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Abstract

In this paper the use of different observer
schemes based on Kalman Filtering for the
detection and isolation of aircraft abrupt and
incipient sensor faults on Inertial Measurement
Units (IMUs) is discussed.

The possibility of using a dynamic 6DoF model
of the aircraft is explored and compared with
the use of a purely kinematic model. Both the
possibilities are investigated assuming that two
IMUs are available on board, and the analytic
redundancy provided by the observers is used to
vote the healthy one, when a fault occurs on
accelerometers, gyros or magnetometers.

The proposed schemes are applied to simulated
flight data of a General Aviation aircraft
generated in the presence of disturbances and
uncertainties.

Preliminary experimental results using two low
cost IMUs are also shown for possible
applications to improve safety and reliability of
small Unmanned Air Vehicles.

1 Introduction

Sensor failures on aircraft may be critical for
safety and costs. Sensor Fault Detection and
Isolation (S-FDI) algorithmic strategies have
been demonstrated to be a possible alternative to
hardware redundancy, i.e. multiple independent
hardware sensor channels, with a procedure to
decide the healthy ones.

Analytical redundancy implies the use of
mathematical relations to obtain the redundant

measurements. Several techniques have been
proposed in the literature to design state
estimators for the solution of S-FDI problems
[1-4], among which the best assessed are those
based on parity space, observer-based methods,
and approaches based on Kalman filter and on
H, or H-infinity theory [5].

A Dedicated Observer Scheme (DOS)
assumes a bank of observers where each of
them is driven by a different output. In the event
of a fault, the corresponding observer will
produce inaccurate estimates and therefore fault
detection and isolation is made possible [7].

A Generalized Observer Scheme (GOS), as
the DOS, makes use of a bank of observers
where each observer is driven by all outputs
except one. In this way, when an output is
faulty, the estimates of all the observer except
one turn out to be inaccurate [8].

Both DOS and GOS can be used with
Luenberger asymptotic state observers, Kalman
Filters, Unknown Input Observers, or any other
kind of state or output observer. Both of them
require a decision making system to evaluate
when the fault can be detected and isolated on
the basis of the observer estimates.

An alternative to DOS or GOS bank of
observers is a unique observer with an enlarged
set of dynamics specialized to detect and isolate
different kind of faults. In this paper we propose
the use of such a kind of observer for the
detection and isolation of aircraft sensor faults
modeled as step signals (abrupt faults) or ramp
signals (incipient faults) added to the raw IMU
measurements, i.e. accelerations, angular rates,
and magnetic field, provided by accelerometers,
gyros, and magnetometers respectively.



The possibility of using a dynamic 6DoF
dynamic model of the aircraft (type#1 observer)
is explored and compared with the use of a
purely kinematic model (type#2 observer). Both
the possibilities are investigated assuming that
two IMUs are available on board. In fact the
main practical objective of the paper is to
demonstrate the potential use of the S-FDI
observers in the presence of IMU duplex
hardware redundancy to allow fault detection
and isolation, considering that a pure hardware
redundancy scheme would require at least three
different IMUs (triplex configuration).

The aircraft state space model is
augmented with a bank of first order filters, one
for each variable subject to possible faults.
Indeed, in the ideal case of absence of model
uncertainties, external disturbances and sensor
faults, the additional dynamics are never
excited. On the other hand, transients and/or
steady state values of the additional state
variables allows to detect and isolate faults if
they occur.

Among the possible techniques to design
observers, the use of the Unscented Kalman
Filter technique [9] in the discrete time domain
is explored considering that it can provide near-
optimality against Gaussian noise and
disturbances.

The proposed schemes are both applied to
simulated data of a General Aviation aircraft.
The observer based purely kinematic equations
of motion is also tested on low cost IMUs for
small UAVs for which safety and reliability
becomes more and more important in view of
massive civil applications.

The paper is organized as follows. The
problem statement and the mathematical models
adopted for the observers are illustrated in
Section 2. Section 3 shows the residual
generation schemes, i.e. the structure of the
observer equipped with additional dynamics to
generate the so-called residual variables. A
possible decision making logic to declare the
fault detection and isolation is also illustrated in
this section. Simulation results in the presence
of model uncertainties, sensor noise and wind
turbulence and gusts on a general aviation
aircraft are discussed in Section 4. Finally the
proposed S-FDI observer based on kinematic
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equations (type #2 observer) is applied to
experimental data collected from low cost IMUs
typically used for small, mini or micro UAVS.

2 Problem Formulation and Open Loop
Equations for the Nonlinear SFDI Observers

We assume that the aircraft is equipped with
two IMUs, namely IMU-A and IMU-B, and that
we have access to the raw signals coming from
accelerometers, gyros, and magnetometers. If a
fault occurs on one of the sensors of one of the
IMUs (A or B), a comparison between the
sensor output and the homologous from the
other IMU allows to detect that a fault has
occurred but leaves open the problem of which
of the two IMUs is faulted.

To answer to this question a third IMU
(triplex hardware redundancy scheme), or an
analytical residual generation and evaluation
systems tuned to identify the healthy IMU can
be used.

We assume that only one fault at a time can
occur, and that the fault can be modeled with a
persistent signal added to the faulted sensor
output. In particular abrupt faults are modeled
with step functions and incipient faults with
ramps although the proposed technique can
work with other kind of persistent signals.

Two kind of observer based residual
generation methods are compared.

Type #1 observer is based on the dynamic
nonlinear rigid body 6 DoF model of the
aircraft. This has the advantage that, in
principle, it could be used to detect and isolate
faults for one single IMU sensors without any
hardware redundancy; on the other hand, the
aircraft model has to be known with good
accuracy in the whole operating envelope to
avoid a high number of false alarms.

Type #2 observer is based on the nonlinear
kinematic equations relating acceleration and
angular rates to attitude. These equation are
exactly known but there is the need of two
IMUs to detect and isolate faults on all the nine
Sensors.

Both the observers have a common
structure with a so-called open loop replication
of the system dynamics, and a feedback




correction term based on the output estimation
error.
We assume the following unified structure
for the state space equations of the two models,
x=f(x,uw) (1)
y=hxuw)+u ()
Where x, u and y are the state, input and
output vectors, w is the process noise vector,
and u is the measurement noise vector.
Denoting by X'and y the estimates of the
state and of the output, respectively, the
observer equations comprehensive of the open

loop dynamics and of the feedback correction
term have the following structure

X =f@,u)+ K@ —ym) ©)
y =h(x,u) (4)
where Kis the so-called observer gain matrix.

2.1 Type#l Observer Open Loop Equations

Type #1 observer is based on the nonlinear
dynamic equations of a 6 Degree of Freedom
(DoF) aircraft, that in our working example is a
General Aviation aircraft. Using the symbols
listed in Table 1, it is possible to write the
equation of motion in the body axes in this
form [10]

e

14 14
[q =1 (— [q] X I [q] + M(VB;'QI 0, Z: 8, VW)) (6)

7l r r

u

U] + F(VB, 0,0, Z: 6' VW)) (5)

w

X

p
q
T

1 sing -tanf cos¢ - tanl

¢

. 0 cos¢p —sing p
9. - 0 sing cos¢ [q] (7)
Y cosf cos6
Xg u
[}:’E = Ry (¢,60,9) H (8)
Zg w

In (5) and (6) , the force vector F and
moment vector M, are the sum of three terms

F:FA+FT+FG (9)
where F, and M, are the aerodynamic forces

and moments, Fr and My are the propulsive
terms, and F;; is the gravity force.
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Velocity vector in the body
axes [m/s]

Vg = [UB:VB»WB]T

Q=[pqr]” Angular velocity vector in
the body axes [rad/s]
0 =1[¢,0,y]" Attitude — Euler angles

Position vector in inertial
frame

¢ = [xe YE ZE]T

Rotation  matrix  from
inertial to body axes

RBE (¢>, 9' l/))

— T | Elevator, ailerons, rudder

6 =16,,6,08. 0606 ' L !

(9%, 8 81,07, Oun] flap  deflection,  and
Throttle

Wind velocity vector in
body axes [m/s]

Vw = [uW,vw' WW]T

My Aircraft mass [kg]
I Aircraft inertia  matrix
[kg - m?]
a Angle of attack
B Angle of sideslip
m = [my,my,,m,]" Magnetic field in body
axes [Ga]

Terrestrial magnetic field

T
my = Moy, Moy, My . .
[moxmay, o) in inertial frame [Ga]

Acceleration vector in body

a=[ayaya,]"
axes [m/s?]

Table 1 - List of symbols

Process disturbances to be taken into
account  for realistic  simulations and
performance evaluation of the proposed FDI
scheme are atmospheric turbulence, for which
we adopt a continuous Von Karman model, and
wind gusts, that we model as a discrete wind
gust [10].

In order to rewrite equation (5)-(8) in the
compact form , given by (3) and (4), the
following state, input and wind disturbance
vectors are defined

x#1 = [u' vw,p,q,7, ¢'01¢'xE'yE'ZE]T' (ll)
u#l = [Se; 6(11 67‘1 6f’ Sth]Tr (12)
wht = [uT, V1] (13)

As for the measured outputs, since there
are accelerometers, magnetometers, and rate
gyros, the output vector is the following

T
y* =[pqr aya,a,m,m,m,| (14)



2.2 Type#2 Observer Open Loop Equations

Type #2 observer is oriented to attitude
estimation, and is based on the nonlinear
kinematic equation (7).

The following state vector can be assumed

2 =[¢,6,9]" (15)
whereas inputs are measurements from gyros
u*? = [pm' qm> rm]T: (16)

process disturbance w is the gyro measurements
noise, and the vector of measured outputs is the
following

T
y#2 = |ay, ay, a;, my, my, my] (17)

which in steady state conditions and in the
absence of perturbations to the terrestrial
magnetic field vector m, are generated by the
following output equations

Qy 0
|aJIl = Rpp(¢,0,9) - |0 (18)
a 9
my Moy
mYl = RBE((p! 9! llj) ' |:m0}7 (19)
m, my,

where g is the gravity acceleration.

3 The residual generation schemes

In the observer based schemes, FDI is typically
achieved by combining a residual generator and
a residual evaluation strategy which takes a
decision on detection and isolation. The aim of
the residual generation procedure is to compute
quantitative indexes of the presence of faults
called residuals.

If one single observer is used to generate
residuals to detect and isolate different faults, an
usual approach is to enlarge the system state
with an additional vector of auxiliary variables,

namely g = [B§,ﬁZ]T, governed by first order

dynamics, with time constants 7, and T,
respectively. These variables can be used to
compensate for possible biases due to
disturbances, measurement errors or
uncertainties, modeled as additive contributions
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to the outputs and the inputs in the classical
estimation problems, but can be used as
residuals in FDI schemes. Then the complete
FDI observer scheme turns out to be that one
shown in Fig. 1. This is governed by the
following equations

9?=f(f.u+yﬁu)+K1(37—yBy—ym) (20)

By = —TyBy + Kz (9 = Y5, = ) (21)
Bu = ~Tubu + K5 (9 = v, = Ym) (22)
g =h(tu+ty,) (23)

Yg, = By (24)

Vg, = Bu (25)

where T, e T,, are diagonal matrices in which
diagonal entries are equal to the inverse of the
time constants ,, and 7,, respectively.

The observer gain matrix [KT KT KIT
can be computed in different ways [14]. In this
paper we decided to convert all the differential
equations into difference equations with a
conversion to a sampled data system and to
adopt an UKF algorithm.

With reference to the proposed observers,
the two additional state vectors can be used as
residuals, i.e. indicators of persistent sensor
faults modelled as additive step or ramp signals
also considering that, up to a certain tolerable
value, they are used to compensate the
unavoidable biases especially on gyros as in
state estimation algorithms.

In ideal conditions, i.e. in the absence of
disturbances, uncertainties and noise on sensors,
and in fault-free conditions, the residuals should
be small and deviate from zero only after the
occurrence of the faults to which they are
sensitive. However, in real world situations,
there is the need to set up a residual evaluation
strategy indicating whether the residuals can be
considered small or not. This evaluation strategy
involves the choice of positive thresholds and
possible pre-filtering algorithms of the residuals
(see Section 4).
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Residuals:
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y E=f@utyp) K (9 -5, —vm) 9 K,
—(, + + K| H
r o y=h(2u+y) I K; v
Residuals _| Decision ALARM
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Vi By = _Tyﬁy + KZ (5; _yﬁ _Ym) 4
By y
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yﬂu ﬁ'u = _Tuﬁu + K3 (y _yﬁy _ym)
yﬁu = ﬁu
Residuals

Fig. 1. The S-FDI observer scheme

3.1 Residuals Generation for Observer #1

In this case the input to the observer is the
deflection of the control surfaces and the
throttle. Since no possible bias is assumed on
the measurement of the inputs, equations (20),
(21), (23) and (24) can be used and the additive
term B, neglected. Assuming 7, = +oo, i.e.
integrator dynamics on the output residual, the

observer equations have the following
expression
[Ey] =[G+ [2] (9-vs,—vm)  (26)
51 hE
[Yi] =[ (J/Cayu) (27)

When a persistent fault on the i-th output
variable occurs, only the i-th integrator starts
charging, and the integrator state can be used as
residual to detect and isolate such a fault.

3.2 Residual Generation for Observer #2

For type #2 observers we have a reduced set of
three  differential  equations  describing
kinematics, and possible faults on nine different
sensor (accelerometers, gyros, and
magnetometers).

According to equations (7), gyro outputs
are integrated to obtain attitude estimation, but

such an estimation would suffer from large
drifts due to integration in time of the gyro
biases. For this reason also gyro biases are
estimated on the basis of accelerometer and
magnetometer measurements on a low
frequency time scale (i.e. under the validity of
assumptions for equations (18) and (19) ).
Equations (20), (22), (23) and (25) are then used
as follows:

- (&, u+yp,)
=l _1, |tllo-w @
Tu
[r =" (f'j; 7 “)] (29)
It is worth to notice that, beside

B, variables B, and corresponding dynamics
would be needed to have a sufficient number of
residuals to detected and isolate faults on nine
IMU measurements. However the kinematic
model does not provide enough degrees of
freedom for distinguishing among faults on
different sensors. Therefore the possibility to
distinguish ~ among  faults on  gyros,
accelerometers or magnetometers has to be left
to proper decision making logics that make use
of the B, variables but also of the presence of
two different IMUs on board.



3.3 Decision Making Logics

The first task of the decision making algorithm
is to detect any significant changes in the
residuals which can indicate the fault.

Assuming that we operate in the discrete
time domain, if we denote by r;(k) the value of
the i-th residual at the discrete time k, the goal
can be achieved comparing the absolute value of
residual |r; (k)| with a positive threshold g;.

The value of the threshold can be chosen
on the basis of acceptable level of false and
missed alarms probabilities [15] [16].

Residuals may need to be filtered before
they are compared to thresholds. In fact, in our
numerical case studies, we used some moving
average means, moreover the result of a
comparison between residuals and thresholds is
consolidated only after a given number of
consecutive samples.

A combination of residual evaluation and
decision logics leads to the following algorithms
for the two type of observers proposed in this

paper.

Type#1 Observer FDI Algorithm

Each one of the two IMUs is equipped with a
type#1 observer, namely observer#1-A and #1-
B. The outputs of the two IMUs are compared
to each other. If a significant difference is
registered on one of the 9 raw measurements,
the corresponding residuals from Observer #1-A
and Observer #1-B are analyzed and a fault is
declared on the sensor output for which the
residual exceeds the threshold.

The faulted sensor is then excluded from
the measurement system.

It is worth to notice that, with a more
complex decision logic, the algorithm may work
for more consecutive faults with multiple
detections and isolations.

Type#2 Observer FDI Algorithm
Each one of the two IMUs (A and B) is
equipped with a type#2 observer, namely
observer#2-A and #2-B.
The following algorithm is repeated every
discrete time step.

Step 1. First the norm of magnetometer
measurements of each IMU is compared with
the nominal expected value |m,]l. If a
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significant difference is registered, then a fault
of a magnetometer is detected. To isolate on
which axis the magnetometer gives a wrong
output, a comparison between measurements A
and B is made.

Step 2. If magnetometers are healthy, then
the magnetometers outputs are compared with
the magnetic field components estimates
coming from the observers. If a difference is
detected this is due to an error on the attitude
estimation which in turn is due to an
accelerometer fault, because gyro faults are
compensated by the presence of pg, state
variables. To isolate on which axis the
accelerometers give a wrong output a
comparison between measurements A and B is
made.

Step 3. Finally if magnetometers and
accelerometers are healthy, residuals S, B, B
are compared to selected thresholds to isolate a
fault on p, q, or r gyro.

4 Numerical Simulations on a GA Aircraft

The two proposed FDI schemes have been
tested in simulation in the Matlab-Simulink
environment on a Technam P92 General
Aviation aircraft simulation model. Several
flight conditions have been considered including
different manoeuvres and the presence of
atmospheric turbulence, modelled with a
continuous Von Karman model and a discrete
wind gust.

In the following the results obtained with
an elevator doublet manoeuvre (+5deg for 2s
and -5deg for 2s) are illustrated with two
different disturbance and uncertainty conditions.
In fact, one of the drawbacks when using Type
#1 observer is the sensitivity to uncertainties
and disturbances.

Follows a description of the two conditions

S1 conditions - light atmospheric
turbulence and no model uncertainties.

S2 conditions - moderate atmospheric
turbulence, a discrete wind gust of amplitude
with amplitude V,,;,q = (3.53.53.0) m/s and
length (120 120 80) m, uncertainties on
stability and control derivatives.



For both conditions, measurement signals
have been corrupted with noise, and faults have
been simulated as additive signals to the
outputs: step or ramp signals to simulate abrupt
or incipient faults respectively.

Results with the following faults are
shown:

a, sensor abrupt fault: fault on a, sensor
modelled with a step signal of 2 m/s? centred
atty = 1s;

p sensor abrupt fault: fault on p gyro sensor
modelled as a step of 5deg/s at tf = 1s;

p sensor incipient fault: fault on p gyro
simulated as a drift of 5deg/s? starting at
tf =1s

In all the plots, the residuals have been
normalized in such a way that all the thresholds
can be set to 1.

Results using type #1 observer

Fig. 2 shows residuals for S1 conditions in
the presence of an a, abrupt fault. The fault is
detected and isolated after 0.55 s when the unit
threshold is exceeded on the B,  residual
corresponding to a,.

Fig. 3 shows residuals in the case of p
abrupt fault. The fault is detected and isolated
after 0.55 s when the unit threshold is exceeded
on the f,, residual corresponding to p.

Fig. 4 shows the residuals for an a, abrupt
fault (same fault as for Fig. 2), but in the S2
conditions. In the presence of uncertainties and
stronger disturbances, the situation is more
confused as many residuals tend to reach the
unit value. This makes the probability of false
alarms higher and is the weak point of
observer#l FDI scheme. The detection and
isolation time is 0.45 s.

Results using observer #2.

Fig. 5 and Fig. 7 and show results obtained
with type#2 observer under S2 conditions for
the same abrupt faults on a, sensor and p sensor
considered for type#1 observer. Magnetometers
are assumed to be healthy in both simulations.
Following the decision making logic describe in
Section 3.3, this can be argued on the basis of a
norm calculation filtered at low frequency (step
1).
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Fig. 2. Simulation in the presence of an abrupt fault

on ax (S1 conditions). Weighted residuals on angular

rates and accelerations calculated with type #1

observer.
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Fig. 3. Simulation in the presence of an abrupt fault
on p (S1 conditions). Weighted residuals on angular
rates and accelerations calculated with type #1

observer.
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Fig. 4. Simulation in the presence of an abrupt fault
on a, (S2 conditions). Weighted residuals on angular
rates and accelerations calculated with type #1

observer are shown.




For the simulation with a fault on a,, sensor
(Fig. 5), looking at the difference between the
estimated and the measured magnetometer
output (A" variables), we argue that a fault on
IMU-B accelerometer holds. Then comparing
the estimated acceleration from IMU-A and B,
the fault on a, IMU-B sensor is isolated after
0.11 s (step 2, see Fig. 6).

Observer #2 Observer #2
12 T 9 T
—B) IMUB — A IMU A
— S.W—.{\wIMUB
L\qIMUB -
1 — B IMU B
. - 7}
[1:] 3 | R PN .......... Bhl o
: 5
FoT 1 ER S A ]
: 4
(13| ) 0 E— IR ............... 4 E18
2_.
L e P AP P
1
o 10 20 30 uD 10 20 30
t(s] tls]

Fig. 5. Simulation in the presence of an abrupt fault
on a, (S1 condition). Weighted residuals of observer
#2 . The residual linked to a, is significantly larger
than the others.
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tls

Fig. 6. Comparison between estimated acceleration

from IMU-A and IMU-B. A fault on a, is isolated due

to the large difference between a,4.and a,g
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Fig. 7. Simulation in the presence of an abrupt fault
on p (S1 condition). Weighted residuals of observer
#2. The residual linked to p is significantly larger than
the others.

Observer #2 Observer #2
1 T 10 T
—pMUB — A" IMU A
—_—
[1] -] JECTTITSONS: —ﬂ:|MUB al | AYIMUB
JN 1 O A — B IMUB ol
[\l 3 | p— B ............... 4 7k
08} : 1 6
PO 4 R S S (S ] sk
adbl b —— 4 s
o3k [RES S 1 H— | | RO S MR
0.2' .......... : 2_. [RTTTe
o1kl LA A 1
o : 0 . i
o 10 20 30 0 10 20 30

t[s] ts
Fig. 8. Simulation in presence of an abrupt fault on
a,, consisting of a bias simulated as a step of 2 m/s?
at t; = 1s (S2 condition).
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Fig. 9. Simulation in presence of an incipient fault on
p, consisting of a drift of 5 deg/s* at t; = 1s (S2
condition).

For the simulation with a fault on p sensor
(Fig. 7), looking at the difference between the
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estimated and the measured magnetometer
output (A" variables for IMU-A and B), since
they do not exceed threshold we argue that
accelerometers are not faulted (step 2). Then
looking at the B;’-IMU-B norm we isolate a
fault on IMU-B x-axis gyro after 1.40 s (step 3).

The presence of uncertainties does not
affect the observer performance as the kinematic
equations do not depend on the dynamic model
of the aircraft. As for the wind gusts and
turbulence they introduce transients inducing an
increase of the neglected terms in equation (17).

Fig. 8 shows results under S2 conditions
and an abrupt fault on a,, everything works as
for Fig. 5, but A" variables are all closer to the
threshold due to transient accelerations induced
by disturbances.

Fig. 9 shows the results under S2
conditions, for an incipient fault on p. g’-IMU-
B norm readily allows detection and isolation of
the fault.

5 Preliminary results on low cost IMUs

Type#2 observer has been also tested on an
experimental setup consisting of two low cost
IMUs to test it for application to small UAVs
for which safety and reliability becomes more
and more important in view of massive civil
applications. The setup is composed of two
STM32F3Discovery development boards based
on an ARM Cortex M4 family processor and
three motion sensors: a 3-axis accelerometer, a
3 axis gyroscope and a 3-axis magnetometer.
The two platforms were mounted on a data
acquisition test-bed, to manually induce
accelerations and rotations. The boards were
synchronized at a sampling rate of 100Hz for
sensor data acquisition.

In Fig. 10, B residuals and A" variables
for both IMUs are shown in the presence of
experimental data and a simulated abrupt fault
on a, obtained adding a step to the acceleration
measurement from IMU-B. The fault is detected
by means of A" norm. Then, as illustrated in
Fig. 11, the isolation of the a, fault is achieved
looking at the difference between homologous
measurements from IMU-A and IMU-B.
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Fig. 10. Experimental data with simulated abrupt
fault on a,
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Fig. 11. Experimental data with simulated abrupt
fault on a,



Observer #2

200
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