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Abstract  
In this paper the use of different observer 
schemes based on Kalman Filtering for the 
detection and isolation of aircraft abrupt and 
incipient sensor faults on Inertial Measurement 
Units (IMUs) is discussed. 
The possibility of using a dynamic 6DoF model 
of the aircraft is explored and compared with 
the use of a purely kinematic model. Both the 
possibilities are investigated assuming that two 
IMUs are available on board, and the analytic 
redundancy provided by the observers is used to 
vote the healthy one, when a fault occurs on 
accelerometers, gyros or magnetometers. 
The proposed schemes are applied to simulated 
flight data of a General Aviation aircraft 
generated in the presence of disturbances and 
uncertainties. 
Preliminary experimental results using two low 
cost IMUs are also shown for possible 
applications to improve safety and reliability of 
small Unmanned Air Vehicles. 

1 Introduction 
Sensor failures on aircraft may be critical for 
safety and costs. Sensor Fault Detection and 
Isolation (S-FDI) algorithmic strategies have 
been demonstrated to be a possible alternative to 
hardware redundancy, i.e. multiple independent 
hardware sensor channels, with a procedure to 
decide the healthy ones. 

Analytical redundancy implies the use of 
mathematical relations to obtain the redundant 

measurements. Several techniques have been 
proposed in the literature to design state 
estimators for the solution of S-FDI problems 
[1-4], among which the best assessed are those 
based on parity space, observer-based methods, 
and approaches based on Kalman filter and on 
H2 or H-infinity theory [5]. 

A Dedicated Observer Scheme (DOS) 
assumes a bank of observers where each of 
them is driven by a different output. In the event 
of a fault, the corresponding observer will 
produce inaccurate estimates and therefore fault 
detection and isolation is made possible [7]. 

A Generalized Observer Scheme (GOS), as 
the DOS, makes use of a bank of observers 
where each observer is driven by all outputs 
except one. In this way, when an output is 
faulty, the estimates of all the observer except 
one turn out to be inaccurate [8]. 

Both DOS and GOS can be used with 
Luenberger asymptotic state observers, Kalman 
Filters, Unknown Input Observers, or any other 
kind of state or output observer. Both of them 
require a decision making system to evaluate 
when the fault can be detected and isolated on 
the basis of the observer estimates. 

An alternative to DOS or GOS bank of 
observers is a unique observer with an enlarged 
set of dynamics specialized to detect and isolate 
different kind of faults. In this paper we propose 
the use of such a kind of observer for the 
detection and isolation of aircraft sensor faults 
modeled as step signals (abrupt faults) or ramp 
signals (incipient faults) added to the raw IMU 
measurements, i.e. accelerations, angular rates, 
and magnetic field, provided by accelerometers, 
gyros, and magnetometers respectively. 
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The possibility of using a dynamic 6DoF 
dynamic model of the aircraft (type#1 observer) 
is explored and compared with the use of a 
purely kinematic model (type#2 observer). Both 
the possibilities are investigated assuming that 
two IMUs are available on board. In fact the 
main practical objective of the paper is to 
demonstrate the potential use of the S-FDI 
observers in the presence of IMU duplex 
hardware redundancy to allow fault detection 
and isolation, considering that a pure hardware 
redundancy scheme would require at least three 
different IMUs (triplex configuration). 

The aircraft state space model is 
augmented with a bank of first order filters, one 
for each variable subject to possible faults. 
Indeed, in the ideal case of absence of model 
uncertainties, external disturbances and sensor 
faults, the additional dynamics are never 
excited. On the other hand, transients and/or 
steady state values of the additional state 
variables allows to detect and isolate faults if 
they occur. 

Among the possible techniques to design 
observers, the use of the Unscented Kalman 
Filter technique [9] in the discrete time domain 
is explored considering that it can provide near-
optimality against Gaussian noise and 
disturbances. 

The proposed schemes are both applied to 
simulated data of a General Aviation aircraft. 
The observer based purely kinematic equations 
of motion is also tested on low cost IMUs for 
small UAVs for which safety and reliability 
becomes more and more important in view of 
massive civil applications. 

The paper is organized as follows. The 
problem statement and the mathematical models 
adopted for the observers are illustrated in 
Section 2. Section 3 shows the residual 
generation schemes, i.e. the structure of the 
observer equipped with additional dynamics to 
generate the so-called residual variables. A 
possible decision making logic to declare the 
fault detection and isolation is also illustrated in 
this section. Simulation results in the presence 
of model uncertainties, sensor noise and wind 
turbulence and gusts on a general aviation 
aircraft are discussed in Section 4. Finally the 
proposed S-FDI observer based on kinematic 

equations (type #2 observer) is applied to 
experimental data collected from low cost IMUs 
typically used for small, mini or micro UAVs. 

2 Problem Formulation and Open Loop 
Equations for the Nonlinear SFDI Observers  
We assume that the aircraft is equipped with 
two IMUs, namely IMU-A and IMU-B, and that 
we have access to the raw signals coming from 
accelerometers, gyros, and magnetometers. If a 
fault occurs on one of the sensors of one of the 
IMUs (A or B), a comparison between the 
sensor output and the homologous from the 
other IMU allows to detect that a fault has 
occurred but leaves open the problem of which 
of the two IMUs is faulted. 

To answer to this question a third IMU 
(triplex hardware redundancy scheme), or an 
analytical residual generation and evaluation 
systems tuned to identify the healthy IMU can 
be used. 

We assume that only one fault at a time can 
occur, and that the fault can be modeled with a 
persistent signal added to the faulted sensor 
output. In particular abrupt faults are modeled 
with step functions and incipient faults with 
ramps although the proposed technique can 
work with other kind of persistent signals. 

Two kind of observer based residual 
generation methods are compared. 

Type #1 observer is based on the dynamic 
nonlinear rigid body 6 DoF model of the 
aircraft. This has the advantage that, in 
principle, it could be used to detect and isolate 
faults for one single IMU sensors without any 
hardware redundancy; on the other hand, the 
aircraft model has to be known with good 
accuracy in the whole operating envelope to 
avoid a high number of false alarms. 

Type #2 observer is based on the nonlinear 
kinematic equations relating acceleration and 
angular rates to attitude. These equation are 
exactly known but there is the need of two 
IMUs to detect and isolate faults on all the nine 
sensors. 

Both the observers have a common 
structure with a so-called open loop replication 
of the system dynamics, and a feedback 
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correction term based on the output estimation 
error.  

We assume the following unified structure 
for the state space equations of the two models,  

𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥,𝑢𝑢,𝑤) (1) 

𝑦𝑦 = ℎ(𝑥𝑥,𝑢𝑢,𝑤) + 𝜇 (2) 
Where x, u and y are the state, input and 

output vectors, 𝑤 is the process noise vector, 
and 𝜇 is the measurement noise vector.  

Denoting by 𝑥𝑥 �and 𝑦𝑦 �  the estimates of the 
state and of the output, respectively, the 
observer equations comprehensive of the open 
loop dynamics and of the feedback correction 
term have the following structure 

𝑥̇𝑥 � = 𝑓𝑓(𝑥𝑥 � ,𝑢𝑢) + 𝐾𝐾(𝑦𝑦� − 𝑦𝑦𝑚) (3) 

𝑦𝑦 � = ℎ(𝑥𝑥 � ,𝑢𝑢) (4) 
where 𝐾𝐾is the so-called observer gain matrix. 

2.1 Type#1 Observer Open Loop Equations 
Type #1 observer is based on the nonlinear 
dynamic equations of a 6 Degree of Freedom 
(DoF) aircraft, that in our working example is a 
General Aviation aircraft. Using the symbols 
listed in Table 1, it is possible to write the 
equation of motion in the body axes  in this 
form [10] 

�
𝑢̇𝑢
𝑣̇
𝑤̇
� =

1
𝑚𝑚𝐴𝐶

�− �
𝑝
𝑞
𝑟
� × �

𝑢𝑢
𝑣
𝑤
� + 𝐹(𝑉𝐵,Ω,Θ, ζ, δ,𝑉𝑤)� (5) 

�
𝑝̇
𝑞̇
𝑟̇
� = 𝐼−1 �− �

𝑝
𝑞
𝑟
� × 𝐼 �

𝑝
𝑞
𝑟
� + 𝑀(𝑉𝐵 ,Ω,Θ, ζ, δ,𝑉𝑤)� (6) 

�
𝜙̇
𝜃̇
𝜓̇
� = �

1 𝑠𝑖𝑛𝜙 ∙ 𝑡𝑎𝑛𝜃 𝑐𝑜𝑠𝜙 ∙ 𝑡𝑎𝑛𝜃
0 𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜙

0
𝑠𝑖𝑛𝜙
𝑐𝑜𝑠𝜃

𝑐𝑜𝑠𝜙
𝑐𝑜𝑠𝜃

� �
𝑝
𝑞
𝑟
� (7) 

 �
𝑥𝑥𝐸̇
𝑦̇𝑦E
𝑧̇E
� = 𝑅𝐵𝐸−1(𝜙,𝜃,𝜓) �

𝑢𝑢
𝑣
𝑤
� (8) 

In (5) and (6) , the force vector 𝐹 and 
moment vector 𝑀, are the sum of three terms 

𝐹 = 𝐹𝐴 + 𝐹𝑇 + 𝐹𝐺 (9) 

𝑀 = 𝑀𝐴 + 𝑀𝑇 (10) 
where 𝐹𝐴 and 𝑀𝐴 are the aerodynamic forces 
and moments, 𝐹𝑇 and 𝑀𝑇 are the propulsive 
terms, and  𝐹𝐺 is the gravity force. 

 
𝑉𝐵 = [𝑢𝑢𝐵,𝑣𝐵 ,𝑤𝐵]𝑇 Velocity vector in the body 

axes  [𝑚𝑚/𝑠] 
Ω = [𝑝, 𝑞, 𝑟]𝑇 Angular velocity vector in 

the body axes  [𝑟𝑎𝑑/𝑠] 
Θ = [𝜙,𝜃,𝜓]𝑇  

 
Attitude – Euler angles 

𝜁 = [𝑥𝑥𝐸 ,𝑦𝑦𝐸 , 𝑧𝐸]𝑇 Position vector in inertial 
frame 

𝑅𝐵𝐸(𝜙,𝜃,𝜓) Rotation matrix from 
inertial  to body axes 

𝛿 = �𝛿𝑒 , 𝛿𝑎,𝛿𝑟 ,𝛿𝑓, 𝛿𝑡ℎ�
T Elevator, ailerons, rudder,  

flap deflection, and 
Throttle 

𝑉𝑤 = [𝑢𝑢𝑊,𝑣𝑤 ,𝑤𝑤]𝑇   
   

Wind velocity vector in 
body axes  [𝑚𝑚/𝑠] 

𝑚𝑚𝐴𝐶 Aircraft mass  [𝑘𝑔] 
𝐼 Aircraft inertia matrix 

[𝑘𝑔 ∙ 𝑚𝑚2] 
𝛼 Angle of attack 
𝛽𝛽 Angle of sideslip 

𝑚𝑚 = [𝑚𝑚𝑥,𝑚𝑚𝑦,𝑚𝑚𝑧]𝑇 Magnetic field in body 
axes [𝐺𝑎] 

𝑚𝑚0 = �𝑚𝑚0𝑥,𝑚𝑚0𝑦,𝑚𝑚0𝑧�
𝑇
 Terrestrial magnetic field 

in inertial frame [𝐺𝑎] 
𝑎 = [𝑎𝑥,𝑎𝑦,𝑎𝑧]𝑇 Acceleration vector in body 

axes [𝑚𝑚/𝑠2] 
Table 1 – List of symbols 

 Process disturbances to be taken into 
account for realistic simulations and 
performance evaluation of the proposed FDI 
scheme are atmospheric turbulence, for which 
we adopt a continuous Von Karman  model, and 
wind gusts, that we model as a discrete wind 
gust [10]. 

In order to rewrite equation (5)-(8) in the 
compact form , given by (3) and (4), the 
following state, input and wind disturbance 
vectors are defined 
𝑥𝑥#1 = [𝑢𝑢, 𝑣,𝑤,𝑝, 𝑞, 𝑟,𝜙,𝜃,𝜓, 𝑥𝑥𝐸 , 𝑦𝑦𝐸 , 𝑧𝐸]𝑇 , (11) 

𝑢𝑢#1 = �𝛿𝑒, 𝛿𝑎, 𝛿𝑟 , 𝛿𝑓, 𝛿𝑡ℎ�
𝑇, (12) 

𝑤#1  = �𝑉𝑤𝑇 , 𝑉̇𝑤𝑇�
𝑇. (13) 

As for the measured outputs, since there 
are accelerometers, magnetometers, and rate 
gyros, the output  vector is the following 

𝑦𝑦#1 = �𝑝, 𝑞, 𝑟,𝑎𝑥, 𝑎𝑦, 𝑎𝑧,𝑚𝑚𝑥,𝑚𝑚𝑦,𝑚𝑚𝑧�
𝑇
 (14) 
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2.2 Type#2 Observer Open Loop Equations 
Type #2 observer is oriented to attitude 
estimation, and is based on the nonlinear 
kinematic equation (7). 

The following state vector can be assumed 
𝑥𝑥#2 = [𝜙,𝜃,𝜓]𝑇 (15) 

whereas inputs are measurements from gyros 
𝑢𝑢#2 = [𝑝𝑚, 𝑞𝑚, 𝑟𝑚]𝑇 , (16) 

process disturbance w is the gyro measurements 
noise, and the vector of measured outputs is the 
following 

𝑦𝑦#2 = �𝑎𝑥,𝑎𝑦, 𝑎𝑧,𝑚𝑚𝑥,𝑚𝑚𝑦,𝑚𝑚𝑧�
𝑇
 (17) 

which in steady state conditions and in the 
absence of perturbations to the terrestrial 
magnetic field vector 𝑚𝑚0 are generated by the 
following output equations  

�
𝑎𝑥
𝑎𝑦
𝑎𝑧
� = 𝑅𝐵𝐸(𝜙,𝜃,𝜓) ∙ �

0
0
𝑔
� (18) 

�
𝑚𝑚𝑥
𝑚𝑚𝑦
𝑚𝑚𝑧

� = 𝑅𝐵𝐸(𝜙,𝜃,𝜓) ∙ �
𝑚𝑚0𝑥
𝑚𝑚0𝑦
𝑚𝑚0𝑧

� (19) 

where g is the gravity acceleration. 

3 The residual generation schemes 
In the observer based schemes, FDI is typically 
achieved by combining a residual generator and 
a residual evaluation strategy which takes a 
decision on detection and isolation. The aim of 
the residual generation procedure is to compute 
quantitative indexes of the presence of faults 
called residuals. 

If one single observer is used to generate 
residuals to detect and isolate different faults, an 
usual approach is to enlarge the system state 
with an additional vector of auxiliary variables, 
namely 𝛽𝛽 = �𝛽𝛽𝑦𝑇,𝛽𝛽𝑢𝑇�

𝑇
, governed by first order 

dynamics, with time constants 𝜏𝑦 and 𝜏𝑢 
respectively. These variables can be used to 
compensate for possible biases due to 
disturbances, measurement errors or 
uncertainties, modeled as additive contributions 

to the outputs and the inputs in the classical 
estimation problems, but can be used as 
residuals in FDI schemes. Then the complete 
FDI observer scheme turns out to be that one 
shown in Fig. 1. This is governed by the 
following equations 
𝑥̇𝑥 � = 𝑓𝑓 �𝑥𝑥 � ,𝑢𝑢 + 𝑦𝑦𝛽𝑢� + 𝐾𝐾1 �𝑦𝑦� − 𝑦𝑦𝛽𝑦 − 𝑦𝑦𝑚�  (20) 

𝛽̇𝛽𝑦 = −Τ𝑦𝛽𝛽𝑦 + 𝐾𝐾2 �𝑦𝑦� − 𝑦𝑦𝛽𝑦 − 𝑦𝑦𝑚� (21) 

𝛽̇𝛽𝑢 = −Τ𝑢𝛽𝛽𝑢 + 𝐾𝐾3 �𝑦𝑦� − 𝑦𝑦𝛽𝑦 − 𝑦𝑦𝑚� (22) 

𝑦𝑦 � = ℎ �𝑥𝑥 � ,𝑢𝑢 + 𝑦𝑦𝛽𝑢 � (23) 

y𝛽𝑦 = 𝛽𝛽𝑦 (24) 
y𝛽𝑢 = 𝛽𝛽𝑢 (25) 

where Τ𝑦 e Τ𝑢  are diagonal matrices in which 
diagonal entries are equal to the inverse of the 
time constants  𝜏𝑦 and 𝜏𝑢  respectively. 

The observer gain matrix [𝐾𝐾1𝑇 𝐾𝐾2𝑇 𝐾𝐾3𝑇]𝑇 
can be computed in different ways [14]. In this 
paper we decided to convert all the differential 
equations into difference equations with a 
conversion to a sampled data system and to 
adopt an UKF algorithm. 

With reference to the proposed observers, 
the two additional state vectors can be used as 
residuals, i.e. indicators of persistent sensor 
faults modelled as additive step or ramp signals 
also considering that, up to a certain tolerable 
value, they are used to compensate the 
unavoidable biases especially on gyros as in 
state estimation algorithms.  

In ideal conditions, i.e. in the absence of 
disturbances, uncertainties and noise on sensors, 
and in fault-free conditions, the residuals should 
be small and deviate from zero only after the 
occurrence of the faults to which they are 
sensitive. However, in real world situations, 
there is the need to set up a residual evaluation 
strategy indicating whether the residuals can be 
considered small or not. This evaluation strategy 
involves the choice of positive thresholds and 
possible pre-filtering algorithms of the residuals 
(see Section 4). 
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Fig. 1. The S-FDI observer scheme

3.1 Residuals Generation for Observer #1 
In this case the input to the observer is the 
deflection of the control surfaces and the 
throttle. Since no possible bias is assumed on 
the measurement of the inputs, equations (20), 
(21), (23) and (24) can be used and the additive 
term 𝛽𝛽𝑢 neglected. Assuming 𝜏𝑦 = +∞, i.e. 
integrator dynamics on the output residual, the 
observer equations have the following  
expression  

� 𝑥̇𝑥 �
𝛽̇𝛽𝑦
� = �𝑓𝑓(𝑥𝑥 � ,𝑢𝑢)

0
� + �𝐾𝐾1𝐾𝐾2

� �𝑦𝑦� − 𝑦𝑦𝛽𝑦 − 𝑦𝑦𝑚�    (26) 

�
𝑦𝑦 �
𝑦𝑦𝛽𝑦

� = �
ℎ(𝑥𝑥 � ,𝑢𝑢)
𝛽𝛽𝑦

� (27) 

When a persistent fault on the i-th output 
variable occurs, only the i-th  integrator starts 
charging, and the integrator state can be used as 
residual to detect and isolate such a fault. 

3.2 Residual Generation for Observer #2 
For type #2 observers we have a reduced set of 
three differential equations describing 
kinematics, and possible faults on nine different 
sensor (accelerometers, gyros, and 
magnetometers). 

According to equations (7), gyro outputs 
are integrated to obtain attitude estimation, but 

such an estimation would suffer from large 
drifts due to integration in time of the gyro 
biases. For this reason also gyro biases are 
estimated on the basis of accelerometer and 
magnetometer measurements on a low 
frequency time scale (i.e. under the validity of 
assumptions for equations (18) and (19) ). 
Equations (20), (22), (23) and (25) are then used 
as follows: 

� 𝑥̇𝑥 �
𝛽̇𝛽𝑢
� = �

𝑓𝑓�𝑥𝑥 � ,𝑢𝑢 + 𝑦𝑦𝛽𝑢 �

−
1
𝜏𝑢
𝛽𝛽𝑢

� + �𝐾𝐾1𝐾𝐾2
� (𝑦𝑦� − 𝑦𝑦𝑚)    (28) 

�
𝑦𝑦 �
𝑦𝑦𝛽𝑢

� = �ℎ �𝑥𝑥 � ,𝑢𝑢 + 𝑦𝑦𝛽𝑢�
𝛽𝛽𝑢

� (29) 

It is worth to notice that, beside 
𝛽𝛽𝑢 ,  variables 𝛽𝛽𝑦 and corresponding dynamics 
would be needed to have a sufficient number of 
residuals to detected and isolate faults on nine 
IMU measurements. However the kinematic 
model does not provide enough degrees of 
freedom for distinguishing among faults on 
different sensors. Therefore the possibility to 
distinguish among faults on gyros, 
accelerometers or magnetometers has to be left 
to proper decision making logics that make use 
of the 𝛽𝛽𝑢variables but also of the presence of 
two different IMUs on board. 

Decision 
Making

ALARM

-+

 

𝑥̇𝑥 � = 𝑓𝑓�𝑥𝑥 � ,𝑢𝑢 + 𝑦𝑦𝛽𝛽𝑢𝑢 � + 𝐾𝐾1 �𝑦𝑦� − 𝑦𝑦𝛽𝛽𝑦𝑦 − 𝑦𝑦𝑚𝑚�  

𝑦𝑦 � = ℎ �𝑥𝑥 � ,𝑢𝑢 + 𝑦𝑦𝛽𝛽𝑢𝑢� 

𝛽̇𝛽𝑢𝑢 = −Τ𝑢𝑢𝛽𝛽𝑢𝑢 + 𝐾𝐾3 �𝑦𝑦� − 𝑦𝑦𝛽𝛽𝑦𝑦 − 𝑦𝑦𝑚𝑚� 

𝑦𝑦𝛽𝛽𝑢𝑢 = 𝛽𝛽𝑢𝑢  

++ -+
𝑢𝑢 

𝑦𝑦𝑚𝑚  

Residuals

Residuals

�
𝐾𝐾1
𝐾𝐾2
𝐾𝐾3

� 
𝑦𝑦� 

Residuals

𝑦𝑦𝛽𝛽𝑦𝑦  

𝑦𝑦𝛽𝛽𝑢𝑢  

𝛽̇𝛽𝑦𝑦 = −Τ𝑦𝑦𝛽𝛽𝑦𝑦 + 𝐾𝐾2 �𝑦𝑦� − 𝑦𝑦𝛽𝛽𝑦𝑦 − 𝑦𝑦𝑚𝑚�  

𝑦𝑦𝛽𝛽𝑦𝑦 = 𝛽𝛽𝑦𝑦  
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3.3 Decision Making Logics 
The first task of the decision making algorithm 
is to detect any significant changes in the 
residuals which can indicate the fault.  

Assuming that we operate in the discrete 
time domain, if we denote by 𝑟𝑖(𝑘) the value of 
the i-th residual at the discrete time 𝑘, the goal 
can be achieved comparing the absolute value of 
residual |𝑟𝑖(𝑘)| with a positive threshold 𝜎𝑖. 

The value of the threshold can be chosen 
on the basis of acceptable level of false and 

missed alarms probabilities [15] [16]. 
Residuals may need to be filtered before 

they are compared to thresholds. In fact, in our 
numerical case studies, we used some moving 
average means, moreover the result of a 
comparison between residuals and thresholds is 
consolidated only after a given number of 
consecutive samples. 

A combination of residual evaluation and 
decision logics leads to the following algorithms 
for the two type of observers proposed in this 
paper. 

Type#1 Observer FDI Algorithm 
Each one of the two IMUs is equipped with a 
type#1 observer, namely observer#1-A and #1-
B. The outputs of the two IMUs are compared 
to each other. If a significant difference is 
registered on one of the 9 raw measurements, 
the corresponding residuals from Observer #1-A 
and Observer #1-B are analyzed and a fault is 
declared on the sensor output for which the 
residual exceeds the threshold. 

The faulted sensor is then excluded from 
the measurement system.  

It is worth to notice that, with a more 
complex decision logic, the algorithm may work 
for more consecutive faults with multiple 
detections and isolations. 

Type#2 Observer FDI Algorithm 
Each one of the two IMUs (A and B) is 
equipped with a type#2 observer, namely 
observer#2-A and #2-B. 
The following algorithm is repeated every 
discrete time step.  

Step 1. First the norm of magnetometer 
measurements of each IMU is compared with 
the nominal expected value ‖𝑚𝑚0‖. If a 

significant difference is registered, then a fault 
of a magnetometer is detected. To isolate on 
which axis the magnetometer gives a wrong 
output, a comparison between measurements A 
and B is made. 

Step 2. If magnetometers are healthy, then 
the magnetometers outputs are compared with 
the magnetic field components estimates 
coming from the observers. If a difference is 
detected this is due to an error on the attitude 
estimation which in turn is due to an 
accelerometer fault, because gyro faults are 
compensated by the presence of 𝛽𝛽𝑢 state 
variables. To isolate on which axis the 
accelerometers give a wrong output a 
comparison between measurements A and B is 
made. 

Step 3. Finally if magnetometers and 
accelerometers are healthy, residuals 𝛽𝛽𝑝,𝛽𝛽𝑞 ,𝛽𝛽𝑟 
are compared to selected thresholds to isolate a 
fault on p, q, or r gyro. 

4 Numerical Simulations on a GA Aircraft 
The two proposed FDI schemes have been 

tested in simulation in the Matlab-Simulink 
environment on a Technam P92 General 
Aviation aircraft simulation model. Several 
flight conditions have been considered including 
different manoeuvres and the presence of 
atmospheric turbulence, modelled with a 
continuous Von Karman model and a discrete 
wind gust. 

In the following the results obtained with 
an elevator doublet manoeuvre (+5deg for 2s 
and -5deg for 2s) are illustrated with two 
different disturbance and uncertainty conditions.  
In fact, one of the drawbacks when using Type 
#1 observer is the sensitivity to uncertainties 
and disturbances. 

Follows a description of the two conditions 
S1 conditions - light atmospheric 

turbulence and no model uncertainties. 
S2 conditions - moderate atmospheric 

turbulence, a discrete wind gust of amplitude 
with amplitude 𝑉𝑤𝑖𝑛𝑑 = (3.5 3.5 3.0) 𝑚𝑚/𝑠 and 
length (120 120 80) 𝑚𝑚, uncertainties on 
stability and control derivatives. 
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For both conditions, measurement signals 
have been corrupted with noise, and faults have 
been simulated as additive signals to the 
outputs: step or ramp signals to simulate abrupt 
or incipient faults respectively. 

Results with the following faults are 
shown: 
𝑎𝑥 sensor abrupt fault: fault on 𝑎𝑥 sensor 
modelled with a step signal of 2 𝑚𝑚/𝑠2 centred 
at 𝑡𝑓 = 1𝑠; 
p sensor abrupt fault: fault on 𝑝 gyro sensor 
modelled as a step of 5𝑑𝑒𝑔/𝑠 at 𝑡𝑓 = 1𝑠; 
p sensor incipient fault: fault on  𝑝 gyro 
simulated as a drift of  5 𝑑𝑒𝑔/𝑠2 starting at 
𝑡𝑓 = 1𝑠 

In all the plots, the residuals have been 
normalized in such a way that all the thresholds 
can be set to 1. 

Results using type #1 observer  
Fig. 2 shows residuals for S1 conditions in 

the presence of an 𝑎𝑥 abrupt fault. The fault is 
detected and isolated after 0.55 s when the unit 
threshold is exceeded on the 𝛽𝛽𝑦  residual 
corresponding to 𝑎𝑥.  

Fig. 3 shows residuals in the case of p 
abrupt fault. The fault is detected and isolated 
after 0.55 𝑠 when the unit threshold is exceeded 
on the 𝛽𝛽𝑦 residual corresponding to 𝑝. 

Fig. 4 shows the residuals for an 𝑎𝑥 abrupt 
fault (same fault as for Fig. 2), but in the S2 
conditions. In the presence of uncertainties and 
stronger disturbances, the situation is more 
confused as many residuals tend to reach the 
unit value. This makes the probability of false 
alarms higher and is the weak point of 
observer#1 FDI scheme. The detection and 
isolation time is 0.45 𝑠. 

Results using observer #2.  
Fig. 5 and Fig. 7 and show results obtained 

with type#2 observer under S2 conditions for 
the same abrupt faults on 𝑎𝑥 sensor and p sensor 
considered for type#1 observer. Magnetometers 
are assumed to be healthy in both simulations. 
Following the decision making logic describe in 
Section 3.3, this can be argued on the basis of a 
norm calculation filtered at low frequency (step 
1).  

 
Fig. 2.  Simulation in the presence of an abrupt fault 
on 𝒂𝒙 (S1 conditions). Weighted residuals on angular 
rates and accelerations calculated with type #1 
observer. 

 
Fig. 3.  Simulation in the presence of an abrupt fault 
on 𝒑 (S1 conditions). Weighted residuals on angular 
rates and accelerations calculated with type #1 
observer. 

 
Fig. 4.  Simulation in the presence of an abrupt fault 
on 𝒂𝒙 (S2 conditions). Weighted residuals on angular 
rates and accelerations calculated with type #1 
observer are shown. 
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For the simulation with a fault on 𝑎𝑥 sensor 
(Fig. 5), looking at the difference between the 
estimated and the measured magnetometer 
output (∆𝑤 variables), we argue that a fault on 
IMU-B accelerometer holds. Then comparing 
the estimated acceleration from IMU-A and B, 
the fault on 𝑎𝑥 IMU-B sensor is isolated after 
0.11 s (step 2, see  Fig. 6). 
 

 
Fig. 5.  Simulation in the presence of an abrupt fault 
on 𝒂𝒙 (S1 condition). Weighted residuals of observer 
#2 . The residual linked to 𝒂𝒙 is significantly larger 
than the others.   

 
Fig. 6.  Comparison between estimated acceleration 
from IMU-A and IMU-B. A fault on 𝒂𝒙  is isolated due 
to the large difference between  𝒂𝒙𝑨.and  𝒂𝒙𝑩 

 
Fig. 7.  Simulation in the presence of an  abrupt fault 
on 𝒑 (S1 condition). Weighted residuals of observer 
#2. The residual linked to 𝒑 is significantly larger than 
the others. 

 
Fig. 8.  Simulation in presence of an abrupt fault on 
𝒂𝒙, consisting of a bias simulated as a step of 𝟐 𝒎/𝒔𝟐  
at 𝒕𝒇 = 𝟏𝒔 (S2 condition). 

 
Fig. 9.  Simulation in presence of an incipient fault on 
𝒑, consisting of a drift of 𝟓  𝒅𝒆𝒈/𝒔𝟐  at 𝒕𝒇 = 𝟏𝒔 (S2 
condition). 
 

For the simulation with a fault on p sensor 
(Fig. 7), looking at the difference between the 
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estimated and the measured magnetometer 
output (∆𝑤 variables for IMU-A and B), since 
they do not exceed threshold we argue that 
accelerometers are not faulted (step 2). Then 
looking at the 𝛽𝛽𝑝𝑤-IMU-B norm we isolate a 
fault on IMU-B x-axis gyro after 1.40 s (step 3). 

The presence of uncertainties does not 
affect the observer performance as the kinematic 
equations do not depend on the dynamic model 
of the aircraft. As for the wind gusts and 
turbulence they introduce transients inducing an 
increase of the neglected terms in equation (17). 

Fig. 8 shows results under S2 conditions 
and an abrupt fault on 𝑎𝑥, everything works as 
for Fig. 5, but ∆𝑤 variables are all closer to the 
threshold due to transient accelerations induced 
by disturbances. 

Fig. 9 shows the results under S2 
conditions, for an incipient fault on 𝑝. 𝛽𝛽𝑝𝑤-IMU-
B norm readily allows detection and isolation of 
the fault. 

5 Preliminary results on low cost IMUs 
Type#2 observer has been also tested on an 

experimental setup consisting of two low cost 
IMUs to test it for application to small UAVs 
for which safety and reliability becomes more 
and more important in view of massive civil 
applications. The setup is composed of two 
STM32F3Discovery development boards based 
on an ARM Cortex M4 family processor and 
three motion sensors: a 3-axis accelerometer, a 
3 axis gyroscope and a 3-axis magnetometer. 
The two platforms were mounted on a data 
acquisition test-bed, to manually induce 
accelerations and rotations. The boards were 
synchronized at a sampling rate of 100Hz for 
sensor data acquisition. 

In Fig. 10, 𝛽𝛽𝑤 residuals and ∆𝑤 variables 
for both IMUs are shown in the presence of 
experimental data and a simulated abrupt fault 
on 𝑎𝑥 obtained adding a step to the acceleration 
measurement from IMU-B. The fault is detected 
by means of ∆𝑤 norm. Then, as illustrated in 
Fig. 11, the isolation of the 𝑎𝑥𝐵 fault is achieved 
looking at the difference between homologous 
measurements from IMU-A and IMU-B. 

 

 

 
Fig. 10.  Experimental data with simulated abrupt 
fault on 𝒂𝒙 

 
Fig. 11.  Experimental data with simulated abrupt 
fault on 𝒂𝒙   
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Fig. 12.  Experimental data with simulated incipient 
fault on 𝒑 
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