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Abstract  

We have conducted numerical study for a 3D 

flapping wing in hovering using computational 

fluid dynamics, considering airfoils of a 

bumblebee and a morphing airfoil by 

controlling a hinge angle connecting the fore- 

and hindwings. The aerodynamic effects of 

insect airfoils have been investigated in addition 

to the effect of the variable-cambered flapping 

airfoil. The corrugation of a bumblebee is little 

effective on aerodynamic characteristics of a 
flapping wing. Positive cambered airfoils are 

effective on the aerodynamic characteristics. 

However, the effect is canceled out in the up- 

and downstrokes. As a result, the airfoils of the 

bumblebee do not exceed the flat plate airfoil in 

time-averaged aerodynamic characteristics for 

a flapping cycle, if the airfoil is rigid. By 

controlling the hinge angle connecting the fore- 

and hindwings, preferable camber can be 

attained in both the up- and downstrokes. As a 

result, the hinge-controlled variable-camber 

airfoil shows about 14% increase in the time-

averaged lift coefficient compared to the rigid 

flat airfoil.  

1  Introduction  

Insects are flying in viscous fluid at a low 

Reynolds number less than 104 because of their 
small sizes. Nevertheless, they have outstanding 

flight maneuverability and stability even in open 

air. So far, many studies have clarified the 

unsteady aerodynamic phenomena in insect 

flapping flight, such as delayed stall, rotational 

circulation, wake capture, and clap-and-fling 

[1–3]. Those aerodynamic mechanisms enhance 

lift in such a low Reynolds number regime by 

utilizing vortices around the wings. The 

outstanding flight ability of insects has attracted 

many researchers for the purpose of developing 

an insect-sized Micro Air Vehicle (MAV). 

Although some flapping type MAVs have 

succeeded in free flight [4], they have not yet 

attained comparable flight performance to that 

of insects. There may be any other novel 

techniques in insect flight we have not yet 

known.  

A flapping wing, unlike a fixed wing, is 
subjected to inflows from the upper surface in 

the upstroke and the lower surface in the 

downstroke. In addition, a flapping wing 

experiences large flow separation from the 

leading-edge and reattachment because it is 

usually used at a high angle of attack near 45 

deg. For these reasons, a cambered, corrugated, 

asymmetric airfoil, has been considered to be 

little effective on the aerodynamic 

characteristics for an insect-sized flapping wing. 

In fact, many studies for flapping wings have 

been conducted by using symmetrical flat plate 

models [1–3, 13–15].  

As is well known, insects have complicated 

airfoil shapes. The corrugated airfoils of 

dragonflies contribute to improving the 

aerodynamic characteristics in gliding flight [5–
7]. Although bumblebees cannot fly stopping 

their wings, they have large cambered and 

corrugated airfoils. Obviously, a cambered or 

corrugated airfoil enhances the rigidity of the 

wing structure; therefore, it contributes to the 

lightweight wing [8]. Aerodynamic effects of 

airfoils for an insect-sized flapping wing have 

not been investigated enough. Dickinson et al. 

have measured fluid force acting on a two-

dimensional wing with a camber when the wing 

was translated at fixed angles of attack at a 
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Reynolds number of 197 [9]. Usherwood and 

Ellington have measured aerodynamic force 

acting on two kinds of cambered wing in 

propeller-like rotation at fixed angles of attack 

at a Reynolds number of 8071 [10]. Luo and 

Sun have calculated unsteady aerodynamic 

force using computational fluid dynamics for 

three-dimensional flapping wing with a simple 

corrugated airfoil modeled by triangular waves 

at Reynolds numbers of 200 and 3500 [11]. 

These studies have reported that the cambered 

or corrugated airfoils were little effective on 

aerodynamic force for a flapping wing 
compared to a flat plate. However, their wing 

models were very simple and not modeled on 

the realistic airfoils of insects.  

A bumblebee has two pairs of fore- and 

hindwings shown in Fig. 1. There are many 

small hooks standing in a row at the leading-

edge of the hindwing as shown in Fig. 2. The 

hooks are connected to the trailing-edge of the 

forewing when the wings are spread. Therefore, 

the hindwing cannot be moved independently of 

the forewing. However, the hooks play a role as 

a hinge; the hinge angle between the fore- to 

hindwings can be changed. We have observed 

the wing motion of a bumblebee by using a 

high-speed video camera and confirmed that 

some variation of the hinge angle occurred 

during a flapping cycle, though any quantitative 
data has not been acquired. Controlling the 

hinge angle between the fore- and hindwings 

causes the airfoil shape to be varied during a 

flapping cycle, that is, a morphing flapping 

airfoil. So far, any studies for a flapping wing 

considering a hinge connecting the fore- and 

hindwings have not conducted as far as we 

know.  

In this study, we conduct a numerical study 

using computational fluid dynamics for a 3D 

insect-sized flapping wing with realistic airfoils 

of a bumblebee. First, the aerodynamic effect of 

the bumblebee’s airfoils are investigated when 

the airfoil is considered to be rigid. Second, we 

conduct numerical simulation for a 3D flapping 

wing with a morphing airfoil, which is achieved 

by actively controlling a hinge angle connecting 
fore- and hindwings. The aerodynamic effect of 

the hinge-controlled airfoil are investigated. 

 

 

Fig. 4. Representative airfoils at three span 

stations for a bumblebee wing. 

Fig. 3. 3D wing shape for a bumblebee. 

Forewing 

Hindwing 

Fig. 2. Hooks at the leading-edge of the 
hindwing of a bumblebee. 

Fig. 1. Planform of bumblebee wings. 

Hooks 
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2  Materials and Methods  

2.1 Measurement of Insect Airfoil  

Bumblebees show an outstanding flight 

performance compared to any other insects, 

such as hovering, fast flight, and quick turning. 

In this study, the airfoils of a bumblebee, 

bombus terrestris, were employed to investigate 

the aerodynamic effect. The planform of a 

bumblebee’s wing are shown in Fig. 1. In this 

study, we consider a pair of the fore- and 

hindwings as a single wing because the 

hindwing cannot be moved independently of the 

forewing. We confirmed that the planform 
shape and venation pattern of bumblebees are 

similar among individuals, though the span 

length varies from about 10 to 16 mm. 

Measurement of the three-dimensional shape of 

the bumblebee wing is conducted by using a 

laser probe 3D measuring instrument with 1 nm 

scale resolution (NH – 3SP, Mitaka Kohki. Co., 

Ltd., Japan). Since the wing is very thin, 

vacuum gold evacuation coating was done on a 

wing surface to help laser reflecting. The 

measurement was done in each 2 m step in 
chordwise direction at 23 span stations. The 

three-dimensional surface of the wing was made 

based on the measured data using 3D CAD 

software (CATIA), shown in Fig. 3. The airfoils 

near the wing base have large camber and 

corrugation. Figure 4 shows three representative 

airfoils at 84%, 70%, and 45% semi-span station 

(hereinafter called AF84, AF70, and AF45, 

respectively). The data shown in Fig. 4 are 

reduced to 21 points by smoothing process. The 

three representative airfoils have different 

shapes: a large positive camber (12.7%) at 

AF45, a reflexed camber at AF70, and a small 

negative camber (-5.5%) at AF84.  

2.2 Flapping Wing Kinematics 

The coordinate of a 3D flapping wing is defined 

as shown in Fig. 5. The wing kinematics of 

insects mainly consists of a flapping motion 

(up- and downstrokes) and a feathering motion 

(supination and pronation). Based on the wing 

kinematics of bumblebees [12], the time 

histories of flapping and feathering angular 

velocities are represented as trapezoidal 

functions shown in Figs. 6a and 6b, respectively. 

Here, the non-dimensional time t* is normalized 

by a flapping cycle. The flapping motion 

consists of translational and reversal phases. In 

the translational phase, the wing is moved at a 

constant angular velocity. In the reversal phase, 

the wing is decelerated and accelerated around 

the stroke reversal (t* = 0.0, 0.5, and 1.0). The 
duration of the reversal phase is denoted by a 

non-dimensional time t. The feathering motion 

consists of fixed-angle and rotational phases. In 

the fixed-angle phase, the wing moves at a 

Fig. 5. Coordinate systems for a 3D flapping 

wing. 

Fig. 6. Time histories of wing kinematics for 

a flapping cycle 
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constant angle of attack. In the rotational phase, 
the wing rotates around the span axis of the 

wing. The duration of the rotational phase is 

denoted by a non-dimensional time r. In this 

study, t = 0.2, r = 0.2 based on the wing 
kinematics of bumblebees [12]. The amplitude 

of flapping angle 0 is 60 deg; the amplitude of 

feathering angle 0 is varied from 5 to 80 deg 
with 5 deg increments. The feathering rotation 

was conducted symmetrically with respect to 

the stroke reversal, called symmetrical rotation. 

2.3 Hinge-Controlled Airfoil Model 

A morphing airfoil was considered by 

controlling a hinge angle connecting fore- and 

hindwings during a flapping cycle. The hinge 

angle  is defined as a rotating angle abound the 
hinge axis from the position of the original rigid 

airfoil. A positive  means a rotation to the 

upper surface side. The hinge angle  was 
actively controlled until the amplitude of hinge 

angle 0 was reached. The time history of /0 

is the same as that of the feathering motion 

shown in Fig. 6b. The timing of hinge rotation 

with respect to the feathering motion is denoted 

by a non-dimensional time difference fh. When 
the hinge rotation is made at the same timing as 

the feathering rotation, it is called symmetrical 

hinge rotation and fh = 0. When it starts earlier 
than the feathering rotation, it is called 

advanced hinge rotation (fh < 0); when it starts 

later than the feathering rotation, it is called 

delayed hinge rotation (fh > 0). In this paper, 
the hinge control was applied to the airfoil 

AF45 and a flat plate. Actually, the airfoil at 

45% span station consists of fore- and 

hingwings with a hinge connection as shown in 

Fig. 1. If the airfoil AF45 is rigid with no hinge, 

it has a positive camber in the downstroke but a 

negative one in the upstroke. However, if we 

control the hinge angle in the upstroke, a 

positive cambered airfoil can be attained in the 

upstroke. Figure 7 shows some examples for the 

airfoil AF45 when the hindwing is rotated to the 

upper side. When the hinge angle is greater than 

35 deg, the airfoil has an opposite camber, that 
is, a positive camber in the upstroke. In this 

study, the hinge of the airfoil AF45 was 

controlled only in the upstroke and not 

controlled in the downstroke. The hinge angle 

of flat plate was controlled with the same 

amplitude of hinge angle 0 in both the up- and 

downstrokes. 

2.4 Numerical Method 

Numerical simulation for a 3D flapping wing 
with an insect airfoil was conducted using an 

originally developed 3D Navier-Stokes code 

[13]. The 3D NS code has been validated for 3D 

flapping wings with a flat airfoil in hovering 

and forward flight in Ref. [13–15]. A Body 

fitted H–H type grid were used around an airfoil. 

The far-field boundaries were located at a 

distance of 15 chord lengths in the Z-direction 

and 5 span lengths in the Y-direction. At the X-Z 

plane, a symmetry condition was applied. The 

number of grid points was 160 points in the 

chordwise direction (60 points on the airfoil), 35 

points in the span-wise direction (25 points on 

the wing) and 62 points normal to the wing 

surface. A no-turbulence model was used 

because of a low Reynolds number regime. 

For simplicity, the test wing had a 
rectangular planform with a circular wing tip as 

shown in Fig. 8. Note that the size of the test 

wing was based on a scale model for experiment 

conducted in future work. The aspect ratio of 

the test wing was 6.25 based on that of the 

Fig. 7. The airfoil AF45 with hinge control.  

Fig. 8. Planform for numerical simulation. 
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bumblebee of 6.55. A test wing employs the 

same airfoil shape at any span station, which 

was one of the three airfoils of the bumblebee or 

a flat plate. The test wing was rigid with no 

elastic deformation.  

A computation was conducted for four 

flapping cycles in hovering flight at the stroke 

plane angle  = 0. Lift L and drag D are defined 
as vertical and horizontal aerodynamic forces, 

respectively. The aerodynamic torques around 

the flapping axis, feathering axis, and hinge axis 

are denoted by Q, Q, and Q, respectively. The 

aerodynamic power is given by, 

 
 QPQPQP  ,,          (1) 

In this study, negative aerodynamic power was 

neglected because we consider that it cannot be 
stored. Time-averaged aerodynamic power is an 

integration of the positive aerodynamic power 

of Eq. 1 during a flapping cycle, given by, 

 
 

1

0

*dtPPPP                (2) 

The time-averaged L , D , and P  for a flapping 

cycle were non-dimensionalized by using a fluid 

density, a wing area, and a reference velocity 

V0; then, time averaged coefficients of LC , DC , 

and PC  are obtained. The reference velocity V0 

is defined based on the flapping velocity at 2/3 

semi-span location as follows,  

rfV 00 2                          (3) 

where, f is the flapping frequency of 0.25 Hz, 

and r is the distance from the flapping axis to 

the 2/3 semi-span station of 90.7 mm. The 

Reynolds number based on the reference 

velocity V0 and the semi-chord length was 2387, 

which is close to the Reynolds number of a 

bumblebee of 1980 [12].   

3  Results and Discussion  

3.1 Aerodynamic Characteristics of Rigid 

Insect Airfoils  

In this section, we conducted numerical 

simulation for the three rigid airfoils of the 

bumblebee shown in Fig. 4. Figure 9 shows the 

time histories of CL during a flapping cycle for 

the three airfoils of the bumblebee when 0 = 45 

deg. For comparison, CL for a flat plate is added 

in Fig. 9. The waveform of CL for the flat plate 

is quite the same in the up- and downstrokes. CL 

for AF84 is larger in the upstroke and smaller in 

the downstroke than that for the flat plate. On 
the other hand, CL for AF45 and AF70 are 

larger in the upstroke and smaller in the 

downstroke than that for the flat plate. The non-

dimensional vorticity around the three airfoils 

and flat plate (at 50% span station of the 

rectangular test wing) at the center of each 

stroke (t* = 0.25 and 0.75) are shown in Figs. 

10a–10f, and 10j. For all of the airfoils, there is 

a large leading-edge vortex (LEV) attached on 

the upper surface, which result in large lift 

generation in the low Reynolds number regime. 

However, there are differences in the strength of 

LEV and the surface direction subjected to the 

LEV. The LEV is stronger for the positive 

cambered airfoil whereas it is weaker for the 

negative cambered airfoil than that of the flat 
plate. The positive cambered airfoils are 

subjected to low pressure caused by the LEV on 

the surface directed upward; as a result, the 

suction force caused by the LEV contributes to 

lift. On the other hand, the negative cambered 

airfoils are subjected to the low pressure on the 

surface directed backward; as a result, the 

suction force contributes to drag. The airfoil 

AF70 has a large camber near the leading-edge 

but a reflected camber near the trailing-edge. 

Therefore, the LEV around AF70 in the 

downstroke is weaker than that for AF45, as 

shown in Figs. 10d and 10f.  

The delayed stall effect due to a LEV 

contributes to a large part of the total lift 

produced by an insect-sized flapping wing [15]. 

AF70 AF84 AF45 Flat 

Upstroke Downstroke 

Fig. 9. Time histories of CL for the three 

airfoils of the bumblebee. 
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Around the center of each stroke, the delayed 

stall is dominant on lift generation whereas the 

other unsteady aerodynamic phenomenon is 

little effective. In order to evaluate the effect of 

airfoils on the forces due to the delayed stall, the 

aerodynamic characteristics at the center of each 

stroke are compared for the three airfoils of the 

bumblebee. Figure 11 shows the polar curve of 

CL vs. CD for the airfoils at the center of each 

stroke when the amplitude of feathering angle 0 

is varied from 5 to 80 deg with 5 deg increments. 

Note that the angle of attack  = /2 – 0 in 
hovering flight. As shown in Fig. 11, the polar 

curve is shifted to the upper side for the positive 

camber airfoils and lower side for the negative 

camber airfoils than that of the flat plate. The 

result indicates that the three airfoils of the 

bumblebee show a better aerodynamic 

characteristics in one stroke when the airfoil 

becomes a positive camber but a worse 

characteristics in the other stroke when the 

airfoil becomes a negative camber. From Fig. 11, 

it can be easily seen that the averaged curve 

between the up- and downstrokes for each 

bumblebee’s airfoil is lower than that of the flat 

plate, even if any combination of the amplitudes 

of feathering angles between the up- and 

downstrokes is considered. The fact indicates 
that the camber effect on the aerodynamic force 

Upstroke 

Lift 

Drag 

a) AF84 at t* = 0.25 b) AF84 at t* = 0.75 

c) AF70 at t* = 0.25 d) AF70 at t* = 0.75 

e) AF45 at t* = 0.25 f) AF45 at t* = 0.75 

Lift 

Drag 

Downstroke 

g) Hinge-controlled AF45 

for  = 35o at t* = 0.25 

i) Hinge-controlled Flat 

plate for  = 40o at t* = 0.25 

h) Hinge-controlled AF45 

for  = 65o at t* = 0.25 

Fig. 10. Non-dimensional vorticity distribution 

around airfoils at 50% span station. 

j) Flat plate at t* = 0.25 

Upstroke 

Upstroke 

Fig. 11. Polar curve of CL vs. CD at the center 

of each stroke (t* = 0.25 and 0.75) for the 

three airfoils of the bumblebee.  

AF45 

Upstroke Downstroke 

AF84 Flat AF70 
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due to the delayed stall is cancelled out between 

the up- and downstrokes. 

Figure 12 shows the polar curve of time-

averaged LC  vs. PC  for a flapping cycle when 

the amplitude of fathering angle is the same in 

both the up- and downstrokes. Figure 12 also 

indicates that the three airfoils of the bumblebee 

does not exceed the flat plate airfoil in the time-

averaged aerodynamic characteristics, even 

though the other unsteady aerodynamic effects 
are included in addition to the delayed stall.  

3.3 Aerodynamic Characteristics of Hinge-

controlled Airfoils  

In this section, we conducted numerical 

simulation for the variable-cambered airfoils by 

controlling the hinge angle. Figure 13 shows the 

time histories of CL during a flapping cycle for 

the airfoil AF45 with hinge control. Note that 

the hinge is controlled only in the upstroke and 

not controlled in the downstroke. The hinge-

controlled airfoil AF45 generates larger lift than 

the flat plate in both the up- and downstroke. 

Although the airfoil shapes for the hinge-

controlled airfoils are quite the same as the rigid 

airfoil in the downstroke, CL for the hinge-

controlled airfoil is slightly smaller than that for 

the original AF45 in the downstroke. This 

phenomenon is attributed to enhancement of the 

downwash caused by increasing lift in the 

upstroke. Despite of decreasing lift in the 

Fig. 13. Time histories of CL for the hinge-

controlled airfoils AF45. 

0 = 65o AF45 Flat 

Upstroke Downstroke 

0 = 35o 
(rigid) (hinge) (hinge) 

Fig. 12. Polar curve of time-averaged CL vs. 

CP for the airfoils of the bumblebee. 

AF45 AF84 Flat AF70 

a) Upstroke (t* = 0.25) 

Flat 

Fig. 14. Polar curve of CL vs. CD at the center 

of each stroke with respect to hinge angle 

0 for hinge-controlled airfoils AF45. 

AF45 (rigid) 

Hinge controlled AF45 (fh=0): 

b) Downstroke (t* = 0.75) 

35o 0=25o 55o 5o 65o 
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downstroke, the time-averaged lift for the hinge-

controlled airfoil is larger than that for the flat 

plate. Figures 10g and 10h show the vorticity in 

the upstroke for the hinge-controlled AF45 with 

0 = 35 and 65 deg. Compared to the flow for 

the rigid airfoil AF45 shown in Fig. 10e, the 
hinge-controlled airfoil enhances the strength of 

the leading-edge vortex in the upstroke.  

Figure 14 shows the polar curve of CL vs. 

CD at the center of the up- and downstrokes for 

the hinge-controlled airfoil AF45. As the hinge 

angle increases, CL in the upstroke increases but 

slightly decreases in the downstroke. The two 

curves for 0 = 55 and 65 deg are almost the 

same, which means that the optimal 0 is near 
that angles. As shown in Fig. 7, the hinge-

controlled airfoil at 0 = 35 deg has smallest 
camber, which is considered to be a corrugated 

airfoil with no camber. As shown in Fig. 14a, 

the AF45 for 0 =35 deg shows almost the same 

polar curve as the flat plate in the upstroke. This 

fact indicates that the corrugation of the airfoil 

is not effective on the aerodynamic force, which 

agrees with the result by Luo and Sun [11].  

Figure 15 shows the polar curve of time-

averaged LC  vs. PC  for a flapping cycle for the 

hinge-controlled airfoil AF45. The horizontal 

dotted line means the required LC  (= 0.355) for 

a bumblebee to stay aloft, which was calculated 

based on the measured data for the bumblebee 

BB01 described in Ref. [12]. In the range at the 

larger amplitude of the feathering angle, or the 

smaller angle of attack, the polar curve for the 
flat plate is upper than the hinge-controlled 

airfoils; however, LC  is not reached to the 

required LC  for a bumblebee in that range. In 

the range beyond the required LC  for a 

bumblebee, the hinge-controlled airfoil shows 

higher aerodynamic characteristics than the flat 

plate. The maximum LC  for the hinge-

controlled AF45 with 0 = 65 deg is 13.8% 

larger than that of the flat plate and 21.3% 

larger than that of the original rigid AF45. 

As described previous works [2, 15], the 

timing of feathering rotation with respect to the 

flapping reversal is significantly effective on the 
aerodynamic characteristics. Here, we have 

investigated the effect of the timing of hinge 

rotation on the aerodynamic characteristics. 

Figure 16 shows the polar curve of time-

averaged LC  vs. PC  for the hinge-controlled 

airfoil AF45 with 0 = 45 deg when the timing 

of hinge rotation fh is varied. In the advanced 

Flat 

55o 

AF45 (rigid) 

5o 65o 35o 

Hinge-controlled AF45 (fh=0): 

Required CL for a bumblebee to stay aloft 

0=25o 

Fig. 15. Polar curve of time-averaged CL vs. 

CP with respect to hinge angle for hinge-

controlled AF45. 

Fig. 16. Polar curve of time-averaged CL vs. 

CP with respect to timing of hinge rotation 

fh for hinge controlled AF45 with 0 =45o. 

(sym.) 
5% 10% -5% -10% 0% 

(adv.) (del.) 

Timing of hinge rotation fh : 

Flat  
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hinge rotation (fh < 0), LC  is almost the same 

and PC  decreases slightly compared to those for 

the symmetrical hinge rotation (fh = 0). In the 

delayed hinge rotation (fh > 0), the maximum 

LC  increases though PC  also increases. The 

aerodynamic characteristics for each timing of 

the hinge rotation is better than that of the flat 

plate in the range beyond the required LC for a 

bumblebee. Dislike the timing of feathering 

rotation, the aerodynamic characteristics is not 

sensitive to the timing of hinge rotation fh. 
These facts are useful for a MAV to realize such 

a variable-cambered flapping airfoil by 

controlling the hinge angle. 

Next, we conducted numerical simulation 

for a hinge-controlled flat plate airfoil. The 

hinge axis is located on 58% chord length from 

the leading-edge, which is the same as that of 

AF45 of the bumblebee. In this case, the hinge 

angle was controlled symmetrically in both the 

up- and downstrokes. The polar curves of CL vs. 

CD at the center of the stroke for the hinge-

controlled flat airfoils are shown in Fig. 17 in 

addition to the best curve for the hinge-

controlled AF45 with 0 = 65 deg, which shows 

the maximum CL in Fig. 14a. The hinge-

controlled flat airfoil shows better aerodynamic 

characteristics at the almost all of the angle of 

attack. As the hinge angle increases, the polar 

curve shifts upper direction. The polar curves 

for 0 = 30, 40, and 50 deg are almost the same, 

which means the optimal 0 is in that range. The 

hinge-controlled flat airfoil has almost the same 

curve as the hinge-controlled AF45 at larger 

angles of attack. However, the flat airfoil 

generates larger lift with smaller power at small 

angles of attack. This fact indicates that the 
corrugation of the airfoil causes increasing drag 

at small angles of attack.  

The polar curves of time-averaged LC  vs. 

PC  for the hinge-controlled flat airfoils are 

shown in Fig. 18 in addition to the best curve 

for the hinge-controlled AF45 with 0 = 65 deg. 

The polar curve for the hinge-controlled flat 

airfoils is higher than that of the flat rigid plate 

at almost all of the feathering angles. The 

maximum values of LC  and the corresponding 

PC  are almost the same between the hinge-

controlled flat and AF45 airfoils. This result 

also indicates that the corrugation of the 
bumblebee’s airfoil is little effective on the 

aerodynamic characteristics, though there is a 

small difference in PC  at small angles of attack. 

Flat (rigid) 

40o o 50o 20o 

Hinge-controlled flat plate (fh=0): 

0=10o 

Fig. 17. Polar curve of CL vs. CD with respect 

to hinge angle for hinge-controlled flat 

plate. 

Hinge-controlled AF45 (0 = 65o in the upstroke) 

Flat (rigid) 

40o o 50o 20o 

Hinge-controlled flat plate (fh=0): 

0=10o 

Fig. 18. Polar curve of time-averaged CL vs. 

CP with respect to hinge angle for hinge-

controlled flat plate. 

Hinge-controlled AF45 (0= 65o) 
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The maximum LC  for the hinge-controlled flat 

plate with 0 = 40 deg is 14.7% larger than that 

of the rigid flat plate. The corresponding flow 

pattern around the airfoil is shown in Fig. 10i. 

4  Conclusions 

We have conducted numerical study for a 3D 

flapping wing in hovering using computational 
fluid dynamics, considering the airfoils of a 

bumblebee and a morphing airfoil by 

controlling a hinge angle. The corrugation of a 

bumblebee is little effective on aerodynamic 

characteristics of a flapping wing, though it 

causes a slight increase of drag at small angles 

of attack. Positive cambered airfoils are 

effective on the aerodynamic characteristics. 

However, the effect is canceled out in the up- 

and downstrokes. As a result, the airfoils of a 

bumblebee do not exceed the flat plate airfoil in 

time-averaged aerodynamic characteristics, if 

the airfoil is rigid. By controlling the hinge 

angle connecting the fore- and hindwings, 

preferable camber can be attained in both the 

up- and downstrokes. As a result, the hinge-
controlled variable-camber airfoil improves the 

aerodynamic characteristics of a flapping wing 

compared to the flat airfoil. 

Although a corrugation is not effective on 

the aerodynamic characteristics of a flapping 

wing, it can obviously improve the structural 

rigidity of the wing, which causes light-weight 

of the wing. In this study, any inertial force has 

not been considered. The effect of an inertial 

force of a flapping wing is significantly 

important because an insect-sized flapping wing 

must be oscillated at a high frequency. In our 

future work, we will evaluate the effects of 

flapping airfoils including not only aerodynamic 

aspects but also structural aspects. 
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