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Abstract  

The short history of development and 
advantage of Monte Carlo methods in the 
computational aerodynamics of rarefied gases 
and application of these methods in 
unconventional fields are described in the 
present paper. The direct statistical simulation 
of aerodynamic processes with the solution of 
kinetic equations is established; it is shown that 
the modern stage of the development of 
computational methods is impossible without 
the use of the complex approach to the 
development of algorithms (its physical nature, 
mathematical model, the theory of 
computational mathematics, and stochastic 
processes). Possible directions of the 
development of the statistical simulation 
methods are discussed.  

1 Introduction  

The appearance of statistical simulation 
(Monte Carlo) methods in various fields of 
applied mathematics is usually caused by the 
appearance of qualitatively new practical 
problems. The examples include the creation of 
nuclear weapons, space development, the study 
of atmospheric optics phenomena, and the study 
of physicochemical and turbulence processes. 
One good definition is as follows: The Monte 
Carlo methods are the methods designed for 
solving mathematical problems (e.g., systems of 
algebraic, differential, or integral equations) 
based on the direct statistical simulation of 
physical, chemical, biological, economic, social, 

and other processes using the generation and 
transformation of random variables. 

The first paper devoted to the Monte Carlo 
method was published as early as in 1873 [1]. It 
described the experimental determination of  π 
by a realization of the stochastic process of 
tossing a needle on a sheet of ruled paper. A 
striking example is the use of von Neumann’s 
idea to simulate the neutron trajectories in the 
Los Alamos laboratory in 1940. Although the 
Monte Carlo methods require a large amount of 
computations, the absence of computers at that 
time did not discourage the researchers. The 
name of these methods comes from the capital 
of the Principality of Monaco, which is famous 
for its Casino; indeed, the roulettes used in the 
casino are perfect tools for generating random 
numbers. The first paper [2] that systematically 
expanded this method was published in 1949. In 
that paper, the Monte Carlo method was used to 
solve linear integral equations. It could easily be 
guessed that these equations were related to the 
problem of the passage of neutrons through 
matter. In Russia, studies concerning the Monte 
Carlo methods appeared after the Geneva 
International Conference on the Peaceful Uses 
of Atomic Energy. One of the first Russian 
studies is [3]. 

The revelation of the methods of statistical 
modeling (Monte-Carlo) in various areas of the 
applied mathematics is connected as a rule with 
the necessity of solution of the qualitatively new 
problems, arising from the needs of practice. 
Such a situation appeared by the creation of the 
atomic weapon, at the initial stage of a 
mastering of space, by the investigation of the 
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phenomena of atmospheric optics, the physical 
chemistry, and the modeling of turbulence flow 
(G. von Neumann, N. Metropolis, S. Ulam, V.S. 
Vladimirov, I.M. Sobol, G.I. Marchuk, S.M. 
Ermakov, G.A. Mikhailov, G.A. Bird, J.K. 
Haviland, M.D. Lavin, D.I. Pullin, M.N. Kogan, 
V.A. Perepukhov, O.M. Beloserkovskii, , Yu.I. 
Khlopkov, V.E. Yanitskii, M.S. Ivanov, A.I. 
Eropheev).  

The general scheme of the Monte Carlo 
method is based on the central limit theorem, 
which states that the random variable 

1

N

i
i

Y X
=

=∑  

is equal to the sum of a large number of 
random variables with the same expectation m 
and the same variance σ2 has the normal 
distribution with the expectation N and the 
variance N σ2. Assume that we want to solve an 
equation or find the result of a certain process I. 
If we can construct the random variable ξ with 
the probability density p(x) such that the 
expectation of this variable is equal to the 
unknown solution M(ξ) = I, then we obtain a 
simple method for estimating the solution and 
its error: 

1
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This implies the following general 
properties of the Monte Carlo methods: 

(1) The absolute convergence to the 
solution with the rate 1/N. 

(2) An unfavorable dependence of the error 
ε on the number of trials: ε ≈ 1/ N  (to reduce 
the error by an order of magnitude, the number 
of trials must by increased by two orders of 
magnitude). 

(3) The main method of reducing the error 
is the variance reduction; in other words, this is 
a good choice of the probability density p(x) of 
the random variable ξ in accordance with the 
physical and mathematical formulation of the 
problem. 

(4) The error is independent of the 
dimensionality of the problem. 

(5) A simple structure of the computation 
algorithm (the computations needed to realize a 
proper random variable are repeated N times). 

(6) The structure of the random variable ξ 
can be generally based on a physical model of 
the process that does not require a formulation 
of the controlling equations as in regular 
methods; this fact is increasingly important for 
modern problems. 

 We illustrate the main features of the 
Monte Carlo methods and the conditions under 
which these methods outperform the 
conventional finite difference methods or are 
inferior to them using the following example. 
Suppose that we want to evaluate the definite 
integral of a continuous function over the 
interval [a, b]: 

 To evaluate this integral using the Monte 
Carlo method, we construct a random variable 
with the probability density p(x) such that its 
expectation  

M( ) ( )p x dx
∞

−∞

= ∫ξ ξ  

is equal to I. Now, if we set ξξξξ = f(x)/p(x) 
within the integration limits, then we have, by 
the central limit theorem, 

1

1 3σN

i
i

I
N N=

= ±∑ξ    (1) 

On the one hand, the evaluation of I by 
formula (1) can be interpreted as the solution of 
a mathematically stated problem; on the other 
hand, it can be interpreted as a direct simulation 
of the area under the plot of f(x). The evaluation 
of the one-dimensional integral I1 by the Monte 
Carlo method corresponds to the computation of 
I using the rectangular rule with the step ∆x ≈ 1/ 

N  and an error O(∆x). If f(x) is sufficiently 
“good”, the integral I1 in the one-dimensional 
case can be calculated accurate to O(∆x2) using 
the trapezoid rule, accurate to O(∆x3) using the 
parabolic rule, and to any desired accuracy 
without a considerable increase in the 
computational effort. In the multidimensional 
case, the difficulties in using schemes of a high 
order of accuracy increase; for this reason, they 
are rarely used for the calculation of n-
dimensional integrals In for n ≥ 3. 

Let us compare the efficiency of the 
regular and statistical methods for the problem 
described above. Let n be the dimensionality of 
the problem, Y be the number of nodes on an 
axis, R = Y n be the total number of nodes for the 
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regular methods, q be the order of accuracy, N 
be the number of statistical trials, and ν be the 
number of operations needed to process one 
node (to perform one statistical trial). Then, εL = 
Y –q is the error of the regular methods, εK = N –
1/2 is the error of the statistical methods, 

/(ε) ε
n q

LL vR v −= =  is the number of operations when 
the problem is solved by a regular method, and 

-2(ε) εKK vN v= =  is the number of operations when 
the problem is solved by the Monte Carlo 
method. Then, in the case of an equal number of 
operations needed to obtain a solution with the 
same accuracy using each of the methods, we 
have n = 2q. Therefore, for n ≥ 3 and q = 1 
(first-order schemes), the Monte Carlo methods 
are preferable. For other classes of problems, 
the relation between the efficiency of the 
methods can be different. 

2  The Monte Carlo methods in 
computational aerodynamics  

Under the assumption of binary collisions 
and the molecular chaos hypothesis, the 
dynamics of a rarefied gas is described by the 
Boltzmann integro-differential kinetic equation 
for the single-particle distribution density: 

1 1 1

ξ

( ) ε ( )

f
f

t

f f f f gbdbd d J f

∂
∂

+ ∇ =

′ ′− =∫ ξ

 (2) 

Here, f = f(t, x, y, z, ξx, ξy, ξz) is the 
distribution density. f, f1, f′, f1′, correspond to the 
molecules with the velocities ξ, ξ1 and ξ', 
before and after the collision, g is the relative 
velocity of the molecules in binary collisions 

1| | | |g = = −g ξ ξ , and b and ε are the impact 
parameter and the azimuth angle for the 
collision. 

The complex nonlinear structure of the 
collision integral and the large number of 
variables (seven in the general case) present 
severe difficulties for the analysis including the 
numerical analysis. The high dimension, the 
probabilistic nature of the kinetic processes, and 
complex molecular interaction models are the 
natural prerequisites for the application of the 
Monte Carlo methods. Historically, the 

numerical statistical methods in rarefied gas 
dynamics developed in three directions: 

(1) The use of the Monte Carlo methods to 
evaluate the collision integrals in the regular 
finite difference schemes for solving the kinetic 
equations. 

(2) The direct statistical simulation of 
physical phenomena, which is subdivided into 
two approaches: the simulation of trajectories of 
test particles by the Haviland method [4] and 
the simulation of the evolution of the ensemble 
of particles by the Bird method [5]. 

(3) The construction of a stochastic process 
using the Ulam–Neumann procedure [6] 
corresponding to the solution of the kinetic 
equation. 

The hierarchy of levels of the description 
of large molecular systems includes a wide 
range of approaches, and various descriptions of 
the molecular dynamics at different levels can 
be used for constructing efficient statistical 
simulation methods. 

The most detailed level of description is a 
dynamical system. To describe a system 
consisting of a large number N of particles (a 
molecular gas is a system of this kind), one 
must specify the initial coordinates and velocity 
of each molecule rj, xj and the evolution 
equations of this system  

2

2

N
j

ij
i j

d
m R

dt ≠

=∑
r

    (3) 

The solution of such a system is an 
unrealizable (cannot be solved in practice) 
problem even for a very rarefied gas. Indeed, at 
a height of 400 km (the most popular satellite 
orbits), one cubic centimeter contains 109 
molecules. For this reason, a less detailed 
statistical description is used. 

Following the Gibbs formalism, rather than 
consider a single system, an ensemble of 
systems in the 6N-dimensional Γ-space 
distributed according to the N-particle 
distribution function ( )1 1, ,..., , ,...,N N Nf t f=r r ξ ξ  is 

considered. This function is interpreted as the 
probability of finding the system in the 
neighborhood dr1…drNdξ1…dξN of the point 
r1,…, rN, ξ1, …, ξN at the moment t:  

1 1.. ...N N NdW f d d d d= r r ξ ξ  
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 Such an ensemble is described by the 
Liouville equation 

1 1

0
N N N

ijN N N
i

i i j ii i

Ff f f

t m= ≠ =

∂ ∂ ∂+ + =
∂ ∂ ∂∑ ∑∑ξ

r ξ
 (4) 

From now on, the Liouville equation and 
all the subsequent kinetic equations following 
from the Bogolyubov chain including the last 
Boltzmann equation have a probabilistic nature. 
Although Eq. (4) is simpler than system (3), it 
takes into account the collisions of N molecules 
and is very difficult to analyze. A less detailed 
description is achieved by roughening the 
description using s-particle distribution 
functions 1 1... ...s N s N s Nf f d d d d+ += ∫ r r ξ ξ , which 

determine the probability to simultaneously find 
s particles independently of the state of the 
remaining (N–s) particles. 

Following Bogolyubov’s ideas, we obtain 
the chain of linked equations  

1 1

ξ
ξ

s s s
ijs s s

i
i i j ii i

Ff f f

t m= = ≠

∂ ∂ ∂+ + =
∂ ∂ ∂∑ ∑∑r

 

, 1

1 1 1
1

( ) ξi s
s

s s s
i i

F
N s f d d

v m
+

+ + +
=

∂− −
∂∑ ∫ r  (5)  

up to the single-particle distribution 
function F1 = f(t, r, ξ) corresponding to the 
Boltzmann gas, which only takes into account 
the binary collisions: 

( )

2 2 2
2 2 2

1 1 1

2

2 1 2 1 2 1
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i i

Ff f f

t m

F
N f d d

m

= = =

+ + +
=

∂ ∂ ∂+ + =
∂ ∂ ∂

∂− −
∂

∑ ∑∑

∑ ∫

ξ
r ξ

r ξ
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Following Boltzmann, we assume that the 
molecules are spherically symmetric and accept 
the molecular chaos hypothesis F2(t, r1, r2, ξ1, 
ξ2) = F1(t, r1, ξ1)F1(t, r2, ξ2) to obtain Eq. (2). It 
is very interesting to consider a particular case 
of Liouville’s equation (4) and of Bogolyubov’s 
chain (5) that describe a spatially homogeneous 
gas consisting of a bounded number of particles 
and corresponding to two-particle collisions; in 
this case, on the final link of the chain, we 
obtain the Kac master equation [7] 

1 1

2 1 2 2 1 2 12 12 2

( , ) 1

( , , ) ( , , ) σ

t N

t N

t t g d d

ϕ

ϕ ϕ

∂ −=
∂

 ′′ −
 ∫

ξ

ξ ξ ξ ξ ξ

�

� � � � �

 (6) 

where ϕ1 and ϕ2 are the one- and two-
particle distribution functions. In contrast to the 
Boltzmann equation, Eq. (6) is linear, which 
will be used in the development and justification 
of efficient numerical direct statistical 
simulation schemes. 

Returning to the Boltzmann equation, we 
easily obtain all the macroscopic parameters 
from the definition of the function f. For 
example, the number of molecules n in a unit 
volume of the gas is  

( , ) ( , , )n t f t d= ∫r r ξ ξ  

The mean velocity of the molecules, the 
strain tensor, and the energy flux are determined 
by the relations  

1
( , ) ( , , )t f t d

n
= ∫v r ξ r ξ ξ , 

( , , )ij i jP m c c f t d= ∫ r ξ ξ , 

2 ( , , )
2i i

m
q c c f t d= ∫ r ξ ξ , 

where c = ξξξξ – V is the thermal velocity of 
the molecules. 

The mean energy of the heat motion of 
molecules is usually described in terms of the 
temperature 

23 1
( , , )

2 2

mc
kT f t d

n
= ∫ r ξ ξ  

Applying the Chapman–Enskog procedure 
to the Boltzmann equation, we obtain the 
hydrodynamical level of description. This 
sequentially yields the Euler, Navier–Stokes, 
Barnett, etc., equations: 

ρρ
0i

i

V

t x

∂∂ + =
∂ ∂

 

1

ρ
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j i

j j

P
V V

t x x

  ∂∂ ∂+ = −  ∂ ∂ ∂ 
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ρ

2
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p V
R V T P

t x x x
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3
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VV V
p
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∂∂ ∂µ δ
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 
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T
q
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∂λ
∂

= −   ρp RT=  

Following the general logic of the 
presentation, we may assume that the dynamics 
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of continuum, being a particular case of the 
kinetic treatment of the gas motion, has some 
statistical features; this fact will be used below. 

3 Construction of efficient statistical 
simulation methods 

The key role in rarefied gas dynamics is 
certainly played by the direct statistical 
simulation methods. The studies on the 
construction of the statistical procedures based 
on the direct simulation opened prospects for 
improving the efficiency of such methods by 
decreasing the computational cost and the 
required computer memory compared to the 
initial modifications of these methods. This 
made it possible to apply such methods for 
solving two-dimensional and then (with account 
for the actual properties of gases) three-
dimensional problems. However, in the 
investigation and justification of these methods, 
it is impossible to do without the kinetic 
equation that describes the phenomenon being 
simulated. The establishment of the relationship 
of the statistical procedure with the solution to 
the kinetic equation is necessary for a number of 
reasons. First, this is important in order to be 
sure that the solution is correct and to enable 
one to use the results as a benchmark because 
many typical problems were first solved by the 
direct simulation methods. 

 Second, the establishment of the 
correspondence between the simulation result 
and the solution makes it possible to use the 
well-developed techniques of regular numerical 
and statistical methods of solving the equations 
of mathematical physics for the analysis and 
improvement of the methods efficiency. Third, 
this makes it possible to form a general 
approach to the construction of the statistical 
methods and eliminates various incorrect 
modifications. 

It must be stressed that the complexity of 
the practical problems of high altitude 
hypersonic aerodynamics requires the use of all 
the available theoretical, experimental, and 
numerical techniques developed for the 
investigation of rarefied gas flows. In this 
regard, the analysis of the kinetic equation and 
of its models becomes especially important. 

Various approximate representations of the 
collision integral and of the distribution function 
are often used. Among them, the most 
widespread approximations of the kinetic 
equation are the following ones. 
1) The model Krook equation (see [8]) 

 0( )
df

f f
dt

ν= −    (9) 

where ν is the frequency of collisions and  
3/ 2

2
0 exp ( )

2π 2

m m
f n v

kT kT
   = −   
   

ξ  

 is the equilibrium distribution function. 
2) The Holway ellipsoidal model  

( )e

df
v f f

dt
= −  

where fe is the ellipsoidal distribution 
function. 
3) The approximation Shakhov model (see [9]), 
which, in contrast to the preceding models, 
yields the correct Prandtl number Pr: 

2
0 α α

2

( ),

4 5
1 (1 Pr) ,

5 2

1
i i

df
v f f f

dt

f s c c

s c c fd
n

+ += − =

  + − −  
  

= ∫ ξ

 (10) 

where c is the dimensionless thermal 
molecular velocity. 
4) We also mention the linearized Boltzmann 
equation, which is rigorously derived from the 
complete Boltzmann equation under the 
condition that the distribution function is almost 
an equilibrium one: 

( ) 1 1 1( , )
d

k L d
dt

ϕ ϕ ϕ= + ∫ξ ξ ξ ξ  

Here, f = f0(1 + ϕ), ϕ <<1, and k(ξ) and 
L(ξ,ξ1) are given functions of the molecular 
velocities depending on the kind of the particles. 

 The model equations, in contrast to the 
linearized equation, are not rigorously derived 
from the Boltzmann equation; moreover, they 
are much more nonlinear than the original 
equation. However, they can prove to be simpler 
in practical implementation. 

From the practical point of view, the direct 
statistical simulation methods based on the Bird 
and Haviland approaches are naturally the most 



YU. I. KHLOPKOV 

6 

efficient, and their modifications have 
dominated the computational aerodynamics. 

Presently, the leading place in rarefied gas 
dynamics is occupied by the Bird method; 
various modifications of this method developed 
by Russian researchers (see, e.g., [10–23]) 
improved the efficiency of the original method 
by several orders of magnitude. The idea of the 
method is to split the evolution of the system in 
a small interval of time into two physical 
processes: 1. relaxation in accordance with the 
collision operator in the kinetic equation 

( )
f

J f
t

∂ =
∂

, 2. free molecular transfer f f
t

∂ = − ∇
∂

ξ . 

This is the well-known first-order splitting 
scheme with respect to ∆t for any operator 
equation. In this case, this approach is attractive 
because it splits the dynamics of a very complex 
kinetic system into two clear physical processes. 
The distribution function is modeled by N 
particles that first collide in each cell between 
themselves with a given frequency during the 
time ∆t and then move at the distance ξj∆t 
during the time ∆t. 

The central role in the nonstationary 
statistical simulation method is played by the 
procedure used to count the collisions. A pair of 
particles is chosen for collision in accordance 
with the collision frequency independently of 
the distance between them in the given cell. The 
velocities of the particles after the collision are 
chosen according to the molecular interaction 
laws. Although the efficiency of the method 
depends on many parameters of the computation 
scheme (relaxation, splitting with respect to 
time, stabilization, time step, space grid, and so 
on), the main studies devoted to the 
improvement of the method focus on the 
improvement of the collision procedure and on 
reducing the statistical error because this is the 
main instrument that makes it possible to reduce 
the number of particles in the cells and thus 
decrease the computation time and the 
requirements for computer memory. For 
example, a modification of the collision 
procedure was proposed in [18] for a particular 
case of Maxwell’s molecules. With this 
modification, the computation results are almost 
independent of the number of particles in a cell 
in the range from 40 to 6. (With the ordinary 

computation scheme, the number of particles in 
a cell must be about 30). In [11–16], a general 
method that is independent of the kind of 
molecules was proposed; in that method, the 
subsystem of particles in each cell is considered 
as an N-particle Kac model (6) at the stage of 
collisions. 

The simulation of a collision is reduced to 
a statistical realization of the evolution of model 
(6) during the time ∆t rather than to the 
realization of the Boltzmann equation (2). The 
collision time in the Kac model is calculated in 
accordance with collision statistics in the ideal 
gas following the Bernoulli scheme. This 
scheme makes it possible to use a considerably 
smaller number of particles in a cell and a finer 
grid. By contrast, Eq. (6) does not rely on this 
assumption; therefore, the collision is calculated 
as a Markov process. On the other hand, as N → 
∞, the Kac model is completely equivalent to 
the spatially homogeneous Boltzmann equation. 
Thus, the approach developed by 
Belotserkovskii and Yanitskii provides a basis 
for constructing efficient numerical schemes for 
solving three-dimensional aerodynamic flow 
problems, and, on the other hand, it solves the 
important methodological problem of the 
equivalence of the numerical method and the 
solution of the kinetic equation. A huge number 
of studies are devoted to the methods of the 
traditional use of statistical simulation.  

 

 
Fig. 1. 1) Free molecular flow, 2) transient 
mode (Re = 1), 3) transient mode (Re = 10), 4) 
transition mode (Re = 100), 5) continuum 
medium mode. 
 

Applications in the case of smaller 
Knudsen numbers Kn present considerable 
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computational difficulties due to the reduced 
mean free path of the molecules and, 
respectively, a finer step with respect to time 
and space; in the case of the direct statistical 
simulation; the number of particles that simulate 
the distribution function is also increased. The 
method described above makes it possible to 
calculate the aerodynamic characteristics of real 
designs at all range of flow regions (Fig. 1). 

4 The direct statistical simulation method for 
inviscid ideal gas flows  

The relationship between the kinetic and 
the continuous medium models can be 
illustrated using the direct statistical simulation 
(DSS) method for inviscid flows [24, 25]. The 
DSS methods for flows in a rarefied gas (Bird’s 
approach) are based on the splitting of the 
evolution of a system of particles into two 
physical processes on the time interval ∆t. 
These processes are described by the equations 

( , )
f

I f f
t

∂ =
∂

,  0x y z

f f f f

t x y z

∂ ∂ ∂ ∂+ + + =
∂ ∂ ∂ ∂

ξ ξ ξ  

They represent the change in the density of 
the distribution caused by the spatially 
homogeneous relaxation and the collision-free 
transfer, respectively. It is assumed that the time 
interval ∆t is sufficiently small for these 
processes to be considered as independent; ∆t is 
of the order of magnitude of the mean free path, 
and the size of the cell is of the order of 
magnitude of the local mean free path. 

When the deviation from the equilibrium 
state is small, the stage of the collision 
(relaxation) simulation can be replaced by a 
procedure of generating particle velocities in 
accordance with the given distribution. 

 Inviscid flows can be modeled assuming 
that the result of relaxation in a cell is the 
establishment of an equilibrium distribution. 
The algorithm used to simulate the flows of an 
inviscid compressible ideal gas by the DSS 
method based on the use of the locally 
equilibrium distribution function f0 consists of 
the following steps. 1) Specification of the 
initial values of the macroparameters for each 
cell and the specification of the number of 
particles in each cell on the basis of the given 

statistics level depending on the volume of the 
cell. 2) Distribution of the particles over the 
volume of the cell (specification of the 
coordinates). 3) Generation of random velocities 
of the particles in the cell according to the mean 
velocity and the temperature on the basis of the 
distribution density f0 . 4) Correction of the 
velocities to fully correspond to the mean values 
(the conservative property of the generation 
algorithm with respect to the momentum and 
energy). 5)Simulation of the transfer of the 
particles in time ∆t with the boundary 
conditions taken into account. 6) Calculation of 
the macroparameters of the particles in the cells 
after the transfer. 7) Repetition of Steps (2)–(6) 
up to a certain moment in time. 

The initial values for the macroparameters 
are chosen using the conditions of the 
nonstationary problem or using an initial 
approximation for the solution of the stationary 
problem (Step 1). The DSS method can be 
modified for inviscid flows so as to reduce the 
computational effort for the generation of 
particle velocities in each cell. Namely, once a 
set of velocities corresponding to the unit 
temperature and the zero mean velocity is 
generated, it can be then used for various mean 
velocities and temperatures in each cell. The 
procedure of the random distribution of the 
particles over the cell (Step 2) at each time step 
makes it possible to avoid the correlations that 
can appear when the same set of thermal 
velocities is used. Since the precalculated set of 
velocities is fixed and the actual number of 
particles in the cells is variable, weight 
coefficients are used to ensure the validity of the 
conservation laws. 

 The number of particles in a cell that is 
necessary for the simulation is determined in 

such a way that the statistical error δ /T N≈  
satisfies the error consistency condition 
δ ~ O(∆x, ∆t). Here, N is the number of particles 
in the cell. 

There is no need for tracing each particle 
during the entire calculation process because the 
distribution density is assumed to be given. The 
particles are traced individually only in the 
transfer process in order to count the 
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macroparameters in the cells at the next time 
step. 

The expressions for the components of the 
thermal velocity (Step 3) can be obtained by 
simulating the normally distributed random 
variable 

1 2

2
lnα cos(2πα )B

x

k T

m
= −ξ  

1 2

2
ln α cos(2πα )B

y

k T

m
= −ξ  

2 3

2
lnα cos(2πα )B

z

k T

m
= −ξ  

Here, αk is independent random numbers 
that are uniformly distributed on the interval (0, 
1). In order to reproduce the mean velocity more 
accurately, it is reasonable to use the following 
symmetrized algorithm: the thermal velocities 
of the particles with the odd indexes are 
calculated, and the thermal velocities of the 
particles with the even indexes are set equal to 
the velocities of the corresponding odd particles 
with the opposite sign. 

 Since the number of the modeled 
particles is bounded, the temperature of the 
generated set of velocities is slightly different 
from the temperature used to generate it. For 
this reason, a correction is required (Step 4). Let 
us write the actual temperature of the generated 
set: 

2

1

1

3

N

N l
i

T
RN =

= ∑ξ  

Here, R = k
B
/m and N is the number of 

particles in a cell. Multiply the velocities by 
/ NT T to make the temperature equal to the 

given one. Then, all the conservativeness 
conditions are satisfied: 

1

1
0

N

l
lN =

=∑ξ , 2

1

1

3

N

l
i

T
RN =

=∑ξ  

The coordinates of the particles at the step 
of the collision-free transfer (Step 5) are 
modified by the rule 

ξt t t t t
l l l t+∆ +∆= + ∆r r  

At this step, the particles are assigned the 
internal energies εl to take into account the 
internal degrees of freedom. When the particles 
are transferred, the boundary conditions must be 
satisfied. Concerning the rigid walls, it is 

assumed that the reflection of the particles is 
specular. It can be shown that this corresponds 
to the impermeability condition in the Euler 
equations. The conditions on the exterior 
boundaries through which the flow enters the 
domain and leaves it must correspond to the 
flow regime. Additional constraints can be taken 
into account, such as the condition that the 
fluxes of the mass, momentum, and energy are 
constant (the independency of these quantities 
of statistical fluctuations). 

 After the transfer step, the new values of 
the macroparameters in the cells are calculated 
with account for all the particles that arrived 
from the neighboring cells (Step 6): 

1

1 N
t t t t

l
lN

+∆ +∆

=

= ∑V ξ  

2

1

2
( ) ε

(3 ) 2

N
t t t t t t

l l
lB

m
T

v k N
+∆ +∆ +∆

=

 = − + +  
∑ ξ V  

 Under the local equilibrium condition, 
the internal degrees of freedom are taken into 
account by adding the term εl = vkBT

t/2, where 
T' is the temperature in the cell from which the 
particle arrived and v is the number of the 
internal degrees of freedom. In such a system, 
the number of particles, the mean velocity, and 
the temperature are the working macroscopic 
variables. 

The time step ∆t is chosen from the 
condition that the particles belonging to the 
main group (i.e., the particles whose velocity 
differs from the macroscopic velocity (u, v, w) 
not greater than by the characteristic thermal 
velocity a) must be transferred not more than by 
a single cell: 

min , ,
( ) ( ) ( )

x y z
t CFL

u a v a w a

 ∆ ∆ ∆∆ = ×   + + + 
 

here, a is the characteristic thermal velocity; 
e.g., 2 2 /γa RT c= = . It follows that CFL≤1. 

The scale of the mean free path is not used 
in this model; therefore, the space size of the 
cells is chosen in the same way as for the 
continuous media. 

There is no clear stability condition for this 
method: if CFL > 1, then the particles can pass 
several cells, the algorithm remains the same, 
but its accuracy is lower. The condition imposed 
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on ∆t is accuracy rather than a stability 
condition. The DSS method applied to inviscid 
flows is efficient in the regions of the flow in 
which the deviation from the equilibrium state is 
small. It reduces the computational cost of 
calculating the particle velocities after the 
collisions. 

5 Description of turbulent flows: the fluid 
particles modelparticles modelparticles modelparticles model    

By way of generalizing the application of 
kinetic models in mechanics of continuum, an 
attempt was made to describe turbulent flows 
and, in particular, the dissipation of a turbulent 
spot. Here, as in rarefied gas dynamics, the 
problem is solved in terms of the distribution 
function. However, the pulsation of the velocity 
of a fluid particle v is used as an argument 
rather than the molecular velocity x. It was 
Prandtl who first noticed a similarity between a 
rarefied gas and a turbulent fluid. In Yanitskii’s 
model, each particle in a cell has a new 
property. As before, a fluid particle is 
characterized by its physical coordinates and its 
velocity. For the distribution density of the 
particles, a kinetic equation is proposed that is 
similar to the model equation in rarefied gas 
dynamics. The main purpose of such a 
consideration is to retain the main principles of 
the direct statistical simulation [16, 20]. To 
describe turbulence, the following Onufriev 
kinetic equation is used: 

 

 ( )
1 2

1

2τ
Mf ff f

f
t

−∂ ∂ ∂ ′+ − =
∂ ∂ ∂

v v
x v τ

 

Here,  
3/ 2 23 3

exp
4π 4Mf E E

′  = −  
   

v
 is the normal 

distribution and E is the turbulent energy 
density. This equation is similar to the Krook 
model equation. 

The simulation scheme is organized 
according to the same principles as in rarefied 
gas dynamics. Fluid particles in the cells are 
considered, and the process is split into three 
steps: the convective transport  

f∂
∂

v
x

, 

the turbulent dissipation of energy  

( )
1

1

2τ
f

∂ ′−
∂

v
v

, 

and the redistribution of energy  

2τ

Mf f−
. 

We numerically solved the spot dissipation 
problem in which the energy is initially 
concentrated in the region of radius r0, the 
characteristic radius of the spot is r*(t), and the 
density of the turbulent energy is Em(t) at the 
center of the spot. The initial data are as 
follows: 

( ) ( )00, , ,f f=r v r v , ( )
2

0
0 2

0

expmE E
 

= − 
 

r
r

r
 

( )
3/ 2 2

0
0 0

3 3
, exp

4π 4 ( )
f

E E

   ′
= −   
   

v
r v

r
 

 
The numerical results are compared with 

the experimental ones (r* = r*(t)/r0 and Em(t) = 
E/E0) (Fig. 2) [16, 20].  

 

 
Fig. 2. Dissipation of the turbulent spot (the 
initial region) 
 

The kinetic models of turbulence (Figs. 3-
4) are more informative because they describe 
the pulsations at the level of the distribution 
function.  
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Fig. 3. The distribution of the specific energy in 
a turbulent spot 
 

 
Fig. 4. The distribution of the turbulent energy 
of interacting spots 
 

Such an approach to the description of 
turbulence seems to be promising because it 
makes it possible to take into account the large-
scale turbulent process directly using the 
transport equation schemes and take into 
account the small-scale pulsations using the 
statistical simulation. 

6 Conclusions 

The Development of Monte Carlo methods 
in the computational aerodynamics of rarefied 
gases is given, and application of these methods 
in unconventional fields is described. A short 
history of these methods is presented, and their 
advantages and drawbacks are discussed. 
Possible directions of the development of the 
statistical simulation methods are discussed. 
Results of the calculation of the aerodynamic 
characteristics of the space vehicle at various 
degrees of angle of attack and various gas 
rarefaction and are presented. The new 
directions in the development of the statistical 
simulation methods are discussed. The 
distribution of the specific energy in a turbulent 
spot was presented. 
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