
 

1  

 
Abstract  

Wing is the main part of aircraft for lift. It bears 
not only the lift but also the concentrated loads 
from the engine，landing gear and other devices. 
The optimization of wing is to design a structure 
that meets all the demands for using with less 
structure weight. This paper introduces a 
method for the optimization design of composite 
wing with multiple load cases and large scale 
design variables. An optimization process is 
built to carry out this method ,and finally it is 
proved by the optimization design of a wing skin 
with 105 design variables and 30 load cases. 

1 General Introduction  
The application of composite material brings the 
structure design new development and become 
an important feature of the advancement aircraft. 
For the anisotropic property, the composite 
structure’s stiffness on different direction can be 
designed respectively [1].  

Nowadays aircraft design has become into a 
stable development. Each discipline resorts to 
accurate design and cooperated design to obtain 
better performance. Accurate design and 
multidisciplinary optimization design both need 
large scale design variables. The amount of 
variables could be more than several thousand 
and the multiple load cases also increase the 
number of design variables [2][3]. 

2 Method and Process  

2.1 Principle of Optimization 

The design variables in composite structure 
optimization usually are relevant parameters of 
skin laminate that are ply direction, thickness 
and ply percentages. 

General optimization usually takes weight 
as the objective function and strain as constraint 
[4]. In this research, structure size starts from the 
minimum value and increases gradually .The 
increment of weight each step is constant. Every 
optimization cycle is to find the best sequence 
formation of certain material (ply orientation, 
thickness) in which the strength is strengthened 
most. 

The allowable strains are used to establish 
the objective function. At beginning, the 
working strain is greater than the allowable 
strains. With the optimization process, the 
working strain is getting close to the allowable 
strains, and finally lower than them. Therefore, 
there is need to build an objective function 
based on allowable strain on each direction. 

Formula one is the objective function with 
allowable strain, which uses the distance 
between design point and the worst feasible 
point. This function could reflect the distance 
between the working strain and the allowable 
strain, but it can’t make strain in each direction 
descend simultaneously which may result in the 
objective function decreasing in only one 
direction and the value’s vibration. 
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௔        (1) 

 ௜ is the working strain of direction x,y,andߝ
xy. 
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௜ߝ
௔ is the allowable strain of direction x, y, 

and xy. 
ଵ݂ is the objective function. 

For most load cases, the skin sustains the 
bending moment, so the tension and 
compression of objective function are much 
higher than the shear strain that the value of 
objective function decreases along the 
tension/compression. However, for some load 
case, the wing will sustain some inner plane 
loads and shear strain becomes the main factor. 
So the optimization needs to carry out 
iteratively with different load case. 

2.2 Process of Optimization 

In order to enlarge the design space and realize 
the fine design, each piece of skin divided by 
finite element will be dealt with independently 
and the ply direction ranges from 90 degree to 
minus 90 degree with an integer increment. For 
example, the number of finite elements of skin 
in wing box is 200. In each optimization step, 
the possible combination of design variable will 
reach to the magnitude of 1062, which makes it 
harder to find the optimal design and when 
considering multiple load cases, large scale 
design variables optimization becomes more 
difficult.  

So as to settle the problem stated above, 
this paper puts forward an optimized design 
process depicted in Fig. 2. First of all, the 
severity of the model under all the load cases is 
analyzed. The most dangerous load case is 
selected as the basic load case to optimize. 
When it is optimized to some extent, the current 
model under all the load cases is checked. For 
those load cases that satisfy the allowable 
strains, the corresponding load case is skipped 
in the following optimization. For those that fail, 
the optimization will carry out with the current 
model until the entire model is safe under all the 
load cases. 

In this process, the double cycle 
optimization based on genetic algorithm (GA [5]) 
reduces the design variable to an achievable 
magnitude through sectional dealing with the 
variables. The double cycle optimization is 
showed in figure 3. The outer loop is the 
ranking of design element sensitivities. The 

inner loop is the GA optimization referring to 
the ranking result of all the design elements [6]. 
When the optimization finishes a cycle of the 
outer process in fig 2, it is called a step. For the 
inner process, it is called a loop. 

 

Fig. 1 The Optimization Process 

 
Fig. 2 The Double Cycle Optimization 

The process showed in Fig. 2 and Fig. 3 is 
executed on SAMOS (Sensitivity Analysis 
Based Multi-discipline Optimization System) 
[7][8]. This paper will not introduce the function 
of this system. 

2.3 Post Process of Optimization 
The design variable is optimized separately 
without considering the manufacture constraints, 
so that the result may not fulfill the demands of 
manufacturing. The post processor is needed, 
which includes the equivalence design of ply 
orientation and fitting of element ply thickness 
[9]. 

After finishing the optimization design, the 
initial model for post process is prepared. The 
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first step is to change the ply direction of each 
element to regular ply direction ,that are 0°，

45°，-45°and 90°。 At the same time, the 
number of layers is round to integer and the 
thickness of each ply is the regular thickness. 
The three direction stiffness equivalent design is 
for single laminate. For the independence of 
each element, the thickness along the chord and 
the span become unsmooth. Therefore, it is 
needed to fitting the discrete thickness of design 
element. 

2.3.1 Three direction stiffness equivalent design 
Longitudinal, transverse, shear stiffness are the 
basic property of laminate. It has proved that the 
thickness of laminate keeps constant with the 
changing of ply orientations when the three 
direction stiffness is definite [10]. 
The inner stiffness coefficients are calculated 
with formula 2. 

௜௝ܣ  ൌ ∑ ௞ݐ ቀܳ௜௝ቁ
௞

           ே
௞ୀଵ          (2) 

    i=1,2,6; j=1,2,6 

In formula 2, N stands for the layers number 
of laminate, ݐ௞ is thickness of single layer and 
 ܳ௜௝ for translated reduced stiffnesses. A11，A12，
A22，A66 are the in-plane, tensile stiffness 
coefficient. 

ܳ௜௝ change with ply direction, ܣ௜௝have 
nothing to do with stacking sequence and are 
determined only by ply percentages. Therefore, 
considering a laminate compose with ply 
 ： ௜௝ can be stated in those formsܣ ,ߛ，ߚ，ߙ

௜௝ܣ     ൌ ቀ ఈܰܳ௜௝,ఈ ൅ ఉܰܳ௜௝,ఉ ൅ ఊܰܳ௜௝,ఊቁ  ௞ݐ

ሺ݅ ൌ 1,2,6; ݆ ൌ 1,2,6ሻ             (3) 

 
 In formula 3, ఈܰ , ఉܰ , ఊܰ represent the ply 

numbers of  ߛ，ߚ，ߙ  degree ； ௞ݐ  is the 
thickness of single layer. 

Through solving equation set, the optimized 
laminate will be equivalent to a symmetric 
balanced laminate with engineering available 
ply orientation. The thickness and stiffness 
properties of laminate stay the same after 
equivalence. 

2.3.2 Surface Fitting 
During the optimization, the thickness of each 
element is optimized independently, the 
thickness along or cross the chord are 
discontinuous. Each element is considered as a 
discrete point and the value of coordinate x and 
y of the center grid is taken as the value of x and 
y for this discrete point. The thickness of 
laminate is the z value of this point. 

For the scatted data in three direction space, 
the usual fitting method is interpolation and 
approaching fitting. These methods are usually 
using a smooth surface to approaching or 
through a series of irregular sample point to 
form the surface and represent with picture. 

Considering the widely application of 
Bicubic patch and the demand of overall 
fairness, this research adopts the Bicubic patch 
to realize the surface fitting of the optimized 
laminate. 

Bicubic patch is showed in formula 5： 
 
݂ሺݔ, ሻݕ ൌ ሺܽ଴ ൅ ܽଵݔ ൅ ܽଶݔଶ ൅ ܽଷݔଷሻ ·

ሺܾ଴ ൅ ܾଵݕ ൅ ܾଶݕଶ ൅ ܾଷݕଷሻ                (5) 

3 Application 
Based on the method and process introduced in 
chapter two. A optimization process is set up 
based on a composite wing model. The 
optimized design fulfills the weight minimized 
design, and the working strains are lower than 
the allowable strain under 30 load cases. 

3.1 Model Description 

A composite wing optimization design is 
completed with the process displayed in figure 2. 
The design elements are showed in figure 3. The 
skin is symmetric laminate and the total number 
of design elements is 298. The design variables 
are more than 105.  

The thickness of the element starts from the 
minimum value and increases gradually with the 
process. The weight increment is constant every 
step and relative small. This could prevent the 
optimization’s divergence and make sure that 
the optimized model has the minimum weight.   
The optimization includes 30 load cases’ 
analysis. 
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Fig. 6 Optimization Result of Load Case 1 in 

Stage One  
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Fig. 7 The Sensitivity in Outer Loop 

From the diagram of figure 8 to figure 10, it 
can be deduced that the tension and 
compression strain decrease greatly but are still 
higher than the allowable strain. For the shear 
strain, except of load case 30, the working 
strains are all lower than the allowable strain. If 
the optimization continues with load case 1, the 
item of shear in objective function equals to 
zero. For those elements that sustain high 
tension or compression, it will help to alleviate 
the strain. But for those under serious shear 
condition, the thickness of skin will not increase. 
The shear strain will still higher than the 
allowable strain under load case 30. Therefore, 
in stage 2, the optimization will be carried out 
with load case 30 in order to decrease the shear 
strain. 
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Fig. 8 Comparison of Tension in Stage One 
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Fig. 9 Comparison of Compression in Stage One 
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Fig. 10 Comparison of Shear in Stage One 

The objective value of stage 2 can be seen 
from figure 11. It shows that after 16 steps’ 
optimization, the objective value becomes stable 
and equals to zero. Through the definition of 
objective function, it can be deduced that all the 
working strains are lower than the allowable 
strains under load case 30.After analyzing the 
working strain under all the load case, it shows 
that the shear strain fulfill the allowable strain 
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under all the load case. Except for the load case 
1 to 5 and 30, the tension and compression 
strain also lower than the allowable strain. 
According to the conclusion from stage one, 
optimization with load case one based on the 
current result will decrease the tension and 
compression strain. 
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Fig.11 Optimization Result in Stage Two 
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Fig.12 Comparison of Shear in Stage Two 

The result of step 16 in stage 2 is chosen as 
the start state for the following optimization. 
There are 50 steps in stage 3 and the comparing 
of strain between working strain and allowable 
strain show that strains in three directions meet 
the demand of design. 

After the optimization, the post processing 
is carried out. The result of equivalent design is 
not presented here. Figure 13 shows the 
distribution of thickness along the chord of 
upper skin. Obviously, through the surface 
fitting, the distribution of thickness become 
more reliable and manufacture available. The 
result from the post processing also needs to be 
checked under all the load cases and the 

analysis proves that the strength property hardly 
changes after the post processing. 
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Fig. 13 Distribution of Thickness of Upper Skin 

4 Conclusions 
Through the composite wing design, it is proved 
that the method and process stated in chapter 2 
is efficient. The optimization design makes the 
working strain of skin element become lower 
than the allowable strain with the minimum 
increment on weight. 

It also implies that the cut-off step in each 
load case when using formula two as objective 
function will also influence the result. Both the 
objective value curve and the sensitivity curve 
are needed to choose the cut-off step. 

The post processing will make the 
optimized result easier to manufacture. After the 
post processing，the strength property will be 
getting better sometimes because of the 
thickness added for rounding. 
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