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Abstract

A problem of how to move the center of gravity
of the maneuverable aircraft from one given point
in the three-dimensional space to another point as
quickly as possible with the fixed vectors of the
respective velocities is considered. The exam-
ple is given for the case when the velocity vector
equals the initial one at the end of motion.

1 Introduction

A great number of works published both in Rus-
sia and abroad deal with aircraft flight control.
Most elaborated are the problems related to au-
tomatic control methods used to stabilize the
motion parameters set by the pilot (see, for in-
stance, [1, 2]). The involved problems of choos-
ing the optimal flight trajectory using classical
variational calculus methods, the maximum prin-
ciple and direct numerical optimization methods
are mostly [3, 4] connected with searching for
the best parameters of cruising flight regimes, in-
creasing the flight range, reducing the fuel con-
sumption, finding optimal flight profiles, 4-D
navigation, etc. All these issues are first of
all critical for performance optimization of non-
maneuverable aircraft [5].

Much fewer works deal with optimization of
characteristics of a maneuverable aircraft, basi-
cally limiting to a rather narrow problem of op-
timizing the angular velocity of the bank in the
horizontal plane with no restrictions on the coor-
dinates of the aircraft at the end of the maneu-
ver (the problem with the free right end). A suf-

ficiently complete solution to this problem was
obtained in [6–8]. Trajectories that are lying in
the vertical plane and cannot be reduced to con-
ventional civil aviation trajectories (change of the
flight height, approach, etc.) were principally
studied for the space industry (see, for instance,
[9]).

Current aircraft development and improve-
ment needs require solving problems to improve
aircraft characteristics for a wider class of trajec-
tories both plane and 3-D. The latter is for the
class of maneuverable aircraft that are to perform,
according to their specialization, various maneu-
vers [10], with optimality of the latter being sig-
nificantly important, for instance, in air combat
[11–14]. This, in turn, makes it significantly
more difficult to state the optimal control prob-
lem. It becomes 3-D while the positions of coor-
dinates of the aircraft and its flight direction at the
end of the maneuver should satisfy the particu-
lar, given conditions (the problem with fixed right
end). The results of the respective studies are of
absolute interest since they help find whether the
optimal solution is efficient for typical maneuvers
such as loop, oblique loop, split S, half-roll, up
line, etc. as compared to conventional ways of
their execution and estimate whether the optimal
control can be implemented in practice.

One of the principal research objectives in
this direction is to form control algorithms for
the aircraft when it is maneuvering based on so-
lutions to the optimization problem that can be
used in the onboard intellectual pilot support sys-
tem. The latter must provide the pilot with the
possibility of optimal control of the aircraft when
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it performs a maneuver. At present, such systems
are becoming increasingly common in aviation
since onboard hardware and software of modern
aircraft allow implementing sufficiently compli-
cated control algorithms. The experience of the
latest conflicts [15] shows that during air fights
“enemies approached at almost double sound
speed. The increased pace of combat still had the
requirement that, if not met, made success impos-
sible, viz. forestalling the enemy as they attack.
The pilot should have thought and acted much
faster. The rapid nature of fight contradicted the
abruptly increased scope of work the pilot did
in a combat flight.” In-cabin actions needed to
be combined with piloting, air situation evalua-
tion, and tracking the enemy. As a result, the
pilot reached the limits of his psychophysiologic
abilities. The conflict between thinking and the
rough work [15] required “developing expertise
on-board systems to assist the pilot in fight plan-
ning and decision-making in the challenging air
situation.” In particular [15], the surprise attack
of the enemy “makes him instinctively, without
thinking it over” perform defensive maneuvers
practiced during trainings. By [15], in this case,
the best are the “loop” or slanted turn (“oblique
loop”), and one can make next steps in the fight
“not before they drastically evade the enemy’s at-
tack”.

In this work, we calculate the minimum time
loop maneuver based on the Pontryagin max-
imum principle [16]. This problem for two-
dimensional case was studied in [17] (see also
[18] and references in [19]). Another thing that
makes this work different from [17] is that all cal-
culations in [17] were performed given the as-
sumption that the speed value at the end of the
maneuver can be arbitrary. As a result, this value
was almost always significantly lower than the
initial one since the kinetic energy storage was
used to complete the motion as soon as possible.
However, it is critical not to lose speed both when
evading the enemy and when tracking the target
[20].

2 Motion Equations

Since the form of the motion equations of the air-
craft we use in this work is not very common,
we briefly describe the way they are derived fol-
lowing [21, 22]. We also introduce the values of
constants needed in calculations.

Neglecting the wind, the Earth rotation and
its surface curvature, we consider the center
of gravity of the aircraft moving in the three-
dimensional space with respect to a terrestrial
fixed right Cartesian rectangular inertial coordi-
nate system OXY Z, with its axes OX and OZ ly-
ing in the horizontal plane. We have

mr̈ = G+R+P, m = const

ṙ = v(t) ∈ R3, |v|=V ≥ const > 0
(1)

Here, m is the mass of the aircraft, which we con-
sider constant, r is the radius vector of the center
mass of the aircraft in the system OXY Z with the
components x, y and z, v is the velocity vector,
G is the gravitation force, R is the principal vec-
tor of aerodynamic forces, and P is the tractive
force of the engines. By the above said, we con-
sider the value V to be always sufficiently high
and one can neglect the restriction on it.

We put the gravitation field to be homoge-
neous so that

G = col(0,−mg,0), |G|= mg

g = 9.81 m/s2
(2)

where g is the acceleration of gravity and col
stands for the column vector. We consider the
atmosphere to be isothermal with the following
approximation dependence of the mass density of
the air ρ on the height y

ρ = ρ0 exp(−y/h)

ρ0 = 9.81 ·0.125kg/m3 = 1.22625kg/m3

h = 104 m

(3)

The vector R in (1) is generally considered as the
sum of three vectors

R = Rx +Ry +Rz (4)
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where Rx is the drag force, Ry is the lifting force,
and Rz is the lateral force. The vector Rx is oppo-
site in direction to the velocity vector v, the vector
Ry lies in the vertical symmetry plane of the air-
craft and is orthogonal to Rx, and the vector Rz is
orthogonal to Rx and Ry. We consider the aircraft
to move with no slip, i.e., v is always in the same
plane as Ry. Then, we can put Rz ≡ 0.

We assume that the lifting force Ry can be
changed instantaneously both in its value and di-
rection, and |Ry| can be expressed via a dimen-
sionless scalar lift coefficient Cy

|Ry|=CyqS, 0≤Cy <=Cmax
y = 1.5

q = ρv2/2
(5)

where q is the dynamic pressure and S is the wing
area of the aircraft. We explain the physical sense
of the variable Cmax

y . During the flight, the pilot
can change the variable Ry by varying the angle
of attack α, i.e., the angle between the longitu-
dinal axis of the aircraft and the velocity vector
projected onto its vertical symmetry plane. One
knows that the coefficient Cy is linear with re-
spect to α for subsonic speeds and |α|. 15◦. For
|α|& 15◦, this dependence becomes significantly
nonlinear, which is caused by flow separation on
the wing that worsens stability and controllabil-
ity of the aircraft with the subsequent stall. This
means that the value Cy should not exceed some
maximal value Cmax

y during the aircraft operation.
The module of the drag force can be written

using the dimensionless scalar drag coefficient Cx
as

|Rx|=CxqS, Cx =Cx0 +Cxi (6)

The scalar Cx0 is the zero-lift drag coefficient.
Its value depends on air viscosity and compress-
ibility and corresponds to passive drag, i.e., when
it is independent of the lift. Hence, the part of the
drag force that depends on the lift is described us-
ing Cxi , which is the lift-induced drag coefficient.
For subsonic speeds and symmetric aircraft con-
figuration and linear dependence of Cy on α the
function Cx(Cy) called a polar line is a parabola.
We put

Cx =Cx0 +AC2
y ,

Cx0 = 0.025, A = 0.14
(7)

where A is the airplane efficiency factor. In other
words, by (6), we put Cxi = AC2

y . Note that the
quadratic dependence can be applied in engineer-
ing practice for non-symmetric configurations of
the aircraft for transonic speeds.

We assume that the thrust vector P is always
directed along the velocity vector v. The variable
|P| is bounded by the minimal and maximal ad-
missible power of the engines

Pmin ≤ |P| ≤ Pmax,
Pmin

|G|
=

1
2

Pmax

|G|
=−B1y+B2V +B3 (8)

B1 = 10−4 m−1, B2 = 0.002s/m, B3 = 1

Here, we use the linear approximation of the de-
pendence Pmax on the altitude y and the value of
the speed V . Note that Pmin is chosen to equal
about half of Pmax. We introduce the scalar u by
the formulas

Up =
g

2|G|
(Pmax +Pmin)

Um =
g

2|G|
(Pmax−Pmin) (9)

|P|
m

=Up +uUm, |u| ≤ 1

This transformation allows us to move from
the variable |P| with bounds that depend on the
phase variables to the variable u whose bounds
do not depend on the phase variables.

The ratio |G|/S is called the unit wing
load. We consider it constant |G|/S = 9.81×
300 N/m2. We divide both parts of the differen-
tial equation for r̈ in (1) by m. Using expressions
(2) and (4)–(9), we have

ṙ = v

v̇ =
G
m
+
(
Up +uUm−

(
Cx0 +AC2

y
)

qk
)

τ+Cyqkν

τ,ν ∈ R3, τ =
v
V
, ν =

Ry

|Ry|
, (ν,τ) = 0 (10)

k =
S
m

=
1

300
m2/kg

where (·, ·) stands for the scalar product of two
vectors.
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We introduce the load factor

ny =
|Ry|
|G|

=
CyqS
gm

=
Cyqk

g

0≤ ny ≤ nmax
y = 8

(11)

It is bounded by the constructive features of
the aircraft and physiological abilities of the pi-
lot. Note that the latter are quite significant (see,
for instance, [23]) therefore the condition nmax

y =
8 actually reflects the limit capabilities of the air-
craft. Similarly, we introduce the tangential load
factor

nx =
|P|− |Rx|
|G|

(12)

Using (11) and (12), we can write differential
equations (10) as

ṙ = v, v̇ = fg +gnxτ+gnyν

fg =
G
m
, | fg|= g

(13)

3 Optimal Control Problem in the Three Di-
mensional Case

Taking into account (5), (8), (11) and (13), we
can re-write (10) as

ṙ = v

v̇ =
(
Up +uUm−qkCx0−qk|cl|2A

)
τ+qkcl + fg

|u| ≤ 1, cl =Cyν (14)

|cl|=Cy ≤Cmax
y , |cl|qk ≤ gnmax

y

Choosing the vector cl and the scalar u, we
need to spend minimal time T to move the center
of gravity of the aircraft from its initial state

r(0) = col(x0,y0,z0), v(0) = col(v0x,v0y,v0z)
(15)

to its final state

r(T )= col(xT ,yT ,zT ), v(T )= col(vT x,vTy,vT z)
(16)

Without loss of generality, we can always
take x0 = z0 = 0.

We introduce the vectors ψv and ψr conjugate
to the vectors v and r, respectively. We decom-
pose ψv into the components collinear to τ and ν.
We have

ψvτ = (ψv,τ) , ψvν = ψv−ψvττ (17)

We compose the Hamiltonian

H =
(
Up +uUm−qkCx0−qk|cl|2A

)
ψvτ+

+qk (ψvν,cl)+(ψv, fg)+(ψr,v)+

+λ
(
|cl|qk−gnmax

y
)

(18)
where λ is the additional scalar undetermined
Lagrange multiplier introduced due to the phase
constraint on the control in (14). By the Pontrya-
gin maximum principle [16], we find the max-
imum of (18) with respect to u and cl . Since
later in this section we use only the functions
that satisfy the necessary optimality conditions,
we can preserve the designations for them that
were used above. In particular, the controls found
as a result of searching for the extremum will
be still denoted by u and cl . Substituting the
respective expressions into the phase constraint
|cl|qk ≤ gnmax

y , we have

λ =
2Agnmax

y

qk
ψvτ−|ψvν| (19)

The optimal values cl should be calculated by the
following algorithm

if λ < 0 and
gnmax

y

qk
≤Cmax

y , then |cl|=
gnmax

y

qk
else

χ =
|ψvν|
2Aψvτ

if χ < 0 or χ >Cmax
y , then |cl|=Cmax

y

else |cl|= χ

cl = |cl|
ψvν

|ψvν|
(20)

We have for the optimal u

u = sign(ψv,v) (21)
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Since the differential equations for ψv and ψr
are very cumbersome, we cannot give them here.
The respective C++ algorithm was obtained us-
ing the MAPLE system by the known formulas
[16]. The exception is

ψ̇rx = 0, ψ̇rz = 0 (22)

since by (18) the coordinates of the center of
gravity x and z are not included in the function
H explicitly.

We performed numerical integration of dif-
ferential equations for phase and conjugate vari-
ables in the neighborhood of the regular points
by the typical fourth-order accurate Runge-Kutta
method with the variable step and the check term
in the England form [24]. We applied the first-
order Euler method with the step 10−13 s on the
time intervals of about 10−13 s during which the
first derivative of the functions to be calculated
jumped. For additional accuracy control, we used
the values of the Hamiltonian H that, by [16],
should preserve its initial value. As a result, we
managed to ensure conditions (16) are met up to
the accuracy of less than 0.1 m with respect to
spatial variables and less than 0.1 m/s with re-
spect to projections of the velocity vector for the
relative integration accuracy of about 10−8 and
absolute accuracies with respect to time and com-
ponents of the vectors r and v of about 10−13 s,
10−13 m, and 10−13 m/s, respectively.

Two-dimensional results can be found in
[25].

4 Example of Numerical Calculation

As an example, we consider the case with the fol-
lowing initial and final phase points (15) and (16)

r(0) = col(0,5000m,0)
v(0) = col(250m/s,0,0)
r(T ) = col(0,5000m,500m)
v(T ) = col(250m/s,0,0)

(23)

The results of calculations are shown in the
figures.

5 Conclusion

We studied the two-point three-dimensional op-
timal performance problem for (14). We found

Fig. 1 The obtained 3D-trajectory. The optimal
time for considered case is T = 24.98 s

Fig. 2 The projection of the trajectory to the ver-
tical plane OXY

Fig. 3 The projection of the trajectory to the hor-
izontal plane OXZ
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Fig. 4 The time dependence of the module of the
speed of the aircraft center of gravity V

Fig. 5 The tangential load factor nx and load fac-
tor ny depending on time

Fig. 6 The scalar control u depending on time

Fig. 7 The lift coefficient Cy depending on time

the respective optimal controls (20) and (21). We
constructed the numerical solutions for boundary
conditions (23).
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