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Abstract

The state-of-art signal processing based on
artificial neural network (ANN) technology is
discussed in regards to modern, developing and
newly-created onboard systems. The concept of
simple adaptive elements is introduced as a way
to the design of networks that would be used as
essential models for the variety of system
identification ~ procedures  rather  than
approximating black-box evaluation or a kind of
surrogate modeling.

Target detection is presented as an
exemplary problem of radar imaging processing
which solution is obtained by means of
parameter estimation approach performed with
radial basis function ANN. The multilayer
perceptron is shown to be applied as the core
for the robust phase estimation procedure to
perform time delay estimation engaged by any
target localization technique relying on target
radio emission.

The revealed advantages of ANN-based
techniques are their adaptability to the
environment and the inherent possibility to
reconfiguration, although achieved by larger
computation  cost in  comparison  With
conventional signal processing methods.
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1 Introduction

The application of artificial neural networks
(ANN) is considered as a hopeful method for
obtaining solutions to a number of outstanding

problems in design and developing of modern
aircraft systems. The techniques engaging the
ANN-based models take their places not only in
almost all aircraft lifecycle steps, e.g., design,
maintenance, repairmen, services but also in all
aircraft subsystems such as glider, engines,
flight and warfare control etc.

The particular role the ANN plays for the
avionics. The first application can be marked as
primarily algorithmic which means that neural
networks are considered as the core technique
behind the particular digital signal processing
algorithm transforming information flows. The
application of artificial neural networks to
signal processing performed by avionics deals
with such problem as target selection, attack
planning or steering, and track-before-detect and
the list is not exhaustive. The large collected
experience is a strong foundation that allows
formulating the best practice of ANN
application [1, 2]. Thus better performance can
be achieved if the target selection and the track-
before-detect are approached by the application
of a feed-forward back-propagation network but
the attack planning or steering is solved via
parallel processing neural network, which can
also be implemented on fast systolic-array-type
neural chips.

The flight control is the essential part of
attack planning or steering decision making
process. The well-described instance of linear
matrix inequalities framework for designing
reconfigurable flight controllers with sigmoidal
nonlinearities is presented in [3]. The ANN-
based approach is directed to addressing the
need for flight controllers that provide strong
safety and performance guarantees under linear-
parameter varying flight conditions, and that can
adapt rapidly in the event of changes or failures
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that cannot be accounted for a priori. The
choosing neural networks as the core provides
the learning capabilities and flexibility required
to accommodate for a variety of situations and
maneuvers. The control system is comprised of
sigmoidal neural network where all of the
network parameters are updated as soon as a
new observation of the flight state becomes
available. A constrained training technique is
developed as online or interactive learning
procedure to prevent forgetting prior control
knowledge during incremental training.

Motion forecasting models based on ANN
have been also presented in [4] to predict future
position of aircraft and ground vehicles around
the airport. These models allow for automated
monitoring of the movements, ensuring that all
operations are performed correctly. Integrated in
a surveillance system these modules for position
prediction possess the remarkable ability to
detect threatening runway incursions.

The important point which makes the
neural network models successful is the
availability of accurate historical information
like data encompassing actions taken by the
controller and the pilot, since that information is
used to train the networks. The option of using
neural networks to  model complex
environments appears very attractive because of
their ability to capture the essence of
decentralized decision making and learn the
operational environment that exists at the airport
and its immediate vicinity.

The notable approach based on ANN will
lead to the remarkable progress in the
development of avionics testing technology [5].
This heralds major advances for the so called
‘No Fault Found’ phenomenon and invites the
question of extension this technology to be
exploited and applied to benefit other
maintenance, repair and overhaul activities.

The problem of Fault Detection and
Isolation is also covered in[6]. This paper
presents the full cycle of design, development
and integration of a Fault Detection and
Isolation architecture for an air data computer
based on Artificial Neural Networks. The
proposed architecture was tested on a live flight
data and showed good performance in
identifying fault occurrences.
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The important issue raised in the
application of ANN-based technology in
electronic system is the platform choosing of
their implementation. There are two generic
types of ANN assemblies. The first one is their
implementation as the algorithm, realized by
special software module where the neural
networks itself are constructed virtually as the
objects in the memory of onboard computer.
The main advantage of this bearing are the
possibility to construct the networks of almost
any complexity, random access to their internal
signals and the ability to reconfigure them
dynamically with preserving all intermediate
states. The greatest disadvantage of software
implementation consists in that each active
network requires quite large processor time for
its normal functioning, while the learning
process could be extremely computationally
consuming and demands huge processor time.

The second type of networks is the
networks implemented on the specialized
hardware  platforms often referred as
neurocomputers [7]. More thoroughly hardware
implementation of neural networks algorithm is
covered in [8], where the authors proposes
simple synapse multiplier with high precision
and large linearity range. It is shown that
proposed approach is suitable for VLSI
implementation of neural network. Since the
most widely used approach is taken feed-
forward back-propagation networks a special,
fast path generation chip is also developed.

Although a low-cost, high-speed, compact
solution to a number of avionics functions is
available through neural networks this paper
presenting the results of researches concentrated
more on the tasks of the target detection
problem than others mentioned above.

One of the issues raised in the target
detection is target identification through the
analysis of radar image where a possible
solution can be achieved by means of scattering
analysis of radar targets. The conceptual idea is
a decomposing the image under processing into
point scatterers [9] as simpler elements
possessing clear physical explanation. Each
scatterer could be reproduced in the linked
structure of the appropriate neural network.
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Another task of target detection process is
known as position location that determines
one’s ability to estimate the coordinates of the
particular target using its radio emission. There
are several techniques to solve the positioning
but angle of arrival (AOA) and time difference
of arrival (TDOA) are only vital to be sprung
into the solution of the task ready for the
avionics. Since one can easily get [10, 11] that
there is nothing but time delay estimation is in
the center of both techniques. This makes
important the developing of a robust algorithm
of time delay estimation based on feature
extraction. Direct time delay evaluation
originated on those features nonlinear
combining can be successfully performed in the
ANN-basis.

The authors of present paper have
found [12] that existing widespread approach to
neural network design requires some
modifications in order to consider the neural
networks as identification technique rather than
approximation model only. The neural networks
organized as identification models provide one
with the powerful tool to perform effective
parameter estimation procedure. The complex
model can be decomposed into simpler blocks,
which are mirrored in the appropriate units in
the network graph. It means that well-trained
network can be used not only for representing
the revealed dependency but for extracting the
values of internal parameters of its elements.
Afterwards, these values can be reversely
mapped into the values of the original model
parameters. In simpler cases, there would be
one-to-one reference between model parameters
and some of network parameters.

The rest of this paper is organized as
follows. The section 2 introduces the short
outlook on the theory of simple adaptive
elements applied to neural networking. The
ANN-based solution for the problem
identification of multiple scatterers is presented
in section 3. The time delay estimation via ANN
technique performing the mapping of the
discrete cosine transform coefficients into delay
value is described in section 4. The paper ends
with  conclusion  depicting the further
development of the signal processing based on
ANN and applied to modern onboard systems.
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2 Network Synthesis Theory

A brief introduction to the basic theoretical
principals of neural networks build of adaptive
elements will be given in this section.
Afterwards, there is detailed explanation of
adaptive element structure and interface, two-
directional  connections, neural network
architecture and their role during the overall
process of particular neural network synthesis.
The structural schemes of regular neurons and
radial basis function neurons (RBF-neurons) are
also considered while essential features of
learning process are discussed at the last part of
the section.

An artificial neural network can be
considered in most general way as a
mathematical model inspired by the biological
neural cells possessed by animal. As a virtual
model, ANN has its inputs, its outputs and a
transformation that can be explained in term of
transfer functions in the most of practical cases.
There are two opposite directions for
information travelling inside the network
depending on the network state. The process
known as feed-forwarding means signals are
propagating inside the network in the forward
direction from its inputs to its outputs. These
signals are typically the object which the neural
network realizes some complicated
transformation for. The other process is a back-
propagation and during this process a special
internal signals move back from the outputs to
the inputs implementing the learning process.
The back-propagation process can be explained
pictorially using back-propagation
diagrammatic representation [13].

There are few approaches to synthesize
artificial neural networks [14—17], and the most
commonly used approach of neural network
synthesis operates with regular neurons which
are sometimes referred as McCulloch-Pitts
model. In this paper, however a quite different
approach is wused, it implements required
characteristics and behavior of the networks
through sets adaptive elements. We propose to
use simpler basic elements than neurons which
can be referred as adaptive elements. The
original outlook based on [13, 18] is developed
by the authors in papers [12, 19].



Being as simple as they can possibly be
and linked in a proper way adaptive elements
can form a network of necessary complexity.
Thus the description of adaptive elements is of
particular interest and their properties are given
below.

2.1 Adaptive elements

An adaptive element is a simple transfer
element able to react to a given stimulus and
produce a corresponding response. As in the
whole network itself, the signal within an
adaptive element can propagate in two
directions, hence, adaptive elements have two
transfer functions: for the forward (T,) and for
the backward (T) signal propagation:

Y, =T, (Xf’e)’

Y, =T, (Xbae),
where y, and y, are output signals for feed-
forwarding and back-propagation, X, and x; are
input signals for feed-forwarding and back-
propagation correspondingly; T, is transform
function for feed-forward process and T, is
transform  function for back-propagation.
Finally, term ©® describes the vector combing
parameters to be adjusted which belong to the
particular adaptive element.

The following basic types of most widely
used adaptive elements can be defined:

1) a summing element,

2) a splitting element,

3) an amplifying element,

4) an element possessing arbitrary functional
transform.

In order to be able to build a network of
arbitrary complexity, one needs to reestablish
connection entities. The structural scheme of the
connection between elements is shown in fig. 1.
It is important to highlight that direct
connections between two elements was chosen
that allows signals passing through in both
directions and does not introduce any
disturbance, noise, interference or other
transform to the signal because all of these
things are done by the adaptive elements.
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Fig. 1: Structural scheme of the two-directional
connection between adaptive elements.

Combining  above-mentioned  simple
adaptive elements makes possible building
extremely complex neural network. Some types
of neurons such as regular neuron or RBF-
neuron can also be synthesized upon the basic
adaptive elements foundation.

The next subsection overviews the learning
process in regards to the adaptive elements and
signal propagation within neural network. This
will clarify the desirable features of adaptive
element concept.

2.2 Training process

The essential property of neural networks
is its ability to extract generalizing information
from the data presented to them and to store it in
as the value of parameters in networks’
structure. This process is usually called learning
(or training) since it looks in some sense similar
to the learning of primitive animal species.
There are few approaches to perform the
training of ANN [16]: supervised, unsupervised,
reinforced, etc. and a supervised training is used
in this work. This means that a well-defined set
of training samples must be acquired in order to
make the network learn. A single sample of this
set consists of pair of input and output data
vectors which are assumed to be known for the
trainer.

An objective function should be defined
for  qualitative estimation of network
performance during training. In this research,
authors rely on mean square error (MSE)
function for that purpose:

PACEER )
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where E is overall error (MSE) measured on N
training samples, z, and #, are network evaluated
output value and original output value for the n-
th training sample correspondingly. The goal of
the training process is easier reformulated in
terms of minimization problem of objective
function in the space of parameters ©.

Basically training process contains of the
cyclically repeated steps:

1) preparing input data samples,

2) presenting some samples to the network in
feed-forward mode,

3) performing back-propagation process,

4) adjusting adaptive parameters.

These set of steps are iterated unlit required
performance measured by the network objective
function is achieved or any stopping criteria
take place. There are a few variants of how to
perform last three steps. It is possible to adjust
parameters of the adaptive elements after each
training sample is presented and the back-
propagation process performed or to adjust the
parameters once after a bunch of training
samples. In this work we will use the latter
option known as batch training mode [15].

The parameters adjustment of the adaptive
elements can also be performed in various ways.
The set of rules prescribing how to use the
results of back-propagation process in order to
make changes to the values of the parameters is
defined by the learning method. In this work,
the group of autonomic methods of the first
order is considered since they require the values
available within the same element only. This
key feature leads the light on the paradigm of
the adaptive elements. The basic underlying
method for all methods of the first order is the
gradient decent. For that method the adjustment
value A@,, for the parameter 8,, of m-th adaptive
element is calculated using the local gradient
value 06 obtained during the back-propagation
process and its history according to the
expression below:

AQ =—¢-506, 3)

The gradient descent method itself contains
parameter ¢ called a learning rate. The effect of
this parameter is significant since the lower
value of ¢ causes slow training process makes
required performance achieve later. In the other
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words, the computational costs of the training
process increases. But the larger values of € are
risky since they may lead to the essential
destabilization of the training process.

In order to suffice requirements of
supervised learning with back-propagation, the
transfer functions of adaptive elements must be
defined accordingly. Here are transfer functions
of some basic adaptive elements presented.
Thus transfer functions for summing and
splitting elements have to be defined as follow:

yf,sum/b,splitter = Z xi,f,sum/i,b,splitter ’ (4)

y " splitter/b,sum =X " splitter/b,sum >
P

where output signals are denoted as y and input
signals are x; the indices determine the
directions: f'is for feed-forwarding while b is for
back-propagation.

Since the amplifying element is, in fact, a
special case of arbitrary functional transform
element (i.e. transform with a given amplifying
factor) the following equations define transform
functions of that element:

Yy =WXy

Yy = WXy,

6))

where xr and yr stand for feed-forwarding input
and output accordingly, x; and y; stand for back-
propagation input and output accordingly and w
does for amplifying coefficient which is
equivalent to the synaptic weight.

Four adaptive elements described above
are engaged in building various types of neurons
such as classical neurons and neurons for Radial
Basis Functions (RBF) networks. In order to
implement necessary activation functions for the
neurons of each subtype, arbitrary functional
transform elements are used. The most popular
and widespread activations functions are
sigmoidal, hyperbolic tangent, Gaussian, square,
linear etc.

2.3 Neuron Assembling

Using adaptive elements as a starting point
makes synthesizing the most classes of neurons
possible. Such approach provides network
structure to be plain and simple yet allows
creating complex transfer functions. This
implements the paradigm known as network’s
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point of view which means all elements are
quite identical in terms of signal propagation
that also allows introducing new types of
elements easily while any new elements would
be able to represent various systems considering
their parts as covered (or masked) sub-networks.

The distinctions in the synthesis of two
types of neurons: regular and RBF-neuron is
overviewed below.

2.3.1 Regular neuron

A regular neuron (or linear separating
neuron) can be synthesized by means of a set of
amplifying elements, a summing element and a
functional transform element with required
transformation function. Each amplifier is
connected to a certain summing element input
thus implementing synoptic weight.

The structural scheme of a regular neuron
with 3 inputs is shown in fig. 2. Its synaptic
weights are represented by the amplifiers in the
left-hand part of the scheme, than weighted
signals are summed and transmitted to the
functionally transforming element that embeds
the necessary activation function.

Fig. 2: Structural scheme of regular neuron with
three inputs during feed-forwarding.

The overall transform functions of regular
neuron define as follow:

Y, =f(2<xf,,-w,-)j, (6)

According to the back-propagation
characteristics of the underlying elements the
back-propagation function and the structural
scheme in case of back-propagation for regular
neuron define as shown in the fig. 3.

The transform function in that case has the
formula defined in the expression below:

Yo = bey [z (‘xf,iwi)j' (7)
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Fig. 3: Structural scheme of regular neuron with
three inputs during back-propagation.

2.3.2 RBF-neuron

An RBF-neuron is a special type of neuron
that not only uses a radial basis function as its
activation function but also has another input
combiner. Structural scheme of RBF neuron
during feed-forwarding is shown in the fig. 4. In
case of working with two-dimensional input
data such neuron will normally have 3 inputs:
two for coordinates x and y and another one for
bias, the latter marked with “+1”,

X +1 y

(D =)
Q<

z

Fig. 4: Structural scheme of RBF neuron for
feed-forwarding.

The transformation function can be easily
written from the scheme of the neuron in fig. 4,
thus the output signal is defined by the
following expression:

2= [k + 2’ +hk,o+)°) (8

The argument inside the parenthesis of f-
term in the transfer function above can be
rewritten in the form of canonical equation for
an ellipse (or an ellipsoid if the dimension
would be greater than two):

z=f(w(x,)),
(x—x1)2+(y—yl)2 ~1 ©)
c’ d? '
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Where the following substitutions are applied:
X1 =X V1 = Vo

c=\wlk.d=|wlk, (10

In the case of Gaussian function taken for
the activation function f, the output signal of one
RBF-neuron will be equal to unity at the central
point and rapidly decreasing bell around.

Zy
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Fig. 5: Structural scheme of RBF neuron for
backpropagation.

The individual knowledge of the adaptive
elements behavior during their  back-
propagations opens the option for constructing
structural scheme of RBF neuron for back-
propagation (see the fig. 5).

As it can be seen from the overview given
in this section the concept of the adaptive
elements perfectly corresponds to the theoretical
basis of neural network processing. Complex
yet simple in their nature basic elementary
neural structure can be successfully built with
decomposing approach using adaptive elements.
The strict definition of input and output
interfaces of the adaptive element allow to keep
it relatively isolated. This makes
implementation of custom algorithm based on
first-order training methods possible. The next
sections explain some application of neural
networks built according to the proposed
concept.

3 Scatter based target identification

The ability of neural networks to operate on
distorted, noised and incomplete data sets
alongside with the properties of RBF-neurons

FOR PERSPECTIVE ONBOARD SYSTEMS

allows them to be applied in the scatter based
target identification which is reviewed in this
section. The radar image processing using ANN
in order to extract information about the target
depicted on is presented below.

The image to be processed is assumed to
be obtained by a radar system performing
azimuthal scanning and having a high resolution
for both distance and angle. The system
operating in centimeter wavelength range emits
coherent pulses with the same antenna working
with time division both for transmission and
echo receiving receiver. The scanning is carried
out in a presence of white Gaussian noise._The
main task of the scatterer identification is the
estimating parameters of multiple scatterers
involved in target representation such as the
coordinate of their centers within the target as
the most important information to characterize
its geometrical form in a further possible
processing. This acquired information could be
passed to the specialized classification systems
that form the anchors for the process of the
automatic target identification.

The proposed approach in general consists
in using specifically-synthesized RBF-neural
network to approximate sampled radar image
given to its input. In the case of successful
approximation, the Cartesian coordinates of the
scatterers are taken from the parameters of
neurons directly. The numerical calculations
results are presented in order to estimate
practical viability.

3.1 Radar image model

The enhanced model of complex radar
target [20] considers the radar target represented
as a set of individual scatterers mounted on a
stiff backbone. This model supposes that echo-
response signals received during observation are
to be determined as a superposition of the
responses from each individual scatterer. Each
of these individual responses possesses in the
first consideration the form of the probe pulse
emitted by the radar system.

Such model has a few deliberately
introduced simplifications:
1) non-linear distortions caused by signal
reflection from a scatterer are compensated;



2) changings in the position of the scatterer
during antenna moving are neglected;

3) the inaccuracy of reflection process could be
represented in the model by means of the
additive noise component.

The model of space-time radar echo
response signal of complex radar target is used
to generate test input radar image. Since a high
resolution in both distance (denoted by p) and
angle (denoted by ¢) for the observed radar
target is assumed, the signal could be described
with following expression:

£(6,0)= 3%, (1,0) + n(0)
L (11)
=de ‘S(t—rp)-fj(9—¢p)+n(t),

p=l1
where x,(7,0) stands for complex-valued
space-time radar signal echoed from p-th
individual scatterer, s'(t —rp) is the slice of the

radar image across the distance (in fact, the
form of this slice will correspond to the form of

probe pulse), f; (0—(0p)is term for squared
antenna pattern, ¢, determines the main beam

direction of the antenna. The term n(#) describes
the additive white Gaussian noise which is

uniform in the frequency bandwidth used by
radar system. The schematic structure of such

signal is shown in fig. 6.
'S‘p(tle)

Fig. 6. The structure of space-time radar echo
response signal of complex radar target.

The instance of a typical radar image with
three individual scatterers generated according
to the introduced model for the complex radar
target is shown in fig. 7. This image is noted to
be visualized by the absolute value of originally
complex-valued 2D function (11).
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Fig. 7. The instance of radar image
with three scatterers.

As one can note in fig. 7, two pulses are
close to each other, so they are partially
overlapping — this was chosen intentionally. The
third pulse has the greatest intensity and located
separately from the others. The probe pulse
range waveform and antenna cross-range pattern
are both assumed to be of Gaussian curve.

3.2 Neural network design

The coordinate of scattering centers are
considered [21] to be the most relevant
parameter for the target identification. In
works [22, 23] authors have proposed the way
to the identification using parametric methods
for pole estimation in the frequency domain.
The coordinates of the poles on the virtual
complex plane can be used then to evaluate
geometrical centers of the scatters. Although
this approach demonstrates high accuracy and
has proven suboptimal nature, it suffers from
high calculation cost and the requirement to
perform accurate deconvolution of the radar
image that is naturally ill-conditional problem.

Author of the present work have proposed
in [24] alternative solution based on ANN-
framework since it is not difficult to notice that
described in the previous section Radial Basis
Function (RBF) neural networks perfectly
correspond to the model (11). Proposed
approach contains the following stages:

— radar image sampling;

— forming training set from the radar image
samples;

— RBF neural network synthesizing;
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— using this set as the input data during
neural network training process;

— using RBF neurons parameters to directly
calculate coordinates of individual scatterers
(in case of success training).

The structural scheme of RBF neural
network is shown in fig. 8. It consist of input
signals x and y representing coordinates of a
point belonging to the image to be processed
and output z representing the intensity at this
point; block marked with “+1” introduces bias
input.

X RBFN

+1 »| RBFN

—>
Y RBFN /

Fig. 8. RBF neural network.

Training set consists of samples which x
and y coordinates on the image are used as input
data and the signal intensity in that point is used
as required output data. Hence, the problem can
be now redefined as the task of approximation
of the target radar image with neural network.

Output signal generated by neural network
is defined by the following equation:

X, (p.0)=D.2,(p,0) (12)

where x, 1s output network signal (ie.
approximated radar image), p and ¢ stand for
distance and antenna azimuthal angle
correspondingly, P denotes the number of RBF
neurons within the network, g, is partial output
signal taken as weighted output of p-th RBF
neuron.

The important point to highlight is that
single RBF neuron is targeting a particular part
of the image which is best corresponding to the
neurons output signal. Thus by selecting
activation function of the neuron in accordance
to the probe pulse form and antenna pattern, one
can expect that each single RBF neuron will
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after the successful training process target one
individual scatterer.

The parameters of the neurons are available
after the training and can be directly used to
calculate the estimated parameters of the
scatterers, e.g., the coordinates of their centers
and the effective widths.

3.3 Numerical simulation

Since any strict theoretical investigation of
on the estimation ability of ANN are always
challenging, the numerical simulation is a
helpful tool that is used in order to estimate
practical accuracy of the proposed procedure.
The described above allocation of three
individual scatterers was used to synthesize
radar image of complex target.

The radar image shown in fig. 7 undergoes
sampling. The discrete points, or samples, of the
image are shown in fig. 9 with circles, which
squares are proportional to their intensity.
Activation function is chosen Gaussian in
accordance to the form of probe pulse and
antenna pattern possessed by model (11). Since
the number of RBF-neuron corresponds to the
number of scatterers, this quantity is assumed
known and is equal to three.
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F1g 9. Sampled radar image.

All sample formed training set was used to
train RBF network in batch mode with gradient
descent method. The objective MSE function
representing there the difference between source
radar image and approximated one evaluates
network performance during the training. The
learning curve during the training is shown in



fig. 10 as the value of MSE plotted against the
number of iteration or epoch.
0.35F T L T

0 100 200 300 400 500 600 700
Training iterations (epochs)

Fig. 10. Training process.

The low level of MSE is achieved after 100
training iterations; hence the approximated radar
image approximates the source radar image
accurately. Parameters of the scatterers are
immediately taken from the adaptive elements
the neurons consist of. The reconstructed
scatterers are shown in the fig. 11 alongside
with the true ones.

1.2F
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Fig. 11. Original and reconstructed scatterers.

It is clear that the centers of all scatterers
are accurately estimated despite the fact that two
of them were partially overlapping. However
effective widths of the scatterers are not
estimated accurately. This phenomenon could
be explained by their lesser influence on the
overall MSE value. Besides, fig. 10 shows that
the value of MSE is still decreasing at the end of
the training process but notably slower than it
took place at the beginning.
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The series of simulation indicate that RBF
neural network can be successfully used for
accurate estimating the centers of the individual
scatterers with signal-to-noise ratios down to
5dB.

4 Neural based target localization

In this section the application of the neural
network to the task of target localization is
discussed. A particular problem of estimating
constant delays as informative parameters
embedded into received signals that are noisy
and damped image of the known reference
signal.

The offered approach uses Discrete Cosine
Transform (DCT) to obtain a set of DCT
coefficients from the received signal. Then,
selection is used to reduce number of
coefficients in the selection, hence getting
Reduced Cosine Transform Coefficients
(RDCTC) set. The phase shift embedded in the
original signal will also be encoded into
RDCTC set. Since the form of the reference
signal is known a series of RDCTC sets can be
synthesized in advance and used as training data
to the Neural Network. Reduced size of the
DCT coefficient set guarantees relatively small
size of the network itself.

Using these synthesized RDCTC sets to
train network one can obtain the neural network
designed specifically for the known reference
signal; since the neural network is featured with
the ability to handle noisy and incomplete data
this solution becomes both accurate and
efficient in terms of calculation cost.

4.1 Theory framework and model

One of the important problems within position
location task is calculating delay between two
signals received at the specially separated
points. The prime concept of angle-of-arrival
(AOA) estimation technique is shown in fig. 12.
Signal s(¢) radiated by a radio source (RS)
is received at two spatially separated points
which signals can be described in the form:

s(O=K,-s(t~T)+n,(1),

(13)
Sz(t) = Kz 'S(t_Tz)"'nz(t)a
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where K; and K, are attenuation ratios, 77 and
T, are time delays and »; and n, are noises for
the first and second points correspondingly.
Considering the simple instance of mono-
harmonic signal s(#) with circular frequency w,
the points separated by distance d not farther
than half of its wavelength and noises
uncorrelated with each other as well as with the
signal one can obtain the following expressions
for received signals
xl(t)=A~cos(a)-t+(p1), "
x,(t)=A-cos(w-t+¢,), (19

where amplitude A4 is the same while phases ¢;
and ¢, can be used for evaluation of angle of
arrival:
cosa = M, (15)
od
where c is phase speed e.g. speed of light.

There are few approaches to determine
phase shift between two harmonics. The most
widely used technic is cross-correlation. One of
its efficient applications is shown in [26]. But
not all approaches involves cross-correlation,
the algorithm of direct phase estimation is based
on neural networks and was originally
introduced in [27] and developed by authors of
this research in [28].

\%* RS
~

&

direction of arrival
of the waves

Fig. 12. Receiving signals at two spatially
separated points.

In order to implement this sort of
algorithms one needs at first to determine
features of the signal that will most effectively
embed the information about the delay or phase
shift. Such features must obviously be very

FOR PERSPECTIVE ONBOARD SYSTEMS

sensitive to the changes in the delay. It was
shown in [27, 28], that a subset of Direct Cosine
Transform coefficients can be used for that
purpose. This subset can be used to decode the
value of phase shift in order to calculate time
delay.

Discrete Cosine Transform is a transform
with even harmonic functions basis. There are 8
types of DCT due to the symmetry property; in
this paper we use the most thoroughly
researched type described in [25] as normalized
DCT-II and defined by the following equations:

N-1
X[k]=\/%-ﬁ[k]-z‘l'm,{,osmzv—l,
n=0

(16)
Y = x[n].cos(Mj,
’ 2N
1,
where flk]= J2° ’
I, 1<k<N-1.

That transform was chosen among the
others because of its property known as “energy
compression” [25]: coefficients of the sequence
concentrated at some range of indices with
higher density rather than in Discrete Fourier
Transform (DFT) or any other types of DCT.
This property is illustrated by 3D-plot in fig. 13
where the actual values of DCT coefficients are
plotted against coefficient number and values of
the time delay measured in the part of harmonic
period.

DCT coefficient value

Dela
DCT coeficient index 15 ! i

Fig 13. DCT energy compression.

The results shown in fig. 13 indicate that
some of coefficients are less sensitive to the
phase shift; hence the usage of the whole set of
DCT coefficients is redundant. The criteria of
how to choose the most sensitive of the phase
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shift coefficients must be defined. In paper [27],
the criteria of class L; based on sum of absolute
difference (SAD) is used:

SAD=Y |R(p,.)-R(p,),  (17)

where R is DCT coefficient under analysis, ¢,
are possible phase values of the received signal
defined with some predefined steps.

Alternatively to SAD we have used L,
criteria [28]: the sequential selection of the
coefficients containing biggest share of energy,
although those criteria led to the same results in
selecting the most sensitive DCT coefficients
(R) in order to form RDCTC sets. These
RDCTC sets are used later as a training data for
the neural network.

4.2 Numerical simulation

The conceptual graph of feed-forward neural
network known as multi-layer perceptron
(MPL) is shown in fig. 14. We will use this type
of network, which can be easily build using
adaptive elements, to solve task of estimation of
the constant delay. The network is built from
neurons united into two layers traditionally
called hidden and output layers. Each neuron
embeds the summing element and the functional
transform; for the hidden layer hyperbolic
tangent function is used. The output layer is
strip of its functional transform element and
contains only summation element.

R,

R,

Fig. 14. Multilayer perceptron as neural network
for angle evaluation.

As input signal s(f) for the numerical
modeling a single harmonic of frequency
and sampling rate 7 was chosen. The noiseless
signal was delayed with constant delay D. A

E. Efimov, T. Shevgunov, A. Valaytite, E. Sadovskaya

series of DCT transforms were performed on
input signal for various delay values.

The results collected into a single plot are
shown in fig. 15 as a dependency between of
DCT coefficients with smaller index value from
the delay.

DCT coefficient value

0 0.2 0.4 0.6 0.8 1
Time delay, ns

Fig. 15. The dependency between DCT values
and the phase shift embedded into signal.

Fig. 15 clarifies the point that despite the
fact that all DCT coefficients are sensitive to the
value of the delay in the signal, the most
sensitive to that change are only a few
coefficients marked as Ri, R, and Rs. These
results also indicate that no matter how sensitive
any coefficient to the value of the delay is, it is
sensitive only for the changes in some range, for
example R, coefficients is only sensitive to the
change in ranges [0.18 — 0.4] and [0.6 — 0.86].
That means R; will improve quality of the
estimation only for the values within these
ranges; outside of them the coefficient will be
useless. In order to cover all possible values of
the time delay changes we need to pick a few
DCT coefficients so they ranges of sensitivity
overlap. In this particular case, we need at least
3 coefficients to obtain appropriate estimation
procedure.

)

ool T

600 -

P 10]0 |

Sum of absolute differences (SAD)

' 1
10 15 20
Index of the DCT

Fig. 16. SAD evaluated for DCT coefficients.
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The integral outlook of the ability could be
presented by the dependency of SAD, written in
equation (17), from the number of DCT
coefficient as it shown in fig. 16.

The next step after the indexes of the most
sensitive  DCT  coefficients have been
determined is selecting optimal neural network
topology [12] in order to make it efficient in the
estimation of phase-shift value. The numerical
modeling was performed to choose the topology
leading to lower value of Mean Square Error
(MSE). The topology parameter to optimize is
the size of the hidden layer. A series of 40
experiments was performed for each size of
hidden layer in order to rule out the effect on
random initial synaptic weights. In each
experiment the value of MSE for neural network
with the hidden layer of given size was
estimated, taken values were averaged
afterwards. The obtained dependency between
MSE and the hidden layer size is shown in
fig. 17.

MSE of phase-shift estimation

5 10 1 20
Number of neuron in the hidden layer

Fig. 17. The dependency between MSE and the
number of neurons in the hidden layer.

More experiments were done to estimate
the influence of both the size of the hidden layer
and the number of the most sensitive DCT
coefficients. The results are compiled into a
diagram shown in the fig. 18; the value of MSE
are depicted with intensity of grayscale.

2 3 4 5 6 7 8 9

-5.5e-04

o

-6.5e-05

~

-7.5e-06

@

-8.5e-07

©

9.5e-08

Number of neuron in the hidden layer

Number of DCT coefficients in RDCTC sets

Fig. 18. The dependency of MSE from the
number of neuron in the hidden layer and the
number of DCT coefficients in the RDCTS sets.
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The analysis above shows that it is enough
to take 5 most sensitive DCT coefficients with 8
neurons in the hidden layer. The results of the
numerical simulation indicate that MSE
generally decreases as the number of DCT
coefficients in the RDCTC sets or the number of
the neurons in the hidden layer increases. It is
important to note that the other side of the
increase of either size of hidden layer or the size
of RDCTC sets is the increase of the calculation
cost.

5 Conclusion

The present paper reflects the current
advances in the neural network based signal
processing in regards to tasks related to the
modern onboard systems. The concept of
adaptive elements forming the framework to
synthesize neural network of various types is
described. Two practical tasks solved using the
proposed approaches with neural network are
presented: scatterer based target identification
and target localization.

The artificial neural networks based on
simple adaptive elements are described and the
two significant advantages of this framework
are discussed. The first is the clear potential to
the architecture extension and incorporating the
difficult and implicit parts of the model into
blocks belonging to the networks representing
the model under investigation with the required
degree of adequacy and highlighting the details
of the interest. The second is the straight way to
the building system identification scheme
achieving with open access to the values of
internal parameters possessed by underlain
network blocks. This allows one to implement
the complex parameter estimation for
monitoring, predicting and control problems on
the powerful learning procedures developed for
several decades.

The significant results of the paper is
demonstrating a possible way how neural
networks can be used for automated radar image
analysis which is the essential part for a set of
tasks forming target detection problem. The
proposed algorithm carries out the system
identification approach reached via neural
network learning procedure. Thus the radar
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image is firstly approximated by RBF networks
where each RBF-neuron preserves the
information about the point scatterer of the
possible targets. The adaptive element concept
chosen for ANN synthesis is extremely suitable
for the second stage when the wvalues of
parameters are being extracted and further
transformed  into  parameters of  the
multiscatterer model.

It was shown that the neural networks give
the strong framework for effective time delay
estimating algorithm. The estimation procedure
relies on the feature extraction technique carried
out by discrete cosine transform which
appropriate type allows obtaining the compact
energy representation of signal undergone to the
digital processing. Since time delay estimation
is the core of commonly used position location
technique — angle of arrival and time difference
of arrival — ANN provide the basement for
integrated procedure. The feed-forward neural
network, also known as multilayer perceptron,
appears to be the most effective architecture.
The optimization problem for the number of
character enough for signal representation and
for the number of elements in the hidden layer
was also solved as the illustrative example in
the current research.

The research, which some of results are
presented in this paper, is in progress and will
hopefully continue. The main finding is that
neural networks can no doubt be successfully
applied to the signal processing performed by
onboard electronic systems. These systems will
be able to solve different task in the similar way
by means of the entire ANN framework with the
modification required for particular problem.
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