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Abstract

The development of a zero-order aeroelastic
prediction method for plate-like structures in
supersonic flows is outlined. — Local piston
theory used with computationally inexpensive
aerodynamic methods is strongly coupled to a
simple finite element code for plates to produce
a partitioned-solver aeroelastic prediction tool.
The application of the prediction tool to the
flutter of a cantilevered plate in supersonic flow
is validated by computational fluid dynamics and
by experimental data in literature. The zero-order
prediction method is shown to produce accurate
results for a fraction of the computational cost of
high-fidelity analysis.
A brief review of piston theory is also given.

1 Introduction

Prediction of the aeroelastic behaviour of lifting
and control surfaces at high flow velocities is
important from the perspective of both design
optimization as well as safe testing of designs.
The onset of flutter may be very sudden, and
may lead to the rapid destruction of the lifting
surface [1] - this sharp onset of flutter is known
as “hard” flutter.

A number of codes for aeroelastic modelling
and prediction of various analysis fidelities
are commercially available [2], ranging from
panel methods to coupled finite volume and
finite element codes. The only open source
code for supersonic aeroelastic analysis readily
found was FreeCASE [3]. FreeCASE is a

high-fidelity finite volume code for transonic
aeroservoelastic computations.  High-fidelity
aeroelastic analysis by finite volume codes is
computationally expensive, which may render
it unsuitable for parametric design studies,
or prohibitive to implement in the design of
experiments.

In this paper, the development and
application of a zero-order method for aeroelastic
modelling and computational flutter prediction
is outlined. The method is based on the use
of local piston theory with computationally
inexpensive methods for steady aerodynamic
analysis. A partitioned solver is employed
with strong coupling between the aerodynamic
method and a basic finite element code. The
resulting prediction tool is shown to be suitably
accurate for preliminary modelling, and is shown
to be capable of predicting hard flutter.

2 Piston Theory

2.1 Literature Review

Piston theory is an analytical method that gives
a point-function expression for the aerodynamic
pressure on the surface of a body in supersonic
flow. The body surface is treated as a piston
moving in a 1-D cylinder transverse to the flow
direction, as illustrated in Fig. 1. The pressure
is modelled from the upwash on the face of
the piston. It is a quasi-steady, local theory
in which the pressure is a function of only the
local downwash [4]. It may also be seen to
be an application of the hypersonic equivalence



principle between 2-D steady flow and 1-D
unsteady flow [5].

Piston
motion

Cutting plane /
cylinder motion

Fig. 1 : Piston theory terminology.

The original development of piston theory
is generally accredited to Lighthill [6]. In the
original formulation, the pressure at a point
on a body due to both steady and unsteady
aerodynamic contributions was solved for; this
will be referred to as “classical piston theory”
(CPT). Lightill’s pressure formulation was based
on the equations of 1-D compressible flow for
a piston generating isentropic simple waves [7].
The limits of validity were established by Ashley
and Zartarian [7] as flows for which M > 1,
kM? > 1, or k*M? >> 1, where k is the reduced
frequency of oscillation and M is the Mach
number of the flow. Furthermore, the analysis
was limited to bodies with sharp leading and
trailing edges with attached shocks.

Further developments to piston theory were
reviewed by Liu et al [8], who also coupled
3_order CPT with supersonic lifting surface
theory to account for 3-D influence.  The
review of Liu et al considered the work
of previous authors in formulating higher-
order piston theories, including Van Dyke’s
unified supersonic-hypersonic theory [9] and
Donov’s [10] 4M-order series for the surface
pressure. These works assumed that shocks
remain attached over the length of the body. Liu
et al estimated the range of validity of these
works to lie between between 0.368 < K < 1.05,
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where K is the hypersonic similarity parameter
defined as in Fig. 2 and represents the upwash
Mach number.

Cylinder

K =Mt

Fig. 2 : Upwash Mach number in piston theory.

An important development in piston theory
was made by Zhang et al [11], in which 1%-
order piston theory was used to analyse only
the unsteady contribution to pressure; this was
dubbed “local piston theory” (LPT). In the
work of Zhang et al, the mean steady flowfield
was solved by computational fluid dynamics
(CFD) using steady-state Euler analyis. It was
shown [11] that excellent correlation between full
unsteady Euler analysis and the steady Euler/LPT
could be obtained for small oscillations at Mach
numbers in the range 2 < M < 12. The use of
the Euler code to obtain the steady contribution
eliminated restrictions on the airfoil shape that
were associated with CPT.

Recently, an extension to linear piston theory
and its range of validity was made by Dowell and
Bliss [4]. In their treatment, linear piston theory
is shown to exist as the first term in an expansion
of the equation for pressure from unsteady linear
potential flow theory in terms of inverse powers
of k or of M?. The derivation is made assuming
simple harmonic motion, and offers an extension
of the range of validity for piston theory in terms
of both reduced frequency of oscillation and
Mach number, as these parameters are factored
into the calculation of the coefficients in the
extended piston theory.

Piston theory remains an active topic
of research and application, with several
[12-14] applications made in the field of
aerothermoelasticity.
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2.2 Fundamental Formulation

The basis for piston theory involves the binomial
expansion of an expression for the pressure on a
surface, Ppjsion, cast in terms of the local upwash
or flow turning angle.

P, piston

— 1 +4E (1)
Pcyl b

where 7y is ratio of specific heats of the gas,
E denotes the other terms in the binomial
expansion, and where the reference pressure Py,
depends on the use of local or classical piston
theory. Typically, the expression E is of the form

2
w w
EZC]( )+62( ) +... 2)
Aeyl Aeyl

in which ¢y, ¢, and higher-order coefficients
depend on the equation the expression is based
on, w represents the upwash at the point on the
body, and a. is the reference speed of sound,
which depends on the use of local or classical
piston theory.

The piston upwash may be expressed as
the sum of the contribution arising from steady
effects (wp, such as the body shape and flow
incidence) and unsteady effects (w1, such as body
motion)

W =wp+w (3)

where the contributions are defined in Fig. 3

The order of the piston theory applied is
based on the order of the upwash term that the
expression for pressure (Egqn. 2) is expanded
up to. Higher order upwash terms introduce
coupling between the steady and unsteady
contributions to the upwash. This carries through
to increased fidelity of modelling of the pressure.
In broad terms [5],

e 1%-order piston theory models linear
steady contributions from camber and «,
and linear damping,

e 2" order piston theory introduces linear
thickness effects on the steady and
unsteady aerodynamic loads,

Cylinder
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dt
(b) Unsteady contribution

Fig. 3 : Contributions to the piston upwash.

e 3.order piston theory introduces
nonlinear steady effects and damping,
and introduces coupling between the
steady aerodynamic loading and the
damping.

It has been noted by Liu et al [8] that from
the third-order terms and higher, differences in
the physics of expansion and compression in
supersonic flows are modelled in the pressure.

2.3 Classical vs Local Piston Theory

The difference in formulation between LPT and
CPT stems from the choice of reference frame
for the piston and cylinder [5]. In CPT, the
cylinder is in an earth-fixed reference frame
through which the body passes, as shown in
Fig. 4; the cylinder reference conditions are
the ambient conditions of the atmosphere, and
the piston motion arises due to body shape,
incidence, and motion of the body down the



cylinder. As a consequence, both the steady and
unsteady contributions to pressure are accounted
for.

In LPT, the cylinder reference frame is
analogous to the laboratory reference frame for a
body mounted in a wind-tunnel, with pitch and
plunge motion permitted; piston motion arises
due to the motion of the surface of the body down
the length of the cylinder, as shown in Fig. 5. The
cylinder reference conditions in LPT are taken to
be equal to the local steady flow conditions at the
point on the body surface under consideration.
Only the changes relative to the mean steady state
(i.e., unsteady contributions) are modelled.

The cylinder conditions in both classical
and local piston theory are assumed to remain
constant. In LPT, this essentially results in
the dynamic linearization of the flow, as small
perturbations about a mean steady flow are
assumed.

Cutting Plane /

Fig. 4 : Reference frame in CPT.
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In summary, the differences in formulation
between CPT and LPT are manifested in Eqn. 2
through both the downwash terms (w, w2,
...) and cylinder reference conditions a.,; and
M.y (which influence the calculation of the
coefficients ¢y, ¢2, ...). In higher-order piston
theories, the uncoupled steady downwash terms
(wo, w(z), wf,, ...) are not used in the calculation
of the unsteady pressure in LPT - these terms
are accounted for in the steady solution of the
flowfield.

The formulation of LPT allows the unsteady
pressures due to small vibrations of a body to
be computed with a point-function relationship.
This renders it a computationally inexpensive
method to obtain unsteady aerodynamic loads.
The method is also modular in its application, as
the only restriction placed on the fidelity of the
steady aerodynamic analysis is that the pressure
and speed of sound at the body surface must be
known.

Cutting Plane /
Cylinder

/

Time &5

Fig. 5 : Reference frame in LPT.
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3 Structural Modelling

In the developed prediction tool of Meijer [5],
the structure of a missile fin is modelled as a
cantilevered trapezoidal plate with isotropic
material properties. A finite element (FE)
structural solver was developed using bilinear
quadrilateral Mindlin-Reissner bending-plate
elements. The FE solver was implemented
in MATLAB, and was validated against MSC
Nastran for equivalent geometries, meshes,
and element type. Linear modal analysis
showed agreement to within ~ 1.5% in modal
frequencies between the FE solver and MSC
Nastran. Results of the modal analysis of the
Torii-Matsuzaki [15] wing (TM-wing) are given
in Table 1, with the mode shapes shown in
Fig. 6-8 .

Table 1: TM-wing modal frequencies

Natural frequency, f [Hz]
Mode Nastran MATLAB Exp. [15]

1 26.6 26.4 27.2
2 148.5 147.7 142.0
3 195.0 192.4 192.3

Eigenmode 1; f1: 26.37Hz
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Fig. 6 : TM-wing mode 1: first bending.
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Fig. 7 : TM-wing mode 2: first twisting.
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Fig. 8 : TM-wing mode 3: second bending.

4 Aerodynamic Modelling

Third-order local piston theory based on the
coefficients of Donov [10] (as deduced by Liu
et al [8]) was used in the developed prediction
tool to predict the unsteady contribution to the
aerodynamic loading. The steady aerodynamic
loading was computed using shock-expansion
theory along 2-D strips aligned parallel to
the root of the fin. This combination
of analysis methods will be referred to as



SE/LPT. Implementation of the aerodynamic
solver was made in MATLAB. The piston theory
coefficients were calculated using the local
steady-state conditions from shock-expansion
theory (subscript ss), with the unsteady pressure,
P,, calculated as

w w 2 w 3
(5= () = ()]
Uss Ass Ass

“4)

Py
—:1
P +Y

ss

where the coefficients are given by Liu et al [8]

as (withm = vVM? —1)

o = Lo (5)
Mg
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in which
a=v+1 ®)
b=2¢-7y-5 ©)
c=10(y+1) (10)
d=—-12 (11)
e=38 (12)

Shock-expansion theory was chosen for
the steady aerodynamic analysis due to its
simplicity in implementation, whilst providing
the local flow conditions. However, LPT
places no restrictions on the steady method
used, and as such the use of shock-expansion
theory serves as proof of concept of the
aeroelastic prediction method. Further work
was performed to incorporate steady loading
from the supersonic-hypersonic arbitrary-body
program (SHABP, Mk IV) into the prediction
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tool - this was accomplished for the shock-
expansion aero option in SHABP, and scope for
further integration exists.

The aerodynamic modelling was
validated [5] against Euler computations in
the Edge CFD code. The computations were
performed on the domain shown in Fig. 9. Mesh
independence was shown for a tet-dominated
unstructured mesh of 1,430,723 elements and
241,879 nodes. The normal force and pitching
moment coefficients, predicted using shock-
expansion theory in MATLAB for the TM-wing
at Mach 3, were found to lie within 5% of
the values computed in Edge for the range
0°<a<18°.

13c

10c

]
A
7 o

rd

Fig. 9 : Domain of the TM-wing in Edge.

S5 Aeroelastic Modelling

The structural and aerodynamic solvers were
strongly coupled as part of a partitioned
aeroelastic solver implemented in MATLAB.
The same spatial discretization of the fin was
used for both the structural and aerodynamic
solvers, and as such, no interpolation of loads
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and displacements was necessary for the given
geometry and panelling.

The aeroelastic system of equations was
formulated in the modal order, with

Miir i 4 Coprt + Kgeex = QO (13)

where the subscript str refers to structural
parameters, M is the mass matrix, C is the
damping matrix, K is the stiffness matrix, x is the
vector of modal displacements, the dot notation
referes to differentiation with respect to time,
and Q is the vector of generalized aerodynamic
forces (GAFs). The aeroelastic equations were
solved using the nonlinear formulation of GAFs
described in Eqn. 13.

The equations were also solved with the
GAFs linearized about trim conditions - this
allowed the aerodynamic stiffness and damping
matrices to be determined, and rendered the
aeroelastic equations linear time invariant (LTT).
This formulation is given as

Mjek + CaeX + Kaex = Qoffset (14)

where the subscript ae refers to coupled
aeroelastic parameters and Q, s rs.r represents the
offset GAFs associated with the linearization
point.

Solution of the nonlinear formulation of
Eqgn. 13 was accomplished by implicit time-
marching using the Newmark-f3 scheme [16] with

y=1/2 (15)
B=1/4 (16)
At = 7;;”2’” (17)

where v and P are parameters of the algorithm,
At is the time-step size, and Ty,;, is the shortest
modal period of the truncate mode set considered
(the period of mode 6 was used).

The given set of parameters for the
Newmark-f scheme render the scheme
unconditionally stable and do not introduce
numerical damping [16].

The solution of the LTI system of aeroelastic
equations of Eqn. 14 was through eigenanalysis

and explicit time-marching using the Runge-
Kutta (4,5) integration of the ode45 function
in MATLAB. The time-marching was performed
for the state-space formulation of Eqn. 14, given

as
{x} N {_ &lcae ) ;el ae} {x}
X I 0 X (18)

+ {Qo{)fset}

The aeroelastic modelling in Edge coupled
the transient Euler solution with a linear
modal structural model, with time-averaging
of the displacements and GAFs [17]. Post-
processing of the modal displacements was
performed in MATLAB, and an autoregressive
moving-average (ARMA) model of order (4,1)
was contructed using the armax function in
MATLAB for system identification.

The aeroelastic system was perturbed from
the trim conditions by setting a small initial
disturbance to the displacement of the 2" mode
(first twisting mode).

6 Application

The wind-tunnel flutter test of Torii [15] and
Matsuzaki [18] was computationally modelled
using the developed aeroelastic prediction
tool, with further validation performed through
modelling in Edge [5]. Good agreement was
obtained with the experimental results, as shown
in Table 2.

Table 2: TM-wing flutter dynamic pressures

Analysis Method qr [kPa] %Error
Exp. [15] 113.5 N/A
Edge 108.3 -4.6%
SE/LPT (nonlinear) 120.8 +6.4%
SE/LPT (linear) 124.5 +9.7%
SHABP/LPT (linear) 117.9 +3.9%

As seen from the approximate computational
times required (8-core AMD FX-8150 3.6GHz
processor, 8GB RAM, and Microsoft Windows
7) for the aeroelastic analysis of one set of flight



conditions in Table 3, the use of approximate
steady aerodynamic methods (such as shock
expansion theory) together with LPT allows for
drastic reduction in the computational expense of
the analysis. This may be seen to be an extension
of the findings of Zhang et al [11] to analytical
aerodynamic models, and differs from the work
of Liu et al [8] in the use of LPT and the resulting
modularity in the steady aerodynamic method.

Table 3: Approximate computation times

Analysis Method Time Remarks
Edge 7 hrs 1500 iterations
SE/LPT (nonlinear) 9 hrs 1500 iterations

SE/LPT (linear) 3min 20x44 mesh
SHABP/LPT (linear) 5 min 10x26 mesh

Whilst higher-fidelity steady aerodynamic
analysis (such as Euler or Navier-Stokes
computations) offers greater accuracy and
solution of the flowfield, it is seen that the
zero-order aeroelastic prediction based on
computationally  inexpensive  aerodynamic
methods is capable of correctly capturing the
physics of fin flutter. The frequency trends with
dynamic pressure predicted by SE/LPT shown
in Fig. 10 correctly show the coalescence of the
first bending (mode 1) and first twisting modes
(mode 2) as flutter is approached.

Similarly, the damping trends of the TM-
wing shown in Fig. 11 reflect the very sharp
decrease in damping of the first twisting
mode (mode 2) just prior to flutter.  The
hard flutter of the TM-wing as reported by
Matsuzaki [18] is predicted, although the flutter
dynamic pressure is over-predicted by SE/LPT;
nonetheless, the flutter type is correctly modelled
for negligible computational cost. This allows for
informed decisions to be made regarding flutter
testing and computation using higher-fidelity,
computationally expensive methods.

The frequency trends for the TM-wing
predicted by the various computational methods
are shown in Fig. 12. The impact of linearizing
the GAFs for the given setup may be considered
negligible, given the substantial reduction in
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computational expense.
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Fig. 10 : TM-wing frequency trends.
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Fig. 11 : TM-wing damping trends.

The linearization of the GAFs in the
SE/LPT model allows for rapid assessment of
the aeroelastic system parameters. The LTI
system offers the further advantage of being
suitable for flutter prediction by the Zimmerman-
Weissenberger (Z-W) flutter margin [15]. The
trend of the Z-W flutter margin with dynamic
pressure for the TM-wing is shown in Fig. 13.
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Aeroelastic Frequencies
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Fig. 12 : Comparison of flutter dynamic pressures.

The very-nearly linear behaviour of the Z-W
flutter margin, in conjuction with the LTI system
modelled using SE/LPT, allows for the very rapid
estimation of the flutter dynamic pressure.
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Fig. 13 Zimmerman-Weissenberger flutter
margin.

7 Conclusions

Aeroelastic modelling of lifting surfaces in
supersonic flows may be performed using a

variety of analysis codes, most of which are
commercially available. Local piston theory had
previously been shown by Zhang et al [11] to
significantly reduce the computational expense
of high-fidelity aeroelastic analysis, whilst
retaining high solution accuracy. Meijer [5]
demonstrated the use of local piston theory
with computationally inexpensive aerodynamic
methods to be suitable for implementation
in a zero-order aeroelastic prediction method.
Validation [5] of the prediction method by
CFD modelling and by the experimental results
of Torii [15] and Matsuzaki [18] showed that
accurate predictions could rapidly be made using
zero-order methods.  Preliminary integration
of SHABP with the prediction method by
Meijer was successful, and suggested that further
integration would result in extension of the
SHABP modelling capabilites to aeroelastic
prediction for missile fins.
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