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Abstract  

Novel method for a determination of residual 
stresses in orthotropic composite plates based 
on local displacement measurements by 
electronic speckle-pattern interferometry is 
developed and verified. The values of hole 
diameter increments in principal residual stress 
directions serves as initial experimental 
deformation. The technique is based on 
analytical solution of S.G. Lekhnitsky, which 
describes a stress concentration along the edge 
of central open hole in rectangular orthotropic 
plate under one-axis tension in arbitrary 
direction. A situation when principal directions 
of residual stresses coincide with principal axes 
of anisotropy is considered. It is shown that 
required relations, which connect initial 
experimental data with residual stress 
components, are unequivocally solution of the 
properly posed inverse problem. An availability 
of interference fringe patterns, a quality of 
which is high enough for reliable recognising of 
fringe orders at the hole edge immediately, is 
the essential experimental foundation of the 
approach developed. 

1  Introduction  

Laminated fibre-reinforced composites currently 
used in airplane structures are often subjected to 
residual stresses due to manufacturing process 
[1-2]. Since residual stresses influence the 
properties of the composite structures 

significantly, they have to be taken into account 
in both design and numerical modelling [3-6]. 
Thus the study and the knowledge of 
mechanical behaviour and strength of composite 
structures essentially imply the accurate 
determination of the residual stress state. 
Traditional strain gauge version of the hole 
drilling method is widely used experimental 
technique for residual stress characterization in 
orthotropic materials [7-9]. But a reliability of 
this approach is sometimes limited by point-
wise character of strain measurements near 
drilled hole.  

To improve a situation full-field optical 
interferometric techniques have been involved. 
In such cases multiple-point over-deterministic 
approach is used to solve the residual stress 
problem. The approach, which is based on the 
nonlinear least square error minimization 
between the experimental data obtained by 
moiré method and their numerical 
representation, has been developed [10-12]. 
Proposed solution algorithm is of unnecessarily 
complex from a numerical point of view since it 
was developed in the grating interferometry. An 
acquisition of initial experimental data by 
electronic speckle-pattern interferometry is the 
way of some simplifying residual stress 
determination by various least square algorithms 
[13-14]. In general case both above-mentioned 
procedures employ complex finite element 
modelling to receive calibration coefficients out 
of the hole boundary and further inverse 
problem solution. The point is that the 

RESIDUAL STRESS CHARACTERIZATION IN 
ORTHOTROPIC PLATE BY COMBINING  

HOLE-DRILLING METHOD AND SPECKLE 
INTERFEROMETRY 

 
V.S. Pisarev, S.I. Eleonsky, A.V. Chernov 

Central Aero-Hydrodynamics Institute named after Prof. N.E. Zhukovsky (TsAGI), 
1, Zhukovsky Street, Zhukovsky Moscow Region, 140180 Russia.  

 
Keywords: keywords list Residual stress; Composite materials; Hole drilling; Electronic 

speckle-pattern interferometry 



V.S. PISAREV, S.I. ELEONSKY, A.V. CHERNOV 

2 

theoretical solution of stress/strain concentration 
problem for through circular hole in orthotropic 
plate under one-axis tension by any angle with 
respect to principal anisotropy directions exists 
at the hole edge only [15]. Unfortunately, the 
excellent theoretical considerations provided 
with artificial interference images presented in 
works [10-14] do not strengthened by reliable 
experimental verification.  

The paper concerns a determination of 
residual stresses in composite plate by drilling 
through hole and further measurements of hole 
diameter increments in principal stress 
directions by electronic speckle-pattern 
interferometry. Such an approach has been 
previously developed and comprehensively 
verified for metallic thin plates [16-18]. The 
technique proposed is based on analytical 
solution of S.G. Lekhnitsky [15]. A situation 
when principal directions of residual stresses 
coincide with principal axes of anisotropy is 
considered. Required relations, which connect 
initial experimental data with residual stress 
components, represent by itself unequivocally 
solution of the properly posed inverse problem. 
An availability of interference fringe patterns, a 
quality of which is high enough for reliable 
recognising of fringe orders at the hole edge 
immediately, is the experimental foundation of 
the approach developed. The accuracy analysis 
of the method performed by two different ways 
is presented. 

2  Formulation of the problem 

Residual stress field in orthotropic plate is 
below considered as uniform both in the normal 
to the surface direction and in tangential 
directions over the probe hole diameter. This 
means that two unknown parameters 1 and 2 
have to be determined for complete 
characterization of residual stress values at each 
point of interest. These parameters can be 
presented as a vector s: 

s = {1, 2}
T . (1) 

Initially measured parameters used for residual 
stress deriving can be also arranged as a vector 
d. The relation between unknown vector s and 
vector d is expressed as: 

A·s = d, (2) 

where matrix A defines in explicit form so-
called transition model [16,17]. Such a model is 
a set of relations derived from mechanical 
formulation of the problem involved, which has 
also to include the material mechanical 
properties and the probe hole geometry. 
Equation (2) shows that required vector s can be 
obtained by means of inverse problem solution 
[19]: 

s = A1· d. (3) 

Minimal possible dimension of matrix A from 
equations (2) and (3) is [nxn]=[2x2] because a 
length of vector s (1) is equal to n=2. If matrix 
A is a regular positively defined square [nxn] 
matrix, the inverse problem is properly posed 
and the unequivocally solution of equation (3) 
exists [19]. To obtain matrix A in an explicit 
form we must define a form of the vector d by 
unique way. 

It is quite evident that properly posed 
square matrix A can be only constructed if a 
vector d is formed proceeding from 
experimental data related to principal stress 
direction. Vector d should consist of 
experimental parameters, which can be reliably 
measured within the highest possible accuracy. 
Hole diameter increments u and v in 
principal strain direction 1 and 2, respectively, 
are precisely the parameters, which certainly fit 
into the above-mentioned condition [17]. An 
availability of two increments u and v 
referred to contour of through hole drilled in 
orthotropic plate allows us to form a vector d of 
required dimension n=2: 

d = {u, v}T. (4) 

Both components of vector d (4) can be 
obtained by electronic speckle-pattern 
interferometry as it will be shown below. 

3  Main relations for residual stresses 
determination 

The basic assumption, which is mainly used for 
deriving residual stress values on a base of the 
hole drilling method, consists of the fact that a 
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small hole is made in 2D stress field, which is 
uniform independently of each from two 
principal stress directions on the object surface. 
This means that a possible influence of stress 
gradients at the hole proximity is not taken into 
account. The superposition principal for local 
displacement and strain fields corresponding to 
each in-plane strain tensor component is also 
postulated. A through hole of diameter 2r0 is 
made at some point of the surface area under 
consideration. The centre of this hole is a 
conventional point where the residual stresses 
must be determined.  

A distribution of circumferential strain 
component I

 along the edge of small circular 

hole, when the plane stress conditions are valid 
in thin plate, can be expressed in the general 
form as [15]: 

),(  I  
(5) 

where θ is the polar angle in the co-ordinate 
system referred to the hole centre that is counted 
anti-clock wise from x-axis; φ is the angle 
between principal anisotropy direction E1 and a 
direction of the tension by nominal stress σ0 (see 
Figure 1). Accordingly to the developed 
approach required values of principal residual 
strain components are derived from relation (5) 
by the following way [16, 17]: 

),( 01  I , ),2/( 02  I  (6) 

where the angle θ0 defines a point in the hole 
edge where maximal value of principal strain is 
reached. 

 
Fig. 1. Notations used for a determination of stress 

concentration coefficients along the probe hole edge. 
Foundations of the hole drilling method give the 
following relations between in-plain principal 
strain components [17]: 

IIIIII
111   ,

IIIIII
222   , (7) 

where 1 and 2 are principal residual strains. 
Roman superscripts denote mechanical state of 
the object surface. State I represents a two-axes 
loading of the element of the material volume 
containing the probe hole. State II is an initial 
deformed state of the object surface area of 
interest caused by two-dimensional field of 
residual stress before drilling a hole. The 
components of this stress field are the principal 

residual stresses II
1 and II

2  to be determined. 

State III is related to residual stress energy 
release after hole drilling and can be represented 
as a difference between State I and State II. 
Corresponding parameters of State III have to 
be derived from interference fringe patterns and 
those of States I and II should be described 
analytically or numerically in a general form 
proceeding from the elasticity theory relations. 

Principal strains 
I

1 and
I
2  related to State I 

can be always expressed by using the solution 
of elastic strain/stress concentration problem for 
open circular hole in thin both isotropic and 
anisotropic plate. Developed approach is based 
on Lekhnitsky’s solution, which describes local 
stress distribution along the edge of through 
circular hole in rectangular orthotropic plate 
under one-axis tension [15]. This solution is 
valid for different orientation of the tension 
direction with respect to principal anisotropy 
axes. The notation involved is shown in Figure 
1. Here and below Cartesian co-ordinate system 
(x, y) defines principal anisotropy axes with x-
axis coincides with the direction of the greater 
elasticity modulus E1. Polar angle θ is one of the 
arguments of stress concentration function and 
indicates position of the point of interest at the 
hole boundary. This angle is always counted in 
anti-clock wise direction from the point of 
intersection of the hole edge with x-axis as it is 
shown in Figure 1. The angle φ between E1-
direction and a direction of tensile stress σ0 is 
the second argument of stress concentration 
function along the hole edge. For thin 
orthotropic plate with central open hole 
subjected to one-axis tension by nominal stress 
σ0, which is applied sufficiently far from the 
hole, the local stress distributions is expressed 
as: 
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),(0  f  (8) 

where f(φ,θ) is the stress concentration function. 
The function (8) has the following form [15]: 

 
  

  
  



























 

cossincossin

sinsincos1

cossincos

, 222

222

1 nkn

kn

nkk

E

E
f

 

(9) 

where tangential elastic modulus Eθ is defined 
as: 

2

4

1
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1

4 coscossin2sin1
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


 

(10) 

where E2 is the lesser principal elasticity 
modulus in the direction of y-axis. Other 
parameters from formula (9) are:  

 12,
2

1  kn
E

E
k

 

(11) 

Below for deriving required relations the 
following well-known formula is used: 

2

21

1

12

EE


  (12) 

In order to obtain the explicit form of strain 
concentration coefficients (6) the angle φ value 
has to be prescribed. This paper only concerns 
of the case when principal residual stress 
(strain) directions coincide with principal 
anisotropy axes (x, y). Thus to solve the 
problem of determination of two residual stress 
components two cases of applying external load 
have to be considered, namely φ=0 and φ=π/2. 
In this case a value of the angle θ from relation 
(6) is equal to θ0 = π/2. Rectangular orthotropic 
plate with central circular hole under one-axis 
tension in E1-direction and E2-direction is 
shown in Figure 2a and 2b, respectively. 

Applied nominal stresses II
1 and II

2  are 

principal residual stress components to be 
experimentally determined. 

 
Fig. 2. A scheme for determination of strain 

concentration coefficients for plate with circular hole 
under one-axis tension along principal anisotropy 
direction E1 (a) and E2 (b). 
 

A determination of residual stresses 
proceeding from in-plane displacement 
component measurements for points belonging 
to small hole edge implies the deformation 
representation of the hole drilling method (7). 
That is why a formulation of required linear 
algebraic equation system needs using the strain 
concentration function. This function denoted as 
F(θ) is defined by relation (8): 

 



 ,1 F

E
II  (13) 

where F(φ,θ) = f(φ,θ)/Eθ, and Eθ follows from 
relation (10). For the case φ=0 keeping in mind 
formula (9) relation (13) takes the following 
form: 

  )(sin)1(cos 11
22

1

1  Fnk
E

II
II


 

(14) 

For the case φ=π/2 taking into account formula 
(9) relation (13) gives: 
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(15) 

Relations (14) and (15) in view of the 
superposition principal and formula (10) allow 
us a determination of strain concentration 
coefficients at point A (θ=0) and at point B 
(θ=π/2), which are essential for constructing the 
relations of type (7): 

 IIIII kn
E 21
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(16) 

To complete the left-hand side of the basic 
equation of the hole-drilling method (7) we have 
to express initial strains at points A and B 
before the hole drilling. These strains follow 
from orthotropic Hook’s law for plane stress 
conditions with using relation (12): 

1

212

1

1
1 EE

IIII
II  

,   2

121

2

2
2 EE

IIII
II  

 
(17) 

Relations (16) and (17) form the left-hand side 
of equation system (7), which is essential for a 
determination of residual stress components in 
orthotropic plate when a through hole is drilled. 

A formulation of the right-hand side of 
linear algebraic equation system (7) is based on 
some quite evident considerations, which follow 
from a type of strain concentration function (14) 
and (15). Firstly, for State I distributions of in-
plane displacement components u and v along 
small hole edge of r0 radius taking into account 
relations (16) can be presented in the following 
form: 
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Relations (18) allow us to obtain a distribution 

of circumferential strain I
  along the boundary 

of central open hole of r0 radius in thin plate 
[16]: 
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A combination of relations (18) and (19) for 
θ=0 and θ=π/2 allows us to establish that: 

0
1 2r

uI
I 
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, 0
2 2r

vI
I 


 
(20) 

where ΔuI=2uI(θ=0) and ΔvI=2vI(θ=π/2) are the 
increments of real hole of 2r0 diameter caused 
by two-axes plate loading in principal 
anisotropy directions E1 and E2, respectively.   

Analogous way with using relations (17) 
gives the following relations: 

0

1 2r

u II
II 
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,     0

2 2r

vII
II 


 
(21) 

where ΔuII=2uII(θ=0) and ΔvII=2vII(θ=π/2) are 
the increments of conventional hole of 2r0 
diameter caused by two-axes plate loading in 
principal anisotropy directions E1 and E2, 
respectively.   

A difference in relations (20) and (21) 
gives the right-hand side of equation system (7): 
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where Δu and Δv are the diameter increments of 
real hole of 2r0 diameter drilled in 2D residual 
stress field in principal anisotropy directions E1 
and E2, respectively. Required values of hole 
diameter increments Δu and Δv are 
experimentally measured by electronic speckle-
pattern interferometry. A substitution of 
relations (14) and (15) into relations (22) 
defines the explicit form of equation system (7) 
in the case when principal directions of residual 
stresses (strains) coincide with principal 
anisotropy directions of orthotropic plate: 
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(23) 

Relations (23) correspond to equation (2) with 
vector d of form (4). Matrix A in this case is: 
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Required solution of equation (3) based on 
matrix A (24) that defines both residual stress 
components of interest has the following form: 
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Residual stress component values (25) represent 
by itself the unequivocally solution of the 
properly posed inverse problem (3) with vector 
d of form (4). For isotropic case, when 
E1=E2=E, ν12=ν21=ν, k=1 and n=2, relations (25) 
coincide with formulae obtained in works [16, 
17]. An explicit form of matrix A-1 follows from 
relations (25): 

 



























 







 



















 



nE
k

kE

k

k
E

k

nE

k
k

k

n
r

A

2
212

2

12
1

1

2112

2

0

1

1

1

1
2

1







 

(26) 

4  Measurement procedure 

Electronic speckle-pattern interferometry (ESPI) 
serves for experimental determination of in-
plane displacement components [18,20]. Well-
known optical system with normal illumination 
with respect to plane object surface and two 
symmetrical observation directions is employed 
(Figure 3). Two images of the surface area of 
interest, which correspond to initial and final 
mechanical state of the object, are consequently 
recorded by CCD camera Videoscan USB-285 

(1200x800 pixels) and stored as digital fillies. A 
visualization of interference fringe patterns is 
performed by digital subtraction of two above-
mentioned images. 

 
Fig. 3. General scheme of obtaining interference 

fringe patterns for deriving in-plane displacement 
components by ESPI; 1 – Investigated object; 2 – 
Illuminating plane waves of laser light; 3 – CCD camera. 
 

When a projection of illumination 
directions onto plane surface of the investigated 
object coincides with ξ-direction, interference 
fringe pattern is described as: 




sin2


 Nd  (27) 

where dξ is in-plane displacement component in 
ξ-direction; N = 1; 2; 3, … are the absolute 
fringe orders;  is the wavelength of laser 
illumination;  = π/4 is the angle between 
inclined illumination and normal observation 
directions. When ξ-direction coincides with x-
axis and y-axis displacement component u and v 
can be derived accordingly to formula (27), 
respectively. Simultaneous determination of 
both in-plane displacement components u and v 
is reached by combining of two optical system 
of type shown in Figure 3 into united device. An 
identification of real physical sign of each in-
plane displacement component with respect to 
co-ordinates axes x and y shown in Figure 1 is 
reached by recording interferograms with 
additional phase shift, a sign and value of which 
are known before the experiment [18]. Compact 
diode laser with wavelength λ = 532 nm is used 
as a source of the coherent illumination. The 
real view of the interferometer is shown in 
Figure 4. 

Practically plane illuminating wave, which 
comes from the right-hand side of Figure 4, is 
divided by front into two approximately equal 
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parts. The upper part of illuminating light and 
two mirrors denoted by number 1 forms the 
interferometer branch for v-component 
determination. The lower part of illuminating 
wave and three mirrors denoted by number 2 
forms the interferometer branch for u-
component determination. The measurement 
area 3 is of dimensions 40x40 mm2. Required 
images pairs are recorded by CCD camera 
Videoscan USB-285 equipped with the lens AF-
S VR Micro-Nikkor 105 mm f/2.8G IF-ED 
denoted by number 4. The specimen 6 is 
mounted on the upper part of traditional 
kinematically designed mount [21]. This mount 
denoted by number 5 in Figure 4 allows us to 
perform hole drilling out of the interferometer 
system after the first exposure and further 
precise returning back the drilled specimen and 
recording the final surface state. Some of drilled 
holes are denoted by number 7. The 
measurement ESPI system shown in Figure 4 is 
capable of fast and reliable obtaining 
interference fringe patterns caused by through 
hole drilling in orthotropic plate. 
 

 
Fig. 4. Real view of the interferometer system. 

5  Residual stress determination   

5.1 Rectangular composite plate 

The first object of experimental investigations 
represents by itself rectangular orthotropic plate 
of dimensions 400х200х6 mm3 made from 
layered fibre-reinforced material (see Figure 4). 
Generalized mechanical properties and 
anisotropy parameters of the plate denoted as 
specimen 1 are: 
E1=69.2 GPa, E2=30.5 GPa, 
G12=21.9 GPa, ν12=0.58, ν21=0.25, 
k=1.50, n=2.24.                                     

(28) 

A set of nine probe holes is performed along the 
line that coincides with E2-direction and is 
located by 150 mm distance from the specimen 
edge. A distance between centres of 
neighbouring holes is more than 15 mm. 
Diameters of drilled holes are presented in 
Table 1. Interferometer optical system shown in 
Figures 3 and 4 is used for a determination of 
both in-plane displacement components. 

Interference fringe patterns obtained for 
point 4 are shown in Figure 5. Horizontal 
symmetry axis in Figure 5a and vertical 
symmetry axis in Figure 5b coincides with 
principal anisotropy direction E1 and E2, 
respectively.  High quality of these 
interferograms should be specially noted. The 
same quality is inherent in all interferometric 
images recorded for other drilled holes. 
Superimposed interference fringe patterns, 
which correspond to the images shown in Figure 
5 but recorded with additional phase shift, are 
presented in Figure 6. These interferograms 
reveal that hole diameter is increased in both x-
direction (u-displacement component, elasticity 
modulus E1) and y-direction (v-displacement 
component, elasticity modulus E2). Physical 
sign identification is performed accordingly to 
the procedure used in work [18]. 
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Fig. 5. Specimen 1. Interference fringe patterns 

obtained for point 4 in terms of in-plane displacement 
component u (a) and v (b). 

 

 
Fig. 6. Specimen 1. Interference fringe patterns 

obtained for point 4 in terms of in-plane displacement 
component u (a) and v (b) with additional phase shift. 

Table 1. The results of interference fringe 
patterns interpretation and residual stress 
determination for specimen 1. 

Point 
num-
ber 

Hole 
diameter 
2r0, mm 

Fringe order 
interferences 

Hole 
diameter 
increments 

Residual 
stress values 

ΔNu, 
fringes 

ΔNv, 
fringes 

Δu, 
μm 

Δv, 
μm 

σ1, 
MPa 

σ2, 
MPa 

3 2.0 8.0 10.5 3.04 4.18 73.5 61.9 
2 2.0 7.0 10.0 2.66 3.8 65.9 57.8 
7 2.0 7.5 9.5 2.85 3.61 68.3 56.5 
8 2.0 9.0 10.0 3.42 3.8 79.4 61.5 
11 2.0 8.0 9.5 3.04 3.61 71.7 57.4 
4 2.5 10.0 13.0 3.8 4.94 73.4 61.4 
5 2.5 10.0 13.0 3.8 4.94 73.4 61.4 
9 2.5 11.0 13.5 4.18 5.13 79.5 64.7 
10 2.5 11.5 13.0 4.37 4.94 81.5 63.7 

The results of interference fringe patterns 
interpretation in terms of fringe order 
differences and hole diameter increments in 
principal stress directions are listed in Table 1. 
Values of ΔNu and ΔNu are determined by direct 
counting fringe orders between two basic points. 
These points are the points of intersection of 
horizontal symmetry axis and vertical symmetry 
axis related to the hole centre in the case of 
ΔNu-counting (Figure 5a) and ΔNv-counting 
(Figure 5b), respectively. The values ΔNu and 

Δu as well as ΔNv and Δv are connected by 
formula (27) for λ = 532 nm. All interferograms 
recorded evidence that principal directions of 
residual stresses coincide with principal axes of 
anisotropy. This means that residual stress 
values can be reliably calculated by using 
relations (25). To do this experimental 
information from Table 1 and parameters (28) 
are involved. Data presented in Table 1 show 
that residual stress component values obtained 
for different hole diameters are in a good 
agreement. At first this fact confirms a 
reliability of the technique developed. Second, 
we can say with a confidence that real plane 
stress state in orthotropic plate under study is of 
pure membrane character. The last circumstance 
is of great importance when the accuracy of 
residual stress determination is estimated by 
constructing reference fringe patterns. 
Remarkable capabilities of this approach in the 
course of residual stress determination in 
metallic materials have been demonstrated in 
works [16-18]. 

5.2 Square composite plate 

Square composite plate of dimensions 
150х150х6 mm3 made from layered fibre-
reinforced material serves as the second object 
of experimental investigations (specimen 2). 
Generalized mechanical properties and 
anisotropy parameters of the plate are: 
E1=73.9 GPa, E2=29.5 GPa, 
G12=19.7 GPa, ν12=0.58, ν21=0.23, 
k=1.58, n=2.27 

(29) 

A set of seven probe holes is performed along 
the line that coincides with E2-direction and is 
located by 50 mm distance from the specimen 
edge. A distance between centres of 
neighbouring holes is more than 15 mm. Table 2 
includes diameters of drilled holes, for points 
where the most reliable results are obtained. 

Interference fringe patterns visualised for 
point 2 and 5 are shown in Figure 7 and 8, 
respectively. Horizontal symmetry axis in 
Figures 7a, 8a and vertical symmetry axis in 
Figures 7b, 8b coincide with principal 
anisotropy direction E1 and E2, respectively.  
High quality of these interferograms should be 
specially noted. The same quality is inherent in 
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all interferometric images recorded for other 
drilled holes. Superimposed interference fringe 
patterns, which correspond to the images shown 
in Figure 7 and 8 but recorded with additional 
phase shift, show that hole diameter is increased 
in both x-direction (u-displacement component, 
elasticity modulus E1) and y-direction (v-
displacement component, elasticity modulus 
E2).  

 
Fig. 7. Specimen 2. Interference fringe patterns 

obtained for point 2 in terms of in-plane displacement 
component u (a) and v (b). 

 

 
Fig. 8. Specimen 2. Interference fringe patterns 

obtained for point 5 in terms of in-plane displacement 
component u (a) and v (b). 

Table 2. The results of interference fringe 
patterns interpretation and residual stress 
determination for specimen 2. 

Point 
number 

Hole 
diameter 
2r0, mm 

Fringe order 
interferences 

Hole 
diameter 

increments 

Residual 
stress values 

ΔNu, 
fringes 

ΔNv, 
fringes 

Δu, 
μm 

Δv, 
μm 

σ1, 
MPa 

σ2, 
MPa 

2 2.0 9.5 6.0 3.61 2.28 81.0 46.0 
5 2.5 12.0 7.5 4.56 2.85 81.0 46.0 
6 3.2 15.0 11.0 5.70 4.18 81.0 50.0 

All obtained interferograms evidence that 
principal directions of residual stresses coincide 
with principal axes of anisotropy. This means 
that residual stress values can be reliably 
calculated by using relations (25). To do this 
experimental information from Table 2 and 
parameters (29) are involved. Data presented in 
Table 2 show that residual stress component 

values obtained for different hole diameters are 
in a good agreement. At first, this fact again 
confirms a reliability of the technique 
developed. Second, real plane stress state in 
orthotropic composite plate under study 
corresponds to the pure membrane conditions. 

5  Metrological verification   

5.1 Mathematically based accuracy analysis 

An availability of direct matrix A (24) from 
equation (2) and inverse matrix A-1 (26) from 
equation (3) in their explicit forms allows us 
quantitative estimations of errors inherent in a 
determination of residual stress components 
accordingly to the approach developed in works 
[17, 22]. In such a case the upper bound of the 
error made in calculating each component of 
unknown vector s can be estimated in the 
following form: 

d

dcondA
s

si 
2

  (30) 

where i=1,2; si is an error made in the 
determination of si-component; condA is the 
condition number of matrix A. The symbol   

denotes vector and matrix norm. The condition 
number is defined as:  

1 AAcondA . (31) 

Vector norms included in inequality (30) are 
defined as a length of corresponding vector 

( 2
2

2
1 sss   and so on). Matrix norm from 

relations (30) and (31), which corresponds to 
this vector norm, is Euclid norm [23]: 

2/1

,

2









 
ji

ijaA  (32) 

where aij are the elements of arbitrary matrix A.  
Further analysis needs involving a set of 

real experimentally obtained data. Let us 
consider now typical error estimation, which 
follows from inequality (30) for the hole related 
to point 4 from Table 1. First, the condition 
number has to be calculated. A substitution of 
parameters (28) into relations (24) and (26) 
taking into account definition (32) and further 
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insertion of both obtained results into definition 
(31) give: 

95.292.46.0 condA  (33) 

Next step resides in an estimation of the error 
inherent in a determination of hole diameter 
increments u and v. Required estimation 
directly follows from formula (27): 




sin2
)()(

N
vu

  (34) 

where =0.532 m is the wavelength; N is an 
error in counting the absolute fringe orders;  = 
π/4 is the sensitivity angle. An accuracy in the 
determination of absolute fringe orders N=0.5 
fringe can be reliably achieved as a difference 
between dark and bright neighbouring fringes. 
Thus inequality (34) gives: 

mmvu 3102.0)()(    (35) 

The following parameters, which are based on 
inequalities (35), definition (32) and data of 
Table 1, are also needed in the course of 
required accuracy analysis:  

mmd 31023.6  , 

mmd 31028.0  ,

MPas 7.95 . 

(36) 

Substituting the values of parameters (33) and 
(36) into estimation (30) gives: 

MPasi 0.9  (37) 

Inequality (37) conservatively describes 
the upper limit of the error made in the 
determination of each residual stress 
component. This fact follows from a definition 
of the adopted Euclid matrix norm (32) as it is 
shown in work [24]. The main sources of 
estimated error are a structure of matrix A (24) 
and errors made in a determination of in-plane 
displacement components accordingly to 
formulae (35). It should be also noted that 
estimations (37) is obtained for maximal 
possible error in fringe order counting N=0.5 
fringe. Relative errors in a determination of 
residual stress components for the case 
considered are: 

12.0
1

1 



, 15.0
2

2 



 (38) 

Estimations (38) show that maximal relative 
error in a determination of each residual stress 
component does not exceed 15 per cent. This is 
very good result in the course of implementing 
the hole drilling method for residual stress 
characterisation in graphite-epoxy laminated 
composite. But the value of the condition 
number (33) condA = 2.95 demonstrates an 
excellent metrological capabilities of the 
approach developed. Thus, there is a hope that 
real error in residual stresses determination 
might be considerably low of estimations (38). 
A comparison of real interference fringe 
patterns and analogous artificial images 
presented in the following subsection contains 
the answer on this question. 

6.2 Reference fringe patterns 

The MSC/NASTRAN computer codes serves 
for numerical simulation essential for a 
visualisation of reference fringe patterns [16-
18]. Plane shell elements of QUAD 4 type and 
generalised parameters (28) are used in the 
course of FEM calculations for specimen 1.  
Orthotropic square plate of 80х80x6 mm3 with 
and without central through open hole of 
2r0=2.5 mm diameter subjected to one-axis 
tension in each principal anisotropy direction is 
considered. Finite element mesh consists of 
about 20000 elements. Residual stress values 
along the hole edge obtained by FEM coincide 
with analogous data, which follow from 
formulae (8) and (9), within five per cent. A 
visualisation of reference fringe patterns is 
performed by using residual stress values from 
Table 1. Reference fringe patterns constructed 
for point 4, which correspond to real 
interferograms in Figure 5, are shown in 
Figure 9. 
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Fig. 9. Specimen 1. Reference fringe patterns 

visualised for point 4 in terms of in-plane displacement 
component u (a) and v (b). 

A comparison of corresponding images in 
Figures 5a and 9a as well as in Figures 5b and 
9b reveals some differences in the fringe 
patterns configuration. This circumstance might 
be attributed to the fact that numerical 
simulation implies generalized mechanical 
properties of layered composite material 
whereas real interferograms are referred to 
external face of the specimen. In any case this 
fact has to be taken into account if multiple-
point over-deterministic approaches based on 
full-field displacement measurements are used 
for residual stress characterisation [10-14]. The 
method developed in this paper allows us 
effective accuracy analysis by comparing fringe 
order differences obtained experimentally in 
principal stress directions and the same data 
inherent in analogous artificial images. These 
parameters calculated accordingly relations (27) 
for point 4 from Table 1 are listed in Table 3. 
The values of u-displacement components 
obtained by both ways absolutely coincide. A 

difference in v-displacement components 
consists of one fringe. 

Table 3. Comparison of fringe orders 
differences and residual stress values 
corresponding to real interferograms and 
artificial interferometric images for specimen 1. 

Fringe order differences 
in real interferograms 

Values of real residual 
stress components 

Exp
uN , 

 fringes 

Exp
vN ,  

fringes 

Exp
1 , 

MPa 

Exp
2 , 

MPa 

10.0 13.0 73.4 61.4 

Fringe order differences in 
reference fringe patterns 

Values of conventional 
residual stress 
components 

Num
uN , 

fringes 

Nun
vN , 

fringes 

Num
1 , 

MPa 

Num
2 , 

MPa 

10.0 12.0 72.0 57.9 

Table 3 also includes the values of residual 
stress components, which are obtained by 
relations (25) from experimental and 
numerically simulated data. Relative errors in a 
determination of each residual stress component 
in the case involved can be estimated as: 

02.0
1

11

1 



Exp

NumExp




 , 

06.0
2

22

2 



Exp

NumExp




  

(39) 

 
Fig. 10. Specimen 2. Reference fringe patterns 

visualised for point 5 in terms of in-plane displacement 
component u (a) and v (b). 
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A procedure of constructing reference 
fringe patterns is also performed for specimen 2 
by using above-described numerical procedure 
and data (29). Artificial interferometric images 
visualised for point 5, which correspond to real 
interferograms in Figure 8, are shown in 
Figure 10. A comparison of corresponding 
images in Figures 8a and 10a as well as in 
Figures 8b and 10b again shows differences in 
the fringe patterns configuration. It should be 
noted that revealed differences are some more 
comparing with those obtained for specimen 1. 
But, comparing fringe order differences 
obtained experimentally in principal stress 
directions and the same data inherent in 
analogous artificial images demonstrates very 
good correlation. These parameters calculated 
accordingly relations (27) for points 2 and 5 
from Table 2 are listed in Table 4. The values of 
u-displacement components obtained by both 
ways absolutely coincide. A difference in v-
displacement components consists of half of the 
fringe. 

Table 4. A comparison of fringe orders 
differences and residual stress values 
corresponding to real interferograms and 
artificial interferometric images for specimen 2. 

Point 
number 

Fringe order differences 
in real interferograms 

Values of real residual 
stress components 

Exp
uN , 

fringes 

Exp
vN , 

fringes 

Exp
1 , 

MPa 

Exp
2 , 

MPa 

2 9.5 6.0 81.0 46.0 

5 12.0 7.5 81.0 46.0 

Point 
number 

Fringe order differences 
in reference fringe 

patterns 

Values of conventional 
residual stress 
components 

Num
uN , 

fringes 

Nun
vN , 

fringes 

Num
1 , 

MPa 

Num
2 , 

MPa 

2 9.5 5.5 79.4 44.1 

5 12.0 7.0 80.4 44.7 

Relative errors in a determination of each 
residual stress component estimated accordingly 
inequalities (39) are: 

For point 2:  1 0.02  , 2 0.04  . (40) 

For point 5:  1 0.007  , 2 0.03  . (41) 

Data of inequalities (39)-(41) are not bad 
comparing with errors obtained as the results of 
numerical experiments presented in work [13]. 
But we have to say that estimations (39)-(41) 
correspond to the real experiments.  

An availability of the regular positively 
defined square [2x2] matrix A from direct 
equation (2) allows us an estimation of the 
upper bound of measurement accuracy in the 
explicit form. Refined estimations of real errors 
based on constructing reference fringe patterns 
prove that these error values do not exceed six 
per cent. This accuracy is reliably reached when 
fringe order differences are evaluated by the 
naked eye of the operator without any doubts 
because an error value N=0.5 fringe means a 
difference between neighbouring bright and 
dark fringes. Thus, developed experimental 
procedure based on a calculation of fringe order 
differences for two pairs of surface points needs 
no special equipment for automated 
displacement field acquisition. 

7  Conclusions 

Novel method for a determination of principal 
residual stress components in composite plates 
is developed and verified. It is based on through 
hole drilling and further measurements of hole 
diameter increments in principal stress 
directions by electronic speckle-pattern 
interferometry. Theoretical and metrological 
foundations of the approach follow from the 
analytical solution of S.G. Lekhnitsky, which 
describes a stress concentration along the edge 
of central open hole in rectangular orthotropic 
plate under tension in principal anisotropy 
directions. Formulae for deriving residual stress 
components from initial experimental data 
represent by itself unequivocally solution of the 
properly posed inverse problem. This means 
that there is no need to involve FEM calibration 
and multiple-point over-deterministic 
procedures to solve residual stress problem. A 
formulation of the experimental method does 
not depend on mechanical properties of the 
orthotropic material. The accuracy of residual 
stress determination within six per cent is 
reached. Presented approach can be easily 
formulated for any φ value, which describes an 
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angle between principal residual stress 
directions and principal anisotropy axes, by 
using formula (9). 
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