NARX – – – – 0.03418

Table 3 Simulation error for the case with second equation Eq. 4
ODE ANN-1 ANN-2 ANN-3 Opt

Euler 0.18052 0.16880 0.15379 0.01272 –
Adams 0.15394 0.14970 0.13111 0.01266 –
NARX – – – – 0.08403

3 Semi-empirical simulation of short-period
longitudinal aircraft motion

The short-period longitudinal aircraft motion
simulation problem is discussed in the paper
as the second example to demonstrate capabili-
ties of the semi-empirical simulation approach.
This kind of motion is described traditionally by
means of a system of ordinary differential equa-
tions (ODE) which can be written for example in
the form [11]:

α̇ = q− q̄S
mV

CL(α,q,φ)+
g
V
,

q̇ =
q̄Sc
Jy

Cm(α,q,φ) ,

T 2φ̈ =−2T ζφ̇−φ+φact ,

(5)

where α is angle of attack, deg; q is pitch angular
velocity, deg/sec; φ is deflection angle of eleva-
tor, deg; CL is lift coefficient; Cm is pitching mo-
ment coefficient; m is mass of aircraft, kg; V is
airspeed, m/sec; q̄ = ρV 2/2 is airplane dynamic
pressure; ρ is mass air density, kg/m3; g is accel-
eration of gravity, m/sec2; S is wing area of air-
craft, m2; c is mean aerodynamic chord, m; Jy is
pitching moment inertia, kg · m2. Dimensionless
coefficients CL and Cm are nonlinear functions of

angle of attack; T , ζ are time constant and rel-
ative damping factor for elevator actuator; φact
is command signal value for the elevator actua-
tor limited by ±25◦. Variables α, q, φ and φ̇ are
aircraft states, variable φact is aircraft control.

The resulting “gray box” neural network
based model includes two “black box” modules
that correspond to lift and pitching moment coef-
ficients and represent a nonlinear function of the
angle of attack and some other flight parameters.
These neural network based modules are sub-
ject of refinement process accomplished through
learning procedures, with values of observable
state space variables used as a training dataset.

It is needed to determine relationships for CL
and Cm coefficients using available experimental
data to make this model more concrete. Such
kind of problem represents well-known system
identification problem for aircraft. The identifi-
cation problem is solved to achieve required sim-
ulation accuracy for aircraft motion.

The structure of semi-empirical ANN-model
corresponding to Eq. 5 is presented on Fig. 2. The
adjusted subnets of the model in this case corre-
spond to the CL and Cm relationships represented
as MLP with one hidden layer.

The training dataset should be representative
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Fig. 2 Structural organization of semi-empirical ANN-model for dynamic system Eq. 4 according to the
Euler difference scheme
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Fig. 3 Simulation results for semi-empirical model of aircraft short-period longitudinal motion: plant
output, model output and flight maneuver are marked with green, blue and red color respectively
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to obtain the model with needed accuracy level.
An analysis was carried out to reveal an influence
of control signals disturbing a motion of the vehi-
cle on the training set representativity. Sequences
of typical control signals such as step, pulse, dou-
blet and random signal were compared to a mul-
tisine signal constructed by means of special pro-
cedure. Aforementioned comparison was con-
ducted under various flight maneuvers, including
steady state straight line horizontal flights (“point
mode”) and flights with angle of attack linear in-
creasing (“monotonous mode”).

The training set {αi,qi,φi, φ̇i}, i = 1, . . . ,N
for this identification problem was obtained
by numerical integration of Eq. 5 mathematical
model using polyharmonic signal as an input
[13]. An ANN-based semi-empirical model cor-
responded to Eq. 5 were derived according to
the [6] with CL and Cm represented as multi-
layer perceptrons (MLP) with one hidden layer.
This model is trained in the Matlab Neural Net-
work Toolbox using Levenberg-Marquardt opti-
mization algorithm. The Jacobian matrix needed
to run this algorithm is calculated by means
of RTRL (Real-Time Recurrent Learning) tech-
nique [9, 10]. As a result, relationships for aero-
dynamic coefficients CL and Cm are obtained ac-
cording to the available experimental data. These
relationships used in the semi-empirical model
ensure high simulation accuracy.

Simulation results for one of numerous runs
concerning to the short-period longitudinal air-
craft motion problem are demonstrated in Table 4
and on Fig. 3. These results were obtained with
regard to F-16 fighter aircraft using the data pub-
lished in [12].

Accuracy characteristics are compared for
traditional empirical NARX (Nonlinear AutoRe-
gression with eXogeneous inputs) type models
and proposed semi-empirical model. The ob-
tained results confirm efficiency of the proposed
simulation approach in comparison with tradi-
tional ANN-based empirical approach. For ex-
ample, values of the mean square error (MSE) for
a typical simulation run (polyharmonic test sig-
nal, monotonous mode) are MSEα = 0.0491 grad,
MSEq = 0.1169 grad/sec for the semi-empirical
model and MSEα = 1.3293 grad, MSEq = 2.7445

grad/sec for the NARX model.

4 Semi-empirical simulation of spatial air-
craft motion

Similar results are obtained also for a more com-
plicated short-period spatial (three-dimensional)
aircraft motion problem. There are three input
variables in this problem instead of one variable
in the problem mentioned above: ailerons, rud-
der and elevator deflection angles. Accordingly,
five relationships (for lift and side force coef-
ficients, pitching moment, rolling moment and
yawing moment coefficients) instead of two ones
are needed to be restored basing on available ex-
perimental data.

Simulation results for one of numerous runs
are demonstrated on Fig. 4 and Fig. 5, where α
is angle of attack, deg; q is pitch angular ve-
locity, deg/sec; φ is deflection angle of eleva-
tor, deg; φact is command signal value for the
elevator actuator, β is sideslip angle, deg; r is
yaw angular velocity, deg/sec; δ is deflection an-
gle of rudder, deg; δact is command signal value
for the rudder actuator; p is roll angular velocity,
deg/sec. These results, similar the longitudinal
motion case discussed above, were obtained with
regard to F-16 fighter aircraft basing on the data
published in [12].

Values of the mean square error (MSE) for a
typical simulation run (random test signal, point
mode) are MSEα = 0.0171 grad, MSEq = 0.0399
grad/sec, MSEβ = 0.0080 grad, MSEr = 0.0193
grad/sec, MSEp = 0.0972 grad/sec.

5 Conclusions

The obtained results demonstrate clearly that the
ANN-based approach to complex nonlinear dy-
namic systems modelling is very effective from
the standpoint of simulation accuracy, especially
if we combine ANN training techniques with
some knowledge about simulated object. This
approach can be implemented for systems oper-
ating under various uncertainty conditions using
adaptation mechanisms based on the ANN train-
ing tools.
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Table 4 Simulation errors for various test sets (semi-empirical model)
Point mode Monotonous mode

MSEα MSEq MSEα MSEq
Doublet 0.0202 0.0417 8.6723 34.943
Random 0.0041 0.0071 0.0772 0.2382

Polyharmonic 0.0029 0.0076 0.0491 0.1169
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Fig. 4 Simulation results for semi-empirical model of aircraft short-period spatial motion: plant output,
model output and flight maneuver are marked with green, blue and red color respectively
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