
 
 

 
 
Abstract  
The state-of-art signal processing based on 
artificial neural network (ANN) technology is 
discussed in regards to modern, developing and 
newly-created onboard systems. The concept of 
simple adaptive elements is introduced as a way 
to the design of networks that would be used as 
essential models for the variety of system 
identification procedures rather than 
approximating black-box evaluation or a kind of 
surrogate modeling. 

Target detection is presented as an 
exemplary problem of radar imaging processing 
which solution is obtained by means of 
parameter estimation approach performed with 
radial basis function ANN. The multilayer 
perceptron is shown to be applied as the core 
for the robust phase estimation procedure to 
perform time delay estimation engaged by any 
target localization technique relying on target 
radio emission. 

The revealed advantages of ANN-based 
techniques are their adaptability to the 
environment and the inherent possibility to 
reconfiguration, although achieved by larger 
computation cost in comparison with 
conventional signal processing methods. 
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1 Introduction  
The application of artificial neural networks 
(ANN) is considered as a hopeful method for 
obtaining solutions to a number of outstanding 

problems in design and developing of modern 
aircraft systems. The techniques engaging the 
ANN-based models take their places not only in 
almost all aircraft lifecycle steps, e.g., design, 
maintenance, repairmen, services but also in all 
aircraft subsystems such as glider, engines, 
flight and warfare control etc. 

The particular role the ANN plays for the 
avionics. The first application can be marked as 
primarily algorithmic which means that neural 
networks are considered as the core technique 
behind the particular digital signal processing 
algorithm transforming information flows. The 
application of artificial neural networks to 
signal processing performed by avionics deals 
with such problem as target selection, attack 
planning or steering, and track-before-detect and 
the list is not exhaustive. The large collected 
experience is a strong foundation that allows 
formulating the best practice of ANN 
application [1, 2]. Thus better performance can 
be achieved if the target selection and the track-
before-detect are approached by the application 
of a feed-forward back-propagation network but 
the attack planning or steering is solved via 
parallel processing neural network, which can 
also be implemented on fast systolic-array-type 
neural chips. 

The flight control is the essential part of 
attack planning or steering decision making 
process. The well-described instance of linear 
matrix inequalities framework for designing 
reconfigurable flight controllers with sigmoidal 
nonlinearities is presented in [3]. The ANN-
based approach is directed to addressing the 
need for flight controllers that provide strong 
safety and performance guarantees under linear-
parameter varying flight conditions, and that can 
adapt rapidly in the event of changes or failures 
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that cannot be accounted for a priori. The 
choosing neural networks as the core provides 
the learning capabilities and flexibility required 
to accommodate for a variety of situations and 
maneuvers. The control system is comprised of 
sigmoidal neural network where all of the 
network parameters are updated as soon as a 
new observation of the flight state becomes 
available. A constrained training technique is 
developed as online or interactive learning 
procedure to prevent forgetting prior control 
knowledge during incremental training. 

Motion forecasting models based on ANN 
have been also presented in [4] to predict future 
position of aircraft and ground vehicles around 
the airport. These models allow for automated 
monitoring of the movements, ensuring that all 
operations are performed correctly. Integrated in 
a surveillance system these modules for position 
prediction possess the remarkable ability to 
detect threatening runway incursions. 

The important point which makes the 
neural network models successful is the 
availability of accurate historical information 
like data encompassing actions taken by the 
controller and the pilot, since that information is 
used to train the networks. The option of using 
neural networks to model complex 
environments appears very attractive because of 
their ability to capture the essence of 
decentralized decision making and learn the 
operational environment that exists at the airport 
and its immediate vicinity. 

The notable approach based on ANN will 
lead to the remarkable progress in the 
development of avionics testing technology [5]. 
This heralds major advances for the so called 
‘No Fault Found’ phenomenon and invites the 
question of extension this technology to be 
exploited and applied to benefit other 
maintenance, repair and overhaul activities. 

The problem of Fault Detection and 
Isolation is also covered in [6]. This paper 
presents the full cycle of design, development 
and integration of a Fault Detection and 
Isolation architecture for an air data computer 
based on Artificial Neural Networks. The 
proposed architecture was tested on a live flight 
data and showed good performance in 
identifying fault occurrences. 

The important issue raised in the 
application of ANN-based technology in 
electronic system is the platform choosing of 
their implementation. There are two generic 
types of ANN assemblies. The first one is their 
implementation as the algorithm, realized by 
special software module where the neural 
networks itself are constructed virtually as the 
objects in the memory of onboard computer. 
The main advantage of this bearing are the 
possibility to construct the networks of almost 
any complexity, random access to their internal 
signals and the ability to reconfigure them 
dynamically with preserving all intermediate 
states. The greatest disadvantage of software 
implementation consists in that each active 
network requires quite large processor time for 
its normal functioning, while the learning 
process could be extremely computationally 
consuming and demands huge processor time.  

The second type of networks is the 
networks implemented on the specialized 
hardware platforms often referred as 
neurocomputers [7]. More thoroughly hardware 
implementation of neural networks algorithm is 
covered in [8], where the authors proposes 
simple synapse multiplier with high precision 
and large linearity range. It is shown that 
proposed approach is suitable for VLSI 
implementation of neural network. Since the 
most widely used approach is taken feed-
forward back-propagation networks a special, 
fast path generation chip is also developed. 

Although a low-cost, high-speed, compact 
solution to a number of avionics functions is 
available through neural networks this paper 
presenting the results of researches concentrated 
more on the tasks of the target detection 
problem than others mentioned above. 

One of the issues raised in the target 
detection is target identification through the 
analysis of radar image where a possible 
solution can be achieved by means of scattering 
analysis of radar targets. The conceptual idea is 
a decomposing the image under processing into 
point scatterers [9] as simpler elements 
possessing clear physical explanation. Each 
scatterer could be reproduced in the linked 
structure of the appropriate neural network. 
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Another task of target detection process is 
known as position location that determines 
one’s ability to estimate the coordinates of the 
particular target using its radio emission. There 
are several techniques to solve the positioning 
but angle of arrival (AOA) and time difference 
of arrival (TDOA) are only vital to be sprung 
into the solution of the task ready for the 
avionics. Since one can easily get [10, 11] that 
there is nothing but time delay estimation is in 
the center of both techniques. This makes 
important the developing of a robust algorithm 
of time delay estimation based on feature 
extraction. Direct time delay evaluation 
originated on those features nonlinear 
combining can be successfully performed in the 
ANN-basis. 

The authors of present paper have 
found [12] that existing widespread approach to 
neural network design requires some 
modifications in order to consider the neural 
networks as identification technique rather than 
approximation model only. The neural networks 
organized as identification models provide one 
with the powerful tool to perform effective 
parameter estimation procedure. The complex 
model can be decomposed into simpler blocks, 
which are mirrored in the appropriate units in 
the network graph. It means that well-trained 
network can be used not only for representing 
the revealed dependency but for extracting the 
values of internal parameters of its elements. 
Afterwards, these values can be reversely 
mapped into the values of the original model 
parameters. In simpler cases, there would be 
one-to-one reference between model parameters 
and some of network parameters. 

The rest of this paper is organized as 
follows. The section 2 introduces the short 
outlook on the theory of simple adaptive 
elements applied to neural networking. The 
ANN-based solution for the problem 
identification of multiple scatterers is presented 
in section 3. The time delay estimation via ANN 
technique performing the mapping of the 
discrete cosine transform coefficients into delay 
value is described in section 4. The paper ends 
with conclusion depicting the further 
development of the signal processing based on 
ANN and applied to modern onboard systems. 

2 Network Synthesis Theory 
A brief introduction to the basic theoretical 

principals of neural networks build of adaptive 
elements will be given in this section. 
Afterwards, there is detailed explanation of 
adaptive element structure and interface, two-
directional connections, neural network 
architecture and their role during the overall 
process of particular neural network synthesis. 
The structural schemes of regular neurons and 
radial basis function neurons (RBF-neurons) are 
also considered while essential features of 
learning process are discussed at the last part of 
the section. 

An artificial neural network can be 
considered in most general way as a 
mathematical model inspired by the biological 
neural cells possessed by animal. As a virtual 
model, ANN has its inputs, its outputs and a 
transformation that can be explained in term of 
transfer functions in the most of practical cases. 
There are two opposite directions for 
information travelling inside the network 
depending on the network state. The process 
known as feed-forwarding means signals are 
propagating inside the network in the forward 
direction from its inputs to its outputs. These 
signals are typically the object which the neural 
network realizes some complicated 
transformation for. The other process is a back-
propagation and during this process a special 
internal signals move back from the outputs to 
the inputs implementing the learning process. 
The back-propagation process can be explained 
pictorially using back-propagation 
diagrammatic representation [13]. 

There are few approaches to synthesize 
artificial neural networks [14–17], and the most 
commonly used approach of neural network 
synthesis operates with regular neurons which 
are sometimes referred as McCulloch-Pitts 
model. In this paper, however a quite different 
approach is used, it implements required 
characteristics and behavior of the networks 
through sets adaptive elements. We propose to 
use simpler basic elements than neurons which 
can be referred as adaptive elements. The 
original outlook based on [13, 18] is developed 
by the authors in papers [12, 19]. 
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Being as simple as they can possibly be 
and linked in a proper way adaptive elements 
can form a network of necessary complexity. 
Thus the description of adaptive elements is of 
particular interest and their properties are given 
below. 

2.1 Adaptive elements  
An adaptive element is a simple transfer 

element able to react to a given stimulus and 
produce a corresponding response. As in the 
whole network itself, the signal within an 
adaptive element can propagate in two 
directions, hence, adaptive elements have two 
transfer functions: for the forward (Tf) and for 
the backward (Tb) signal propagation: 

 
( )
( )
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, ,
f f f

b b b

=

=

y T x θ

y T x θ
 (1) 

where yf  and yb are output signals for feed-
forwarding and back-propagation, xf  and xb are 
input signals for feed-forwarding and back-
propagation correspondingly; Tf  is transform 
function for feed-forward process and Tb is 
transform function for back-propagation. 
Finally, term Θ describes the vector combing 
parameters to be adjusted which belong to the 
particular adaptive element. 

The following basic types of most widely 
used adaptive elements can be defined: 
1) a summing element, 
2) a splitting element, 
3) an amplifying element, 
4) an element possessing arbitrary functional 
transform. 

In order to be able to build a network of 
arbitrary complexity, one needs to reestablish 
connection entities. The structural scheme of the 
connection between elements is shown in fig. 1. 
It is important to highlight that direct 
connections between two elements was chosen 
that allows signals passing through in both 
directions and does not introduce any 
disturbance, noise, interference or other 
transform to the signal because all of these 
things are done by the adaptive elements. 

 
Fig. 1: Structural scheme of the two-directional 

connection between adaptive elements. 
Combining above-mentioned simple 

adaptive elements makes possible building 
extremely complex neural network. Some types 
of neurons such as regular neuron or RBF-
neuron can also be synthesized upon the basic 
adaptive elements foundation. 

The next subsection overviews the learning 
process in regards to the adaptive elements and 
signal propagation within neural network. This 
will clarify the desirable features of adaptive 
element concept. 

2.2 Training process  
The essential property of neural networks 

is its ability to extract generalizing information 
from the data presented to them and to store it in 
as the value of parameters in networks’ 
structure. This process is usually called learning 
(or training) since it looks in some sense similar 
to the learning of primitive animal species. 
There are few approaches to perform the 
training of ANN [16]: supervised, unsupervised, 
reinforced, etc. and a supervised training is used 
in this work. This means that a well-defined set 
of training samples must be acquired in order to 
make the network learn. A single sample of this 
set consists of pair of input and output data 
vectors which are assumed to be known for the 
trainer. 

An objective function should be defined 
for qualitative estimation of network 
performance during training. In this research, 
authors rely on mean square error (MSE) 
function for that purpose: 

 2
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where E is overall error (MSE) measured on N 
training samples, zn and tn are network evaluated 
output value and original output value for the n-
th training sample correspondingly. The goal of 
the training process is easier reformulated in 
terms of minimization problem of objective 
function in the space of parameters Θ. 

Basically training process contains of the 
cyclically repeated steps: 
1) preparing input data samples, 
2) presenting some samples to the network in 
feed-forward mode, 
3) performing back-propagation process, 
4) adjusting adaptive parameters. 

These set of steps are iterated unlit required 
performance measured by the network objective 
function is achieved or any stopping criteria 
take place. There are a few variants of how to 
perform last three steps. It is possible to adjust 
parameters of the adaptive elements after each 
training sample is presented and the back-
propagation process performed or to adjust the 
parameters once after a bunch of training 
samples. In this work we will use the latter 
option known as batch training mode [15]. 

The parameters adjustment of the adaptive 
elements can also be performed in various ways. 
The set of rules prescribing how to use the 
results of back-propagation process in order to 
make changes to the values of the parameters is 
defined by the learning method. In this work, 
the group of autonomic methods of the first 
order is considered since they require the values 
available within the same element only. This 
key feature leads the light on the paradigm of 
the adaptive elements. The basic underlying 
method for all methods of the first order is the 
gradient decent. For that method the adjustment 
value Δθm for the parameter θm of m-th adaptive 
element is calculated using the local gradient 
value δθ obtained during the back-propagation 
process and its history according to the 
expression below: 
 ,θ ε δθ∆ = − ⋅  (3) 

The gradient descent method itself contains 
parameter ε called a learning rate. The effect of 
this parameter is significant since the lower 
value of ε causes slow training process makes 
required performance achieve later. In the other 

words, the computational costs of the training 
process increases. But the larger values of ε are 
risky since they may lead to the essential 
destabilization of the training process. 

In order to suffice requirements of 
supervised learning with back-propagation, the 
transfer functions of adaptive elements must be 
defined accordingly. Here are transfer functions 
of some basic adaptive elements presented. 
Thus transfer functions for summing and 
splitting elements have to be defined as follow: 

 , / , , , / , ,

, / , , / ,

,

,
f sum b splitter i f sum i b splitter

f splitter b sum f splitter b sum

y x
y x

=

=
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where output signals are denoted as y and input 
signals are x; the indices determine the 
directions: f is for feed-forwarding while b is for 
back-propagation.  

Since the amplifying element is, in fact, a 
special case of arbitrary functional transform 
element (i.e. transform with a given amplifying 
factor) the following equations define transform 
functions of that element: 

 
,

,
f f

b b

y wx
y wx

=

=
 (5) 

where xf and yf stand for feed-forwarding input 
and output accordingly, xb and yb stand for back-
propagation input and output accordingly and w 
does for amplifying coefficient which is 
equivalent to the synaptic weight. 

Four adaptive elements described above 
are engaged in building various types of neurons 
such as classical neurons and neurons for Radial 
Basis Functions (RBF) networks. In order to 
implement necessary activation functions for the 
neurons of each subtype, arbitrary functional 
transform elements are used. The most popular 
and widespread activations functions are 
sigmoidal, hyperbolic tangent, Gaussian, square, 
linear etc. 

2.3 Neuron Assembling  
Using adaptive elements as a starting point 

makes synthesizing the most classes of neurons 
possible. Such approach provides network 
structure to be plain and simple yet allows 
creating complex transfer functions. This 
implements the paradigm known as network’s 
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point of view which means all elements are 
quite identical in terms of signal propagation 
that also allows introducing new types of 
elements easily while any new elements would 
be able to represent various systems considering 
their parts as covered (or masked) sub-networks. 

The distinctions in the synthesis of two 
types of neurons: regular and RBF-neuron is 
overviewed below. 

2.3.1 Regular neuron 
A regular neuron (or linear separating 

neuron) can be synthesized by means of a set of 
amplifying elements, a summing element and a 
functional transform element with required 
transformation function. Each amplifier is 
connected to a certain summing element input 
thus implementing synoptic weight.  

The structural scheme of a regular neuron 
with 3 inputs is shown in fig. 2. Its synaptic 
weights are represented by the amplifiers in the 
left-hand part of the scheme, than weighted 
signals are summed and transmitted to the 
functionally transforming element that embeds 
the necessary activation function. 

 
Fig. 2: Structural scheme of regular neuron with 

three inputs during feed-forwarding. 

The overall transform functions of regular 
neuron define as follow: 

 ,
1

( ) ,
N

f f i i
i

f x w
=

 =  
 
∑y  (6) 

According to the back-propagation 
characteristics of the underlying elements the 
back-propagation function and the structural 
scheme in case of back-propagation for regular 
neuron define as shown in the fig. 3. 

The transform function in that case has the 
formula defined in the expression below: 

 
'
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b i b f i i
i

x f x w
=

 =  
 
∑y  (7) 

 
Fig. 3: Structural scheme of regular neuron with 

three inputs during back-propagation. 

2.3.2 RBF-neuron  
An RBF-neuron is a special type of neuron 

that not only uses a radial basis function as its 
activation function but also has another input 
combiner. Structural scheme of RBF neuron 
during feed-forwarding is shown in the fig. 4. In 
case of working with two-dimensional input 
data such neuron will normally have 3 inputs: 
two for coordinates x and y and another one for 
bias, the latter marked with “+1”. 

 
Fig. 4: Structural scheme of RBF neuron for 

feed-forwarding. 

The transformation function can be easily 
written from the scheme of the neuron in fig. 4, 
thus the output signal is defined by the 
following expression: 

 ( )2 2
0 0( ) ( )x yz f k x x k y y= + + +  (8) 

The argument inside the parenthesis of f-
term in the transfer function above can be 
rewritten in the form of canonical equation for 
an ellipse (or an ellipsoid if the dimension 
would be greater than two): 
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Where the following substitutions are applied: 

 
1 0 1 0, ,

/ , /x y

x x y y

c w k d w k

= − = −

= =
 (10) 

In the case of Gaussian function taken for 
the activation function f, the output signal of one 
RBF-neuron will be equal to unity at the central 
point and rapidly decreasing bell around. 

 
Fig. 5: Structural scheme of RBF neuron for 

backpropagation. 
The individual knowledge of the adaptive 

elements behavior during their back-
propagations opens the option for constructing 
structural scheme of RBF neuron for back-
propagation (see the fig. 5). 

As it can be seen from the overview given 
in this section the concept of the adaptive 
elements perfectly corresponds to the theoretical 
basis of neural network processing. Complex 
yet simple in their nature basic elementary 
neural structure can be successfully built with 
decomposing approach using adaptive elements. 
The strict definition of input and output 
interfaces of the adaptive element allow to keep 
it relatively isolated. This makes 
implementation of custom algorithm based on 
first-order training methods possible. The next 
sections explain some application of neural 
networks built according to the proposed 
concept. 

3 Scatter based target identification 
The ability of neural networks to operate on 
distorted, noised and incomplete data sets 
alongside with the properties of RBF-neurons 

allows them to be applied in the scatter based 
target identification which is reviewed in this 
section. The radar image processing using ANN 
in order to extract information about the target 
depicted on is presented below. 

The image to be processed is assumed to 
be obtained by a radar system performing 
azimuthal scanning and having a high resolution 
for both distance and angle. The system 
operating in centimeter wavelength range emits 
coherent pulses with the same antenna working 
with time division both for transmission and 
echo receiving receiver. The scanning is carried 
out in a presence of white Gaussian noise. The 
main task of the scatterer identification is the 
estimating parameters of multiple scatterers 
involved in target representation such as the 
coordinate of their centers within the target as 
the most important information to characterize 
its geometrical form in a further possible 
processing. This acquired information could be 
passed to the specialized classification systems 
that form the anchors for the process of the 
automatic target identification. 

The proposed approach in general consists 
in using specifically-synthesized RBF-neural 
network to approximate sampled radar image 
given to its input. In the case of successful 
approximation, the Cartesian coordinates of the 
scatterers are taken from the parameters of 
neurons directly. The numerical calculations 
results are presented in order to estimate 
practical viability. 

3.1 Radar image model  
The enhanced model of complex radar 
target [20] considers the radar target represented 
as a set of individual scatterers mounted on a 
stiff backbone. This model supposes that echo-
response signals received during observation are 
to be determined as a superposition of the 
responses from each individual scatterer. Each 
of these individual responses possesses in the 
first consideration the form of the probe pulse 
emitted by the radar system. 

Such model has a few deliberately 
introduced simplifications: 
1) non-linear distortions caused by signal 
reflection from a scatterer are compensated; 
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2) changings in the position of the scatterer 
during antenna moving are neglected; 
3) the inaccuracy of reflection process could be 
represented in the model by means of the 
additive noise component. 

The model of space-time radar echo 
response signal of complex radar target is used 
to generate test input radar image. Since a high 
resolution in both distance (denoted by ρ) and 
angle (denoted by φ) for the observed radar 
target is assumed, the signal could be described 
with following expression: 

 

( ) ( )

( ) ( )
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where ( ),px t θ  stands for complex-valued 
space-time radar signal echoed from p-th 
individual scatterer, ( )ps t τ−  is the slice of the 
radar image across the distance (in fact, the 
form of this slice will correspond to the form of 
probe pulse), ( )2

A pf θ ϕ− is term for squared 
antenna pattern, ϕp determines the main beam 
direction of the antenna. The term n(t) describes 
the additive white Gaussian noise which is 
uniform in the frequency bandwidth used by 
radar system. The schematic structure of such 
signal is shown in fig. 6. 

 
Fig. 6. The structure of space-time radar echo 

response signal of complex radar target. 
The instance of a typical radar image with 

three individual scatterers generated according 
to the introduced model for the complex radar 
target is shown in fig. 7. This image is noted to 
be visualized by the absolute value of originally 
complex-valued 2D function (11). 

 
Fig. 7. The instance of radar image  

with three scatterers. 
As one can note in fig. 7, two pulses are 

close to each other, so they are partially 
overlapping – this was chosen intentionally. The 
third pulse has the greatest intensity and located 
separately from the others. The probe pulse 
range waveform and antenna cross-range pattern 
are both assumed to be of Gaussian curve.  

3.2 Neural network design  
The coordinate of scattering centers are 

considered [21] to be the most relevant 
parameter for the target identification. In 
works [22, 23] authors have proposed the way 
to the identification using parametric methods 
for pole estimation in the frequency domain. 
The coordinates of the poles on the virtual 
complex plane can be used then to evaluate 
geometrical centers of the scatters. Although 
this approach demonstrates high accuracy and 
has proven suboptimal nature, it suffers from 
high calculation cost and the requirement to 
perform accurate deconvolution of the radar 
image that is naturally ill-conditional problem. 

Author of the present work have proposed 
in [24] alternative solution based on ANN-
framework since it is not difficult to notice that 
described in the previous section Radial Basis 
Function (RBF) neural networks perfectly 
correspond to the model (11). Proposed 
approach contains the following stages: 

– radar image sampling; 
– forming training set from the radar image 
samples; 
– RBF neural network synthesizing; 
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– using this set as the input data during 
neural network training process; 
– using RBF neurons parameters to directly 
calculate coordinates of individual scatterers 
(in case of success training). 

The structural scheme of RBF neural 
network is shown in fig. 8. It consist of input 
signals x and y representing coordinates of a 
point belonging to the image to be processed 
and output z representing the intensity at this 
point; block marked with “+1” introduces bias 
input. 

 
Fig. 8. RBF neural network. 

Training set consists of samples which x 
and y coordinates on the image are used as input 
data and the signal intensity in that point is used 
as required output data. Hence, the problem can 
be now redefined as the task of approximation 
of the target radar image with neural network. 

Output signal generated by neural network 
is defined by the following equation: 

 
1

( , ) ( , )
P

a p
p

x gρ ϕ ρ ϕ
=

=∑  (12) 

where xa is output network signal (i.e. 
approximated radar image), ρ and φ stand for  
distance and antenna azimuthal angle 
correspondingly, P denotes the number of RBF 
neurons within the network, gp is partial output 
signal taken as weighted output of p-th RBF 
neuron. 

The important point to highlight is that 
single RBF neuron is targeting a particular part 
of the image which is best corresponding to the 
neurons output signal. Thus by selecting 
activation function of the neuron in accordance 
to the probe pulse form and antenna pattern, one 
can expect that each single RBF neuron will 

after the successful training process target one 
individual scatterer. 

The parameters of the neurons are available 
after the training and can be directly used to 
calculate the estimated parameters of the 
scatterers, e.g., the coordinates of their centers 
and the effective widths. 

3.3 Numerical simulation  
Since any strict theoretical investigation of 

on the estimation ability of ANN are always 
challenging, the numerical simulation is a 
helpful tool that is used in order to estimate 
practical accuracy of the proposed procedure. 
The described above allocation of three 
individual scatterers was used to synthesize 
radar image of complex target. 

The radar image shown in fig. 7 undergoes 
sampling. The discrete points, or samples, of the 
image are shown in fig. 9 with circles, which 
squares are proportional to their intensity. 
Activation function is chosen Gaussian in 
accordance to the form of probe pulse and 
antenna pattern possessed by model (11). Since 
the number of RBF-neuron corresponds to the 
number of scatterers, this quantity is assumed 
known and is equal to three. 

 
Fig. 9. Sampled radar image. 

All sample formed training set was used to 
train RBF network in batch mode with gradient 
descent method. The objective MSE function 
representing there the difference between source 
radar image and approximated one evaluates 
network performance during the training. The 
learning curve during the training is shown in 
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fig. 10 as the value of MSE plotted against the 
number of iteration or epoch. 

 
Fig. 10. Training process. 

The low level of MSE is achieved after 100 
training iterations; hence the approximated radar 
image approximates the source radar image 
accurately. Parameters of the scatterers are 
immediately taken from the adaptive elements 
the neurons consist of. The reconstructed 
scatterers are shown in the fig. 11 alongside 
with the true ones. 

 
Fig. 11. Original and reconstructed scatterers. 

It is clear that the centers of all scatterers 
are accurately estimated despite the fact that two 
of them were partially overlapping. However 
effective widths of the scatterers are not 
estimated accurately. This phenomenon could 
be explained by their lesser influence on the 
overall MSE value. Besides, fig. 10 shows that 
the value of MSE is still decreasing at the end of 
the training process but notably slower than it 
took place at the beginning.  

The series of simulation indicate that RBF 
neural network can be successfully used for 
accurate estimating the centers of the individual 
scatterers with signal-to-noise ratios down to 
5 dB. 

4 Neural based target localization 
In this section the application of the neural 
network to the task of target localization is 
discussed. A particular problem of estimating 
constant delays as informative parameters 
embedded into received signals that are noisy 
and damped image of the known reference 
signal. 

The offered approach uses Discrete Cosine 
Transform (DCT) to obtain a set of DCT 
coefficients from the received signal. Then, 
selection is used to reduce number of 
coefficients in the selection, hence getting 
Reduced Cosine Transform Coefficients 
(RDCTC) set. The phase shift embedded in the 
original signal will also be encoded into 
RDCTC set. Since the form of the reference 
signal is known a series of RDCTC sets can be 
synthesized in advance and used as training data 
to the Neural Network. Reduced size of the 
DCT coefficient set guarantees relatively small 
size of the network itself. 

Using these synthesized RDCTC sets to 
train network one can obtain the neural network 
designed specifically for the known reference 
signal; since the neural network is featured with 
the ability to handle noisy and incomplete data 
this solution becomes both accurate and 
efficient in terms of calculation cost. 

4.1 Theory framework and model 
One of the important problems within position 
location task is calculating delay between two 
signals received at the specially separated 
points. The prime concept of angle-of-arrival 
(AOA) estimation technique is shown in fig. 12. 

Signal s(t) radiated by a radio source (RS) 
is received at two spatially separated points 
which signals can be described in the form: 

 1 1 1 1

2 2 2 2

( ) ( ) ( ),
( ) ( ) ( ),

s t K s t T n t
s t K s t T n t

= ⋅ − +
= ⋅ − +

 (13) 
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where K1 and K2 are attenuation ratios, T1 and 
T2 are time delays and n1 and n2 are noises for 
the first and second points correspondingly.  

Considering the simple instance of mono-
harmonic signal s(t) with circular frequency ω, 
the points separated by distance d not farther 
than half of its wavelength and noises 
uncorrelated with each other as well as with the 
signal one can obtain the following expressions 
for received signals 

 
( )
( )

1 1

2 2

( ) cos ,

( ) cos ,

x t A t

x t A t

ω ϕ

ω ϕ

= ⋅ ⋅ +

= ⋅ ⋅ +
 (14) 

where amplitude A is the same while phases φ1 
and φ2 can be used for evaluation of angle of 
arrival: 

 ( )2 1cos
c

d
ϕ ϕ

α
ω
−

= , (15) 

where c is phase speed e.g. speed of light. 
There are few approaches to determine 

phase shift between two harmonics. The most 
widely used technic is cross-correlation. One of 
its efficient applications is shown in [26]. But 
not all approaches involves cross-correlation, 
the algorithm of direct phase estimation is based 
on neural networks and was originally 
introduced in [27] and developed by authors of 
this research in [28]. 

 
Fig. 12. Receiving signals at two spatially 

separated points. 
In order to implement this sort of 

algorithms one needs at first to determine 
features of the signal that will most effectively 
embed the information about the delay or phase 
shift. Such features must obviously be very 

sensitive to the changes in the delay. It was 
shown in [27, 28], that a subset of Direct Cosine 
Transform coefficients can be used for that 
purpose. This subset can be used to decode the 
value of phase shift in order to calculate time 
delay. 

Discrete Cosine Transform is a transform 
with even harmonic functions basis. There are 8 
types of DCT due to the symmetry property; in 
this paper we use the most thoroughly 
researched type described in [25] as normalized 
DCT-II and defined by the following equations: 

 

1

,
0

,

2[ ] [ ] ,0 1,

(2 1)[ ] cos ,
2

N

n k
n

n k

X k k k N
N

k nx n
N

β

π

−

=

= ⋅ ⋅ Ψ ≤ ≤ −

⋅ ⋅ + Ψ = ⋅  
 

∑
 (16) 

1 , 0;
where [ ] 2

1, 1 1.

k
k

k N
β

 == 
 ≤ ≤ −

 

That transform was chosen among the 
others because of its property known as “energy 
compression” [25]: coefficients of the sequence 
concentrated at some range of indices with 
higher density rather than in Discrete Fourier 
Transform (DFT) or any other types of DCT. 
This property is illustrated by 3D-plot in fig. 13 
where the actual values of DCT coefficients are 
plotted against coefficient number and values of 
the time delay measured in the part of harmonic 
period. 

 
Fig 13. DCT energy compression. 

The results shown in fig. 13 indicate that 
some of coefficients are less sensitive to the 
phase shift; hence the usage of the whole set of 
DCT coefficients is redundant. The criteria of 
how to choose the most sensitive of the phase 
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shift coefficients must be defined. In paper [27], 
the criteria of class L1 based on sum of absolute 
difference (SAD) is used: 

 
1

1
0

( ) ( )
N

n n
n

SAD R Rϕ ϕ
−

+
=

= −∑ , (17) 

where R is DCT coefficient under analysis, φn 
are possible phase values of the received signal 
defined with some predefined steps. 

Alternatively to SAD we have used L2 
criteria [28]: the sequential selection of the 
coefficients containing biggest share of energy, 
although those criteria led to the same results in 
selecting the most sensitive DCT coefficients 
(R) in order to form RDCTC sets. These 
RDCTC sets are used later as a training data for 
the neural network. 

4.2 Numerical simulation 
The conceptual graph of feed-forward neural 
network known as multi-layer perceptron 
(MPL) is shown in fig. 14. We will use this type 
of network, which can be easily build using 
adaptive elements, to solve task of estimation of 
the constant delay. The network is built from 
neurons united into two layers traditionally 
called hidden and output layers. Each neuron 
embeds the summing element and the functional 
transform; for the hidden layer hyperbolic 
tangent function is used. The output layer is 
strip of its functional transform element and 
contains only summation element. 

 
Fig. 14. Multilayer perceptron as neural network 

for angle evaluation. 
As input signal s(t) for the numerical 

modeling a single harmonic of frequency Ω0 
and sampling rate T was chosen. The noiseless 
signal was delayed with constant delay D. A 

series of DCT transforms were performed on 
input signal for various delay values.  

The results collected into a single plot are 
shown in fig. 15 as a dependency between of 
DCT coefficients with smaller index value from 
the delay. 

 
Fig. 15. The dependency between DCT values 

and the phase shift embedded into signal. 

Fig. 15 clarifies the point that despite the 
fact that all DCT coefficients are sensitive to the 
value of the delay in the signal, the most 
sensitive to that change are only a few 
coefficients marked as R1, R2 and R3. These 
results also indicate that no matter how sensitive 
any coefficient to the value of the delay is, it is 
sensitive only for the changes in some range, for 
example R1 coefficients is only sensitive to the 
change in ranges [0.18 – 0.4] and [0.6 – 0.86]. 
That means R1 will improve quality of the 
estimation only for the values within these 
ranges; outside of them the coefficient will be 
useless. In order to cover all possible values of 
the time delay changes we need to pick a few 
DCT coefficients so they ranges of sensitivity 
overlap. In this particular case, we need at least 
3 coefficients to obtain appropriate estimation 
procedure. 

 
Fig. 16. SAD evaluated for DCT coefficients. 
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The integral outlook of the ability could be 
presented by the dependency of SAD, written in 
equation (17), from the number of DCT 
coefficient as it shown in fig. 16. 

The next step after the indexes of the most 
sensitive DCT coefficients have been 
determined is selecting optimal neural network 
topology [12] in order to make it efficient in the 
estimation of phase-shift value. The numerical 
modeling was performed to choose the topology 
leading to lower value of Mean Square Error 
(MSE). The topology parameter to optimize is 
the size of the hidden layer. A series of 40 
experiments was performed for each size of 
hidden layer in order to rule out the effect on 
random initial synaptic weights. In each 
experiment the value of MSE for neural network 
with the hidden layer of given size was 
estimated, taken values were averaged 
afterwards. The obtained dependency between 
MSE and the hidden layer size is shown in 
fig. 17. 

 
Fig. 17. The dependency between MSE and the 

number of neurons in the hidden layer. 
More experiments were done to estimate 

the influence of both the size of the hidden layer 
and the number of the most sensitive DCT 
coefficients. The results are compiled into a 
diagram shown in the fig. 18; the value of MSE 
are depicted with intensity of grayscale. 

 
Fig. 18. The dependency of MSE from the 

number of neuron in the hidden layer and the 
number of DCT coefficients in the RDCTS sets. 

The analysis above shows that it is enough 
to take 5 most sensitive DCT coefficients with 8 
neurons in the hidden layer. The results of the 
numerical simulation indicate that MSE 
generally decreases as the number of DCT 
coefficients in the RDCTC sets or the number of 
the neurons in the hidden layer increases. It is 
important to note that the other side of the 
increase of either size of hidden layer or the size 
of RDCTC sets is the increase of the calculation 
cost. 

5 Conclusion  
The present paper reflects the current 

advances in the neural network based signal 
processing in regards to tasks related to the 
modern onboard systems. The concept of 
adaptive elements forming the framework to 
synthesize neural network of various types is 
described. Two practical tasks solved using the 
proposed approaches with neural network are 
presented: scatterer based target identification 
and target localization. 

The artificial neural networks based on 
simple adaptive elements are described and the 
two significant advantages of this framework 
are discussed. The first is the clear potential to 
the architecture extension and incorporating the 
difficult and implicit parts of the model into 
blocks belonging to the networks representing 
the model under investigation with the required 
degree of adequacy and highlighting the details 
of the interest. The second is the straight way to 
the building system identification scheme 
achieving with open access to the values of 
internal parameters possessed by underlain 
network blocks. This allows one to implement 
the complex parameter estimation for 
monitoring, predicting and control problems on 
the powerful learning procedures developed for 
several decades. 

The significant results of the paper is 
demonstrating a possible way how neural 
networks can be used for automated radar image 
analysis which is the essential part for a set of 
tasks forming target detection problem. The 
proposed algorithm carries out the system 
identification approach reached via neural 
network learning procedure. Thus the radar 
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image is firstly approximated by RBF networks 
where each RBF-neuron preserves the 
information about the point scatterer of the 
possible targets. The adaptive element concept 
chosen for ANN synthesis is extremely suitable 
for the second stage when the values of 
parameters are being extracted and further 
transformed into parameters of the 
multiscatterer model. 

It was shown that the neural networks give 
the strong framework for effective time delay 
estimating algorithm. The estimation procedure 
relies on the feature extraction technique carried 
out by discrete cosine transform which 
appropriate type allows obtaining the compact 
energy representation of signal undergone to the 
digital processing. Since time delay estimation 
is the core of commonly used position location 
technique – angle of arrival and time difference 
of arrival – ANN provide the basement for 
integrated procedure. The feed-forward neural 
network, also known as multilayer perceptron, 
appears to be the most effective architecture. 
The optimization problem for the number of 
character enough for signal representation and 
for the number of elements in the hidden layer 
was also solved as the illustrative example in 
the current research. 

The research, which some of results are 
presented in this paper, is in progress and will 
hopefully continue. The main finding is that 
neural networks can no doubt be successfully 
applied to the signal processing performed by 
onboard electronic systems. These systems will 
be able to solve different task in the similar way 
by means of the entire ANN framework with the 
modification required for particular problem. 
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