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Abstract

The short history of development and
advantage of Monte Carlo methods in the
computational aerodynamics of rarefied gases
and application of these methods in
unconventional fields are described in the
present paper. The direct statistical simulation
of aerodynamic processes with the solution of
kinetic equations is established; it is shown that
the modern stage of the development of
computational methods is impossible without
the use of the complex approach to the
development of algorithms (its physical nature,

mathematical model, the theory  of
computational mathematics, and stochastic
processes). Possible directions of the
development of the statistical simulation

methods are discussed.

1 Introduction

The appearance of statistical simulation
(Monte Carlo) methods in various fields of
applied mathematics is usually caused by the
appearance of qualitatively new practical
problems. The examples include the creation of

nuclear weapons, space development, the study
of atmospheric optics phenomena, and the study

of physicochemical and turbulence processes.
One good definition is as follows: The Monte

Carlo methods are the methods designed for

solving mathematical problems (e.g., systems of
algebraic, differential, or integral equations)
based on the direct statistical simulation of
physical, chemical, biological, economic, social,

and other processes using the generation and
transformation of random variables.

The first paper devoted to the Monte Carlo
method was published as early as in 1873 [1]. It
described the experimental determination rof
by a realization of the stochastic process of
tossing a needle on a sheet of ruled paper. A
striking example is the use of von Neumann’s
idea to simulate the neutron trajectories in the
Los Alamos laboratory in 1940. Although the
Monte Carlo methods require a large amount of
computations, the absence of computers at that
time did not discourage the researchers. The
name of these methods comes from the capital
of the Principality of Monaco, which is famous
for its Casino; indeed, the roulettes used in the
casino are perfect tools for generating random
numbers. The first paper [2] that systematically
expanded this method was published in 1949. In
that paper, the Monte Carlo method was used to
solve linear integral equations. It could easily be
guessed that these equations were related to the
problem of the passage of neutrons through
matter. In Russia, studies concerning the Monte
Carlo methods appeared after the Geneva
International Conference on the Peaceful Uses
of Atomic Energy. One of the first Russian
studies is [3].

The revelation of the methods of statistical
modeling (Monte-Carlo) in various areas of the
applied mathematics is connected as a rule with
the necessity of solution of the qualitatively new
problems, arising from the needs of practice.
Such a situation appeared by the creation of the
atomic weapon, at the initial stage of a
mastering of space, by the investigation of the
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phenomena of atmospheric optics, the physical

chemistry, and the modeling of turbulence flow
(G. von Neumann, N. Metropolis, S. Ulam, V.S.
Vladimirov, I.M. Sobol, G.l. Marchuk, S.M.
Ermakov, G.A. Mikhailov, G.A. Bird, J.K.
Haviland, M.D. Lavin, D.I. Pullin, M.N. Kogan,
V.A. Perepukhov, O.M. Beloserkovskii, , Yu.l.
Khlopkov, V.E. Yanitskii, M.S. Ivanov, A.lL
Eropheev).

The general scheme of the Monte Carlo
method is based on the central limit theorem,
which states that the random variable

Y:;x

iIs equal to the sum of a large number of
random variables with the same expectation
and the same variance” has the normal
distribution with the expectatioN and the
varianceN ¢°. Assume that we want to solve an
equation or find the result of a certain procless
If we can construct the random varialglevith
the probability densityp(x) such that the
expectation of this variable is equal to the
unknown solutionM(€) = I, then we obtain a
simple method for estimating the solution and
its error:

ECE

This implies the following general
properties of the Monte Carlo methods:

(1) The absolute convergence to the
solution with the rate N.

(2) An unfavorable dependence of the error
¢ on the number of trials: = 1/JVN (to reduce
the error by an order of magnitude, the number
of trials must by increased by two orders of
magnitude).

(3) The main method of reducing the error
Is the variance reduction; in other words, this is
a good choice of the probability densjifx) of
the random variabl€ in accordance with the
physical and mathematical formulation of the
problem.

(4) The error is independent of the
dimensionality of the problem.

(5) A simple structure of the computation
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(6) The structure of the random varialile
can be generally based on a physical model of
the process that does not require a formulation
of the controlling equations as in regular
methods; this fact is increasingly important for
modern problems.

We illustrate the main features of the
Monte Carlo methods and the conditions under
which  these methods outperform the
conventional finite difference methods or are
inferior to them using the following example.
Suppose that we want to evaluate the definite
integral of a continuous function over the
interval [a, b]:

To evaluate this integral using the Monte
Carlo method, we construct a random variable
with the probability densityp(x) such that its
expectation

M(8) = [ &p() dx

is equal tol. Now, if we set& = f(x)/p(x)
within the integration limits, then we have, by
the central limit theorem,

13,3
|—N§§iim 1)

On the one hand, the evaluation loby
formula (1) can be interpreted as the solution of
a mathematically stated problem; on the other
hand, it can be interpreted as a direct simulation
of the area under the plot ffk). The evaluation
of the one-dimensional integril by the Monte
Carlo method corresponds to the computation of
| using the rectangular rule with the step~ 1/

YN and an erroiO(Ax). If f(x) is sufficiently
“good”, the integrall; in the one-dimensional
case can be calculated accurat©fax®) using
the trapezoid rule, accurate @AX°) using the
parabolic rule, and to any desired accuracy
without a considerable increase in the
computational effort. In the multidimensional
case, the difficulties in using schemes of a high
order of accuracy increase; for this reason, they
are rarely used for the calculation of
dimensional integralk, for n> 3.

Let us compare the efficiency of the
regular and statistical methods for the problem

algorithm (the computations needed to realize a described above. Let be the dimensionality of

proper random variable are repedtetimes).

the problem,Y be the number of nodes on an
axis,R=Y " be the total number of nodes for the
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regular methodsg be the order of accuracii numerical statistical methods in rarefied gas
be the number of statistical trials, ande the dynamics developed in three directions:
number of operations needed to process one (1) The use of the Monte Carlo methods to

node (to perform one statistical trial). Thenz= evaluate the collision integrals in the regular
Y 4 is the error of the regular methodg,= N ~ finite difference schemes for solving the kinetic
Y2 is the error of the statistical methods, equations.

L(e) =vR= "% is the number of operations when (2) The direct statistical simulation of

the problem is solved by a regular method, and Physical phenomena, which is subdivided into
K(z=vN=w? is the number of operations when two approaches: the simulation of trajectories of

the problem is solved by the Monte Carlo test particles by the Haviland method [4] and

method. Then, in the case of an equal number ofg]le Z'ri?clféast'gn t(r)lfetgier de\r/r?éltjﬁgg [(%]i the ensemble
operations needed to obtain a solution with the P (3) The é/onstruction of a stoc.hastic r0cess
same accuracy using each of the methods, we . b

haven = 2q. Therefore, fom >3 andq =1 using thz‘ Ulam—kll\leumflnn pr;)cidurs [5]
(first-order schemes), the Monte Carlo methods corresponding to the solution of the kinetic

are preferable. For other classes of problems equation. . o
the relation between the efficiency of the The hierarchy of levels of the description

methods can be different of large molecular systems includes .a.wide
: range of approaches, and various descriptions of
the molecular dynamics at different levels can
2 The Monte Carlo methodsin be used for constructing efficient statistical
computational aerodynamics simulation methods. o
. . o The most detailed level of description is a
Under the assumption of binary collisions gynamical system. To describe a system
and the molecular chaos hypothesis, the congisting of a large numbet of particles (a
dynamics of a rarefied gas is described by the mgjecular gas is a system of this kind), one
Boltzmann integro-differential kinetic equation myst specify the initial coordinates and velocity

for the single-particle distribution density: of each moleculer;, x; and the evolution
ﬂ+ggf = equations of this system
t (2) dzrl. o
[(+" 4/~ f,ygbdbek & = I 9 mae T 2R ®)
Here, f = f(t, X, ¥, z & &, &) is the The solution of such a system is an
distribution densityf, fy, f', f', correspond to the ~ unrealizable (cannot be solved in practice)
molecules with the velocitieg, &1 and &', problem even for a very rarefied gas. Indeed, at

before and after the collisiom, is the relative @ height of 400 km (the most popular satellite

velocity of the molecules in binary collisions ©rbits), one cubic centimeter contains ~ 10
g=lgll&-t], and b and ¢ are the impact molecules. For this reason, a less detailed

, statistical description is used.
Eglrl?srir(l)enter and the azimuth angle for the Following the Gibbs formalism, rather than

The complex nonlinear structure of the consider a single system, an ensemble of

collision integral and the large number of systems _ in the _I‘Grdlmensmnal F-sp_ace
variables (seven in the general case) presentd!Str!bUt.ed acc_ordlng to the N-partlc_le
severe difficulties for the analysis including the distribution function f (t,r,....ry &..-by) = fu 1S
numerical ana|ysis_ The h|gh dimension’ the considered. This function is interpreted as the
probabilistic nature of the kinetic processes, and Probability of finding the system in the
complex molecular interaction models are the neighborhooddr;...drnd€;...dén of the point
natural prerequisites for the application of the ru,...,In, &1, ..., §n @t the moment

Monte Carlo methods. Historically, the dw= f d,..d, ¢,...d,



Such an ensemble is described by the
Liouville equation

Z& izj i=1 m a&.' (4)

From now on, the Liouville equation and
all the subsequent kinetic equations following
from the Bogolyubov chain including the last
Boltzmann equation have a probabilistic nature.
Although Eg. (4) is simpler than system (3), it
takes into account the collisions lfmolecules
and is very difficult to analyze. A less detailed

description is achieved by roughening the
description  using s-particle  distribution
functions  f,=[fdr,,..dr\&,,..&, which

determine the probability to simultaneously find
s particles independently of the state of the
remaining N-s) particles.

Following Bogolyubov’s ideas, we obtain
the chain of Iinked equations
ZZ - a&

|1J¢i

—ZXN a——j dd,, (5

up to the smgle-particle distribution
function F; = f(t, r, &) corresponding to the
Boltzmann gas, which only takes into account
the binary coIIisionS'

%ide s
—iZ:1:(N—2)a

_&J-E” f2+1di’2+1d'; 21

|sl

s+l

Following Boltzmann, we assume that the

molecules are spherically symmetric and accept

the molecular chaos hypothesig(t, rq, ra, &1,
&) = Fa(t, rq, &)Fa(t, ry, &) to obtain Eq. (2). It

IS very interesting to consider a particular case

of Liouville’s equation (4) and of Bogolyubov’s

chain (5) that describe a spatially homogeneous
gas consisting of a bounded number of particles

and corresponding to two-patrticle collisions; in
this case, on the final link of the chain, we
obtain the Kac master equation [7]

04,(t,&) _N-
ot N

[P0 EED 0,088 ) g, oE

(6)
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where ¢; and ¢, are the one- and two-
particle distribution functions. In contrast to the
Boltzmann equation, Eq. (6) is linear, which
will be used in the development and justification
of efficient numerical direct statistical
simulation schemes.

Returning to the Boltzmann equation, we
easily obtain all the macroscopic parameters
from the definition of the functionf. For
example, the number of moleculasin a unit
volume of the gas is

n(tr)=[ f(tr.g)d
The mean velocity of the molecules, the

strain tensor, and the energy flux are determined
by the relations

V() == [ (L E)de,
n

R=ml¢¢ f(tr.8)d,
q :g_[czq f(tr,&)cE,

wherec = & — V is the thermal velocity of
the molecules.

The mean energy of the heat motion of
molecules is usually described in terms of the
temperature

§kT_—j—f(t, re)d

Applying the Chapman—Enskog procedure
to the Boltzmann equation, we obtain the
hydrodynamical level of description. This
sequentially yields the Euler, Navier—Stokes,
Barnett, etc., equations:

%, 0V, _
ot ox

oR,
LIRVRCE VI
o’ ox p ax
§Rp i+ i T:—%— Pal
2 "ot ox ox "’ 0x
Y 0”'V 2.0V,
By =H =9
Ix d)g 30X
o} :—/iﬂ. p=pRT
I%
Following the general logic of the

presentation, we may assume that the dynamics
4
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of continuum, being a particular case of the Various approximate representations of the

kinetic treatment of the gas motion, has some collision integral and of the distribution function

statistical features; this fact will be used below. are often used. Among them, the most
widespread approximations of the Kkinetic
equation are the following ones.

3 Construction of efficient statistical 1) The model Krook equation (see [8])
simulation methods df

The key role in rarefied gas dynamics is dt V(To = 1) ©)
certainly played by the direct statistical wherev is the frequency of collisions and
simulation methods. The studies on the 3/2

. . m m

construction of the statistical procedures based f, =n( j exp(— @—V)ZJ
on the direct simulation opened prospects for _ an_T ) _ ZlfT _ )
improving the efficiency of such methods by is the equmb.rlurr! distribution function.
decreasing the computational cost and the 2) The Holway ellipsoidal model
required computer memory compared to the izv(f ~ )
initial modifications of these methods. This dt ©
made it possible to apply such methods for where fo is the ellipsoidal distribution

solving two-dimensional and then (with account function.

for the actual properties of gases) three- 3) The approximation Shakhov model (see [9]),
dimensional problems. However, in the which, in contrast to the preceding models,
investigation and justification of these methods, yields the correct Prandtl number Pr:

it is impossible to do without the kinetic df

equation that describes the phenomenon being a—v(f -hHi=

simulated. The establishment of the relationship 4 5

of the statistical procedure with the solution to f, [1+—(1— Prbag(ﬁ ——H , (10)
the kinetic equation is necessary for a number of S 2

reasons. First, this is important in order to be 21 5
sure that the solution is correct and to enable 3 ‘ﬁjq’é fe
one to use the results as a benchmark because \yhere ¢ is the dimensionless thermal
many typical problems were first solved by the mglecular velocity.

direct simulation methods. 4) We also mention the linearized Boltzmann
Second, the establishment of the equation, which is rigorously derived from the

correspondenge between. the s!mulatlon result complete Boltzmann equation under the

and the solution makes it possible to use the congdition that the distribution function is almost

well-developed techniques of regular numerical g, equilibrium one:

and statistical methods of solving the equations dg _

of mathematical physics for the analysis and rr (§)¢+IL(§,§1)¢1d§1

improvement of the methods efficiency. Third,

thig makes it possible to form aygeneral Here, T :.fO(l * 9, .¢ <<1, andk(¢) and

approach to the construction of the statistical |(§:61) are given functions of the molecular

methods and eliminates various incorrect velocities depending on the kind of the patrticles.

modifications. . . The modgl equations, i.n contrast to.the
It must be stressed that the complexity of linearized equation, are not rigorously derived

the practical problems of high altitude from the Boltzmann equation; moreover, they

hypersonic aerodynamics requires the use of all &€ much more nonlinear than the original
the available theoretical, experimental, and €duation. However, they can prove to be simpler

numerical techniques developed for the ' prl‘iCt'Cal ;lmplemejntalltlor_}.  view. the di
investigation of rarefied gas flows. In this _From the practical point of view, the direct
regard, the analysis of the kinetic equation and statistical simulation methods based on the Bird

of its models becomes especially important. and Haviland approaches are naturally the most
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efficient, and their modifications have
dominated the computational aerodynamics.
Presently, the leading place in rarefied gas
dynamics is occupied by the Bird method;
various modifications of this method developed
by Russian researchers (see, e.g., [10-23])
improved the efficiency of the original method
by several orders of magnitude. The idea of the
method is to split the evolution of the system in
a small interval of time into two physical
processes: 1. relaxation in accordance with the
collision operator in the kinetic equation
of

J(f), 2. free molecular transfe%rt— =-¢0f .

This is the well-known first-order splitting
scheme with respect tat for any operator
equation. In this case, this approach is attractive
because it splits the dynamics of a very complex
kinetic system into two clear physical processes.
The distribution function is modeled bixX
particles that first collide in each cell between
themselves with a given frequency during the
time At and then move at the distanégit
during the timeAt.

The central role in the nonstationary
statistical simulation method is played by the
procedure used to count the collisions. A pair of
particles is chosen for collision in accordance
with the collision frequency independently of
the distance between them in the given cell. The
velocities of the particles after the collision are
chosen according to the molecular interaction
laws. Although the efficiency of the method
depends on many parameters of the computation
scheme (relaxation, splitting with respect to
time, stabilization, time step, space grid, and so
on), the main studies devoted to the
improvement of the method focus on the
improvement of the collision procedure and on
reducing the statistical error because this is the
main instrument that makes it possible to reduce
the number of particles in the cells and thus

decrease the computation time and the
requirements for computer memory. For
example, a modification of the collision

procedure was proposed in [18] for a particular
case of Maxwell's molecules. With this

modification, the computation results are almost
independent of the number of particles in a cell
in the range from 40 to 6. (With the ordinary
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computation scheme, the number of particles in
a cell must be about 30). In [11-16], a general
method that is independent of the kind of
molecules was proposed; in that method, the
subsystem of particles in each cell is considered
as anN-particle Kac model (6) at the stage of
collisions.

The simulation of a collision is reduced to
a statistical realization of the evolution of model
(6) during the timeAt rather than to the
realization of the Boltzmann equation (2). The
collision time in the Kac model is calculated in
accordance with collision statistics in the ideal
gas following the Bernoulli scheme. This
scheme makes it possible to use a considerably
smaller number of particles in a cell and a finer
grid. By contrast, Eg. (6) does not rely on this
assumption; therefore, the collision is calculated
as a Markov process. On the other handy as
o, the Kac model is completely equivalent to
the spatially homogeneous Boltzmann equation.
Thus, the approach developed by
Belotserkovskii and Yanitskii provides a basis
for constructing efficient numerical schemes for
solving three-dimensional aerodynamic flow
problems, and, on the other hand, it solves the
important methodological problem of the
equivalence of the numerical method and the
solution of the kinetic equation. A huge number
of studies are devoted to the methods of the
traditional use of statistical simulation.

%0 60 30 0 30 60 90

Fig. 1. 1) Free molecular flow, 2) transient
mode (Re = 1), 3) transient mode (Re = 10), 4)
transition mode (Re 100), 5) continuum
medium mode.

Applications in the case of smaller
Knudsen numbers Kn present considerable
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computational difficulties due to the reduced statistics level depending on the volume of the
mean free path of the molecules and, cell. 2) Distribution of the particles over the
respectively, a finer step with respect to time volume of the cell (specification of the
and space; in the case of the direct statistical coordinates). 3) Generation of random velocities
simulation; the number of particles that simulate of the particles in the cell according to the mean
the distribution function is also increased. The velocity and the temperature on the basis of the
method described above makes it possible to distribution densityfy . 4) Correction of the
calculate the aerodynamic characteristics of real velocities to fully correspond to the mean values

designs at all range of flow regions (Fig. 1).

4 Thedirect statistical simulation method for
inviscid ideal gasflows

The relationship between the kinetic and
the continuous medium models can be
illustrated using the direct statistical simulation
(DSS) method for inviscid flows [24, 25]. The
DSS methods for flows in a rarefied gas (Bird’s
approach) are based on the splitting of the
evolution of a system of particles into two
physical processes on the time intervast.
These processes are described by the equations

of of of of of
— = — 4+ —+E —+E —=
ot (1), ot &Xax &yay &202 0

They represent the change in the density of
the distribution caused by the spatially
homogeneous relaxation and the collision-free
transfer, respectively. It is assumed that the time
interval At is sufficiently small for these
processes to be considered as independein;
of the order of magnitude of the mean free path,
and the size of the cell is of the order of
magnitude of the local mean free path.

When the deviation from the equilibrium
state is small, the stage of the collision
(relaxation) simulation can be replaced by a
procedure of generating particle velocities in
accordance with the given distribution.

Inviscid flows can be modeled assuming
that the result of relaxation in a cell is the
establishment of an equilibrium distribution.
The algorithm used to simulate the flows of an
inviscid compressible ideal gas by the DSS
method based on the use of the locally
equilibrium distribution functiofO consists of
the following steps. 1) Specification of the
initial values of the macroparameters for each
cell and the specification of the number of
particles in each cell on the basis of the given

(the conservative property of the generation
algorithm with respect to the momentum and
energy). 5)Simulation of the transfer of the
particles in time At with the boundary
conditions taken into account. 6) Calculation of
the macroparameters of the particles in the cells
after the transfer. 7) Repetition of Steps (2)—(6)
up to a certain moment in time.

The initial values for the macroparameters
are chosen using the conditions of the
nonstationary problem or wusing an initial
approximation for the solution of the stationary
problem (Step 1). The DSS method can be
modified for inviscid flows so as to reduce the
computational effort for the generation of
particle velocities in each cell. Namely, once a
set of velocities corresponding to the unit
temperature and the zero mean velocity is
generated, it can be then used for various mean
velocities and temperatures in each cell. The
procedure of the random distribution of the
particles over the cell (Step 2) at each time step
makes it possible to avoid the correlations that
can appear when the same set of thermal
velocities is used. Since the precalculated set of
velocities is fixed and the actual number of
particles in the cells is variable, weight
coefficients are used to ensure the validity of the
conservation laws.

The number of particles in a cell that is
necessary for the simulation is determined in

such a way that the statistical erox JT /YN
satisfies the error consistency condition
0 ~ O(Ax, At). Here,N is the number of particles
in the cell.

There is no need for tracing each particle
during the entire calculation process because the
distribution density is assumed to be given. The
particles are traced individually only in the
transfer process in order to count the
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macroparameters in the cells at the next time assumed that the reflection of the particles is

step.

The expressions for the components of the
thermal velocity (Step 3) can be obtained by
simulating the normally distributed random
variable

&, = /Zl:aT,/—ln a, Cos(2r.,)
2K, T J-Ina, cos(zw,)

g, = /Zl:aT,/—ln a., COS(2ta,)

Here, ak is independent random numbers
that are uniformly distributed on the interval (O,
1). In order to reproduce the mean velocity more
accurately, it is reasonable to use the following
symmetrized algorithm: the thermal velocities
of the particles with the odd indexes are
calculated, and the thermal velocities of the

specular. It can be shown that this corresponds
to the impermeability condition in the Euler
equations. The conditions on the exterior
boundaries through which the flow enters the
domain and leaves it must correspond to the
flow regime. Additional constraints can be taken
into account, such as the condition that the
fluxes of the mass, momentum, and energy are
constant (the independency of these quantities
of statistical fluctuations).

After the transfer step, the new values of
the macroparameters in the cells are calculated
with account for all the particles that arrived
from the neighboring cells (Step 6):

t+At 1 & t+At
V= N D
1=1

_ 2 & fm t+AL _\ st+Aty2
——(3+V)kBN§{3(&. v )+s.}

Under the local equilibrium condition,

t+At

particles with the even indexes are set equal 10 e internal degrees of freedom are taken into

the velocities of the corresponding odd particles
with the opposite sign.

Since the number of the modeled

particles is bounded, the temperature of the

generated set of velocities is slightly different

from the temperature used to generate it. For
this reason, a correction is required (Step 4). Let
us write the actual temperature of the generated

set:

T -1 ZN:§2
" 3RNZ

Here, R = k/m and N is the number of
particles in a cell. Multiply the velocities by

JT/T, to make the temperature equal to the

given one. Then, all the conservativeness
conditions are satisfied:

PP T
N;g' =0, 3RN2&'

i=1

The coordinates of the particles at the step

of the collision-free transfer (Step 5) are
modified by the rule

tHAL _ ot t+AL
r =n +<t:| At

At this step, the particles are assigned the

internal energiesl to take into account the

4

account by adding the teren= vk, T/2, where

T is the temperature in the cell from which the
particle arrived andv is the number of the
internal degrees of freedom. In such a system,
the number of particles, the mean velocity, and
the temperature are the working macroscopic
variables.

The time stepAt is chosen from the
condition that the particles belonging to the
main group (i.e., the particles whose velocity
differs from the macroscopic velocity, (v, w)
not greater than by the characteristic thermal
velocity a) must be transferred not more than by
a single cell:

AX Ay Az

(u+a (v+3d (w+ 3

here, a is the characteristic thermal velocity;
e.g.,a=+2RT = g/2/y . It follows thatCFL<1.

The scale of the mean free path is not used
in this model; therefore, the space size of the
cells is chosen in the same way as for the
continuous media.

There is no clear stability condition for this
method: ifCFL > 1, then the particles can pass

At :CFLxmin[

internal degrees of freedom. Wher! _the particles several cells, the algorithm remains the same,
are transferred, the boundary conditions must be put its accuracy is lower. The condition imposed
satisfied. Concerning the rigid walls, it is
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on At is accuracy rather than a stability
condition. The DSS method applied to inviscid
flows is efficient in the regions of the flow in

which the deviation from the equilibrium state is
small. It reduces the computational cost of
calculating the particle velocities after the
collisions.

5 Description of turbulent flows: the fluid
particles model

By way of generalizing the application of
kinetic models in mechanics of continuum, an
attempt was made to describe turbulent flows
and, in particular, the dissipation of a turbulent
spot. Here, as in rarefied gas dynamics, the
problem is solved in terms of the distribution
function. However, the pulsation of the velocity
of a fluid particlev is used as an argument
rather than the molecular velocity. It was
Prandtl who first noticed a similarity between a
rarefied gas and a turbulent fluid. In Yanitskii's
model, each particle in a cell has a new
property. As before, a fluid particle is

COMPUTATIONAL AERODYNAMICS

of
V—,
0X
the turbulent dissipation of energy
10,,
=2 (vt),
21, 0V
and the redistribution of energy
fy —f

Ty

We numerically solved the spot dissipation
problem in which the energy is initially
concentrated in the region of radiug, the
characteristic radius of the spotrigt), and the
density of the turbulent energy Ey(t) at the
center of the spot. The initial data are as
follows:

F(0r )= f,(r V), B (r) = E,iexp(—:—zj

o] |

3
4nkE,

]3/2 % 3\/'2 J
exp —
4E,()

The numerical results are compared with

characterized by its physical coordinates and its the experimental ones(= r«(t)/ro andEn(t) =

velocity. For the distribution density of the

particles, a kinetic equation is proposed that is
similar to the model equation in rarefied gas
dynamics. The main purpose of such a
consideration is to retain the main principles of
the direct statistical simulation [16, 20]. To

describe turbulence, the following Onufriev

kinetic equation is used:

o L O 10y
ot  ox 2t ,0v T,
Here,

3 3/2 3\/,2
() o -
4nE 4E

distribution and E is the turbulent energy

v J is the normal

E/Eo) (Fig. 2) [16, 20].
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\-

Fig. 2. Dissipation of the turbulent spot (the
initial region)

The kinetic models of turbulence (Figs. 3-

model equation.

The simulation scheme
according to the same principles as in rarefied
gas dynamics. Fluid particles in the cells are
considered, and the process is split into three
steps: the convective transport

) _ the pulsations at the level of the distribution
is organized fynction.



Fig. 3. TrTe distribution of the sb::ecific energy in

a turbulent spot
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Fig. 4. The distribution of the turbulent energy
of interacting spots

Such an approach to the description of
turbulence seems to be promising because it
makes it possible to take into account the large-
scale turbulent process directly using the
transport equation schemes and take into
account the small-scale pulsations using the
statistical simulation.

6 Conclusions

The Development of Monte Carlo methods
in the computational aerodynamics of rarefied
gases is given, and application of these methods
in unconventional fields is described. A short
history of these methods is presented, and their

advantages and drawbacks are discussed.

Possible directions of the development of the
statistical simulation methods are discussed.
Results of the calculation of the aerodynamic
characteristics of the space vehicle at various
degrees of angle of attack and various gas
rarefaction and are presented. The new
directions in the development of the statistical
simulation methods are discussed. The
distribution of the specific energy in a turbulent
spot was presented.
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