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Abstract

The aeroelastic stability of turbomachinery blade
assemblies is usually assessed numerically on
isolated blade row configurations although up-
stream/downstream blade rows can significantly
alter the stability. We consider in this paper the
influence of a neighboring blade row to compute
the generalized aerodynamic forces from which
the aeroelastic damping can be evaluated. For
that purpose we resort to phase-shifted bound-
ary conditions in the numerical model of a single
passage of each blade row to take into account
the multiple unsteady phenomena induced by the
blade vibration, the blade passage effect of the
adjacent blade row and their possible interaction.
A Fourier approximation of the global general-
ized aerodynamic forces of the whole blade is
then proposed using the local generalized aerody-
namic forces computed on the single blade mod-
eled. An analytic expression of the aeroelastic
damping computed with the energy method is fi-
nally proposed and the results are compared to
those obtained from full annulus reference com-
putations in which all passages are modeled.

1 Introduction

Recent studies [8, 10, 13] have pointed out the
importance of modeling adjacent blade rows to
improve the evaluation of the aeroelastic stabil-
ity. Indeed, the relative motion of the different
blade rows induces unsteady perturbations which
interact with the vibratory excitation of the struc-
ture and may increase / decrease significantly the

aeroelastic stability predicted without taking into
account adjacent blade rows.

The computation of the 360◦ full annu-
lus multistage configuration is extremely costly
but is however essential to capture accurately
the multiple sources of unsteadiness. Specific
boundary conditions have therefore been devel-
oped since the end of the 70’s to reduce the size
of the computational domain to a single passage
in each blade row. Such boundary conditions rely
on the assumption of a space-time periodicity of
the flow field that is exploited to prescribe the
flow field on a given boundary with respect to the
flow field on the opposite boundary using appro-
priate time phase shifts. These phase shifts arise
from the characteristics of the periodic perturba-
tions to propagate and are well known from the
spinning modes theory [14, 15].

These phase-shifted or “chorochronic”
boundary conditions originally designed by
Erdos et al. [5] for a single stage have been
used to propagate a single periodic phenomenon
(blade passage or blade vibration). A Fourier
decomposition of the flow field on the boundaries
has then been introduced to avoid the storage of
the flow field at many time instants [6, 7]. The
boundary conditions have later been extended
to handle simultaneously multiple periodic
phenomena [7, 11], hence the name of “multiple
phase-shifted” or “multichorochronic” boundary
conditions. These boundary conditions have
recently been implemented in Onera’s CFD
code elsA and validated on multistage rigid
configurations [3] and on the aeroelastic case of
a vibrating contrafan [12].
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These boundary conditions allow a signifi-
cant reduction of the computing resources while
providing a rather accurate approximation of the
pressure distribution on the blade surfaces com-
pared to 360◦ full annulus reference computa-
tions. However the pressure distribution and
consequently the generalized aerodynamic forces
that are required to assess the aeroelastic stability
are computed only on the single passage modeled
and the aeroelastic damping of the whole blade
row is not directly available. Saiz [13] proposed
an expression of the local aerodynamic forces
and of the aerodynamic work per cycle due to the
vibration perturbation only.

We propose here to further estimate the
global generalized aerodynamic forces as the
sum of the contributions from each blade and
each perturbation under the assumption that the
pressure distribution on the blade surface satis-
fies the same space-time periodicity than the one
assumed on the domain boundaries. The miss-
ing contributions of the generalized aerodynamic
forces on the blades not modeled are then approx-
imated with appropriate phase shifts according to
the perturbations considered for the computation.
An analytical expression of the damping for the
whole blade row is finally established from the
Fourier approximation of the generalized aerody-
namic forces known on the single blade modeled.

2 Periodicity of the mechanical fields

2.1 Wave form due to the cyclic symmetry

A space-time periodicity of the mechanical vari-
ables is assumed because of the cyclic symme-
try of the geometry and the loadings. Indeed, the
physical domain D = DF∪DS gathering the fluid
and structural parts of a given tuned blade row is
made up of Nb subdomains for each blade, such
that DX =

⋃Nb−1
s=0 DX ,s with X ∈ {F,S}. Each sub-

domain is identical to the reference domain DX ,0
through a rotation of the pitch angle β = 2π/Nb
around the x axis, hence the cyclic symmetry of
the geometry. Furthermore the loadings consid-
ered here (vibration of the structure and blade
passage) also inherit this symmetry since they di-
rectly result from the geometry.

As a consequence the mechanical variables w
defined in a cylindrical coordinate system are ap-
proximated in a very general way as the sum of
a finite number Np of perturbations wp for which
Nh,p harmonics wp,k are considered:

w(x,r,θ , t)≈
Np

∑
p=1

Nh,p

∑
k=0

wp,k(x,r,θ , t). (1a)

Each component wp,k is a spinning mode as de-
scribed by Tyler and Soffrin [15] such that

wp,k(x,r,θ , t) = cp,k(x,r,θ)eik(κpθ−ωpt) (1b)

with the following amplitude

cp,k(x,r,θ) = ∑
m∈Z

c̆p,k,m(x,r)eimNbθ . (1c)

The spinning modes can basically be inter-
preted as Bloch waves i.e., the product between
a steady Nb spatially periodic wave cp,k(x,r,θ)
and a traveling wave eik(κpθ−ωpt). Each spinning
mode is thus a wave characterized by its pulsation
ωp and its wavenumber κp which can be related
to a particular perturbation (see [12]).

In the present paper, two primary perturba-
tions are considered, namely the vibration and the
blade passage. As a consequence, approximation
(1a) with Np = 2 is just a linear superposition
of the different perturbations. The nonlinearity
of the fluid equations is however likely to gen-
erate some interactions between the primary per-
turbations and therefore to give rise to additional
perturbations which should be added in the ap-
proximation as extra terms in the sum (Np > 2).
In this way the general approximation (1a) may
be used for linear as well as for non-linear sys-
tems depending on the type of spinning modes
prescribed.

2.2 Phase-shifted boundary conditions

The wave structure of the field approximated
with Eqs (1) provides a simple way to obtain the
variables on any subdomain DX ,s from the field
known on the reference subdomain DX ,0. Indeed
if xs = [xs,rs,θs] ∈ DX ,s are the coordinate in a
given subdomain such that xs = x0, rs = r0 and
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θs = θ0 + sβ , the spinning modes are easily de-
duced from their values known on the reference
subdomain with the following transformation in-
volving the phase shift ksκpβ :

wp,k(xs, t) = wp,k(x0, t)eiksκpβ (2)

The previous transformation (2) is the corner-
stone for the evaluation of aeroelastic damping
which is described in section 4.1 since it provides
an approximation of the mechanical variables on
the missing subdomains which are not modeled.

In practice the approximation (1) is assumed
only on the azimuthal boundaries of the ref-
erence subdomain DX ,0 and leads to the so-
called “multichorochronic” or “multiple phase-
shifted” boundary conditions which link the spin-
ning modes on a given boundary to their counter-
part on the opposite boundary distant from the
pitch angle β with a given time shift τp:

wp(x,r,θ ±β , t) = wp(x,r,θ , t∓ τp) (3)

The previous transformations (2) and (3) involve
the phase shift σp which is related to the wave
characteristics of the spinning modes as follows:

σp = κpβ = ωpτp. (4)

3 Numerical model of the aeroelastic system

3.1 Structural model

For a linear visco-elastic structure, the approx-
imation (1) still holds. The sum over the har-
monics is unnecessary since higher harmonics
are related to non-linear phenomena and it can
be shown [9, 16] that the general solution for
the displacement field u is given by the finite
sum of Nb spinning modes, also called travel-
ing waves in the structural dynamics community.
The wavenumbers are called the nodal diameters
and range from κp = 0 to ±Nb/2 if the blade
number Nb is even or to ±(Nb−1)/2 otherwise.

Since the structural equations are linear, the
variational formulation of the problem can be
written on the reference subdomain DS,0 only
and leads to a system of decoupled equations for
each traveling wave [16]. The Finite Element dis-
cretization of the problem yields:

M üp +C u̇p +Kup = fa,p(up, u̇p) (5)

where M is the mass matrix, K is the stiffness
matrix including the centrifugal effects and C is
the damping and gyroscopic effect matrix. The
right-hand side of Eq (5) stands for the aerody-
namic forces exerted by the pressure on the refer-
ence blade’s fluid-structure interface Γ0:

fa,p(up, u̇p, t) = p(up, u̇p, t)n. (6)

The displacement field on the boundaries
satisfies the chorochronic relation (3) and can
also be written up(θ +β , t) = up(θ , t)eiσp since
higher harmonics are not considered.

The vibratory behavior of the structure is de-
scribed for small amplitudes of vibration by the
eigenmodes defined as the solution of Kϕ

(i)
p −

ω
(i)2
p Mϕ

(i)
p = 0 with the additional constraint of

chorochronicity ϕ
(i)
p (θ +β ) = ϕ

(i)
p (θ)eiσp . Each

mode type ϕ
(i)
p for i = 1, . . . ,nm has Nb differ-

ent spatial patterns depending on the wavenum-
ber κp. The complex chorochronicity condition
produces complex conjugate pairs of eigenmodes
with the same eigenvalues. The eigenmodes in-
herit the cyclic symmetry property and are de-
fined on any subdomain DS,s with the relation

ϕ
(i)
p (xs) = ϕ

(i)
p (x0)eisσp . (7)

3.2 Fluid model

The fluid flow is governed by the nonlinear Un-
steady Reynolds Averaged Navier-Stokes equa-
tions which prevent obtaining decoupled equa-
tions for each spinning mode like for the struc-
ture. The equations are therefore solved for the
aerodynamic variables W which are approxi-
mated by Eq (1) on some of the domain bound-
aries only. The equations in the rotating frame of
reference of each blade row write with the arbi-
trary Lagrangian-Eulerian formulation

d
dt

∫
DF

W dv+
∮

∂DF

(FC +F D) ·nds =
∫
DF

Sdv (8)

with W the vector of the conservative and turbu-
lent variables, FC and F D the convective and dif-
fusive fluxes and S a source term containing the
gyroscopic effects due to the rotation. The fluxes
and the source term are supplemented by appro-
priate terms accounting for the Spalart-Allmaras
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turbulence model considered here. In the frame-
work of the arbitrary Lagrangian-Eulerian formu-
lation, the convective fluxes are altered by a rela-
tive mesh deformation velocity vd which matches
the velocity of the blade induced by the vibration
at the fluid-structure interface Γ.

The no-slip boundary conditions applied on
the hub, the carter and the blade surfaces force
the relative velocity of the flow to match the rela-
tive wall velocity v = vw−Ωriθ where Ω is the
constant rotation speed of the blade row. The wall
velocity vw is equal to the rotation speed Ωriθ if
the wall is rigid and rotates (hub); it is equal to
zero if the wall is rigid and not rotating (carter)
and is equal to the sum of the rotation speed and
the deformation velocity vd +Ωriθ if the wall ro-
tate and is flexible (blades).

Subsonic injection and pressure boundary
conditions are prescribed respectively on the in-
let and outlet planes of the fluid domain. Full an-
nulus 360◦ simulations performed on the whole
domain DF use matching joins on the azimuthal
boundaries of each passage and a sliding plane
boundary condition is applied at the interface be-
tween the blade rows. On these boundaries, sin-
gle passage simulations performed on the refer-
ence subdomain DF,0 require contrarily multiple
phase-shifted boundary conditions which have
been described in section 2.2.

The flow equations are discretized with a Fi-
nite Volume technique. The fluxes are approxi-
mated by the 2nd order Roe’s scheme with Van
Albada’s limiter and Harten entropic correction.
The time integration combines the implicit back-
ward Euler scheme and the 2nd order Gear’s
method which solves the subiterations in physi-
cal time-step. See [1] for more details about the
CFD solver elsA.

3.3 Aeroelastic coupling strategy

A “weak” coupling strategy is considered here,
meaning that a harmonic displacement is pre-
scribed to the blade so that the structural equa-
tions Eqs (5) have not to be solved at each time
step. A single mode shape ϕnd

= ϕ
(i0)
p0 for a given

value of the nodal diameter κp0 = nd and the pul-
sation ω0 = ω

(i0)
p0 is selected and the prescribed

motion is therefore defined with a maximal am-
plitude q∗ and an initial phase Ψ by

upres(xs, t) = ℜ

{
ϕnd

(x0)q∗ei(sσnd−ω0 t−Ψ)
}
.

(9)
In this way the structural displacement (9) is a
single traveling wave coordinate upres = up0 and
satisfies necessarily the chorochronic property.
The time derivative of this displacement defines
the deformation velocity vd(Γ, t) = u̇pres(Γ, t) of
the fluid-structure interface Γ =

⋃Nb−1
s=0 Γs which

is used for the wall boundary condition of the
fluid problem. The deformation of the fluid-
structure interface Γ is then propagated inside the
fluid domain DF using a structural analogy [4].

4 Aeroelastic damping definition

Following Carta’s energy method [2], the aeroe-
lastic damping is defined as the ratio of the aero-
dynamic work Wa and the maximal structural ki-
netic energy E ∗kin = (ϕT

nd
Mϕnd

)q∗2/2:

α =− Wa

4πE ∗kin
. (10)

The aerodynamic work on a vibration cycle is
computed as the inner product between the struc-
tural velocity u̇pres and the aerodynamic force fa:

Wa(t0) =−ω0q∗
∫ t0+T0

t0
W̃a(t)dt (11)

with the following definitions of the integrand

W̃a(t) = f ℜ,Γ
ag (t)sin(ω0t +Ψ)

+ f ℑ,Γ
ag (t)cos(ω0t +Ψ)

(12)

and the global generalized aerodynamic forces:

f ℜ,Γ
ag (t) =

Nb−1

∑
s=0

ϕ
ℜ(xs) ·fa(xs, t), (13a)

f ℑ,Γ
ag (t) =−

Nb−1

∑
s=0

ϕ
ℑ(xs) ·fa(xs, t). (13b)

4.1 Global generalized aerodynamic forces
approximation

An estimation of the global generalized aero-
dynamic forces components f ℜ,Γ

ag and f ℑ,Γ
ag can
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be obtained using the chorochronicity property
of the structural eigenmode and of the pressure
field. Indeed, Eq (7) leads to:

ϕ
ℜ
nd

(xs) = ϕ
ℜ
nd

(x0)cos(sσnd) (14a)

−ϕ
ℑ
nd

(x0)sin(sσnd)

ϕ
ℑ
nd

(xs) = ϕ
ℜ
nd

(x0)sin(sσnd) (14b)

+ϕ
ℑ
nd

(x0)cos(sσnd)

and taking the real part of the approximation
Eq (1) for the pressure field leads to:

p(xs, t)≈
Np

∑
p=1

Nh,p

∑
k=0

ap,k[p(xs)]cos(kωpt)

+bp,k[p(xs)]sin(kωpt)

(15)

with the following Fourier coefficients defined
from the pressure on the reference passage only:

ap,k[p(xs)] = ap,k[p(x0)]cos(ksσp) (16a)
−bp,k[p(x0)]sin(ksσp)

bp,k[p(xs)] = ap,k[p(x0)]sin(ksσp) (16b)
+bp,k[p(x0)]cos(ksσp)

Since the generalized aerodynamic forces are
computed from the pressure field, the same type
of approximation holds with the notation C = ℜ

or ℑ to designate the real or imaginary part:

f C,Γ
ag (t)≈

Np

∑
p=1

Nh,p

∑
k=0

ap,k[ f C,Γ
ag ]cos(kωpt)

+bp,k[ f C,Γ
ag ]sin(kωpt).

(17)

However the forces are computed only on the
fluid-structure interface Γ0 of the reference pas-
sage DF,0 and the Fourier coefficients ap,k[ f C,Γ

ag ]
and bp,k[ f C,Γ

ag ] of the global generalized aerody-
namic forces have to be evaluated from the co-
efficients of the local generalized aerodynamic
forces given by

ap,k[ f C,Γ0
ag ] =

∫
Γ0

ϕ
C(x0) ·ap,k[p(x0)]nds, (18a)

bp,k[ f C,Γ0
ag ] =

∫
Γ0

ϕ
C(x0) ·bp,k[p(x0)]nds. (18b)

Introducing the approximations (14) and (15)
for the structural mode and the pressure in the de-
compositions (13a) and (13b) of real and imagi-
nary parts of the generalized aerodynamic forces
leads to an expression within which the Fourier
coefficients of the local generalized aerodynamic
forces ap,k[ f C,Γ0

ag ] and bp,k[ f C,Γ0
ag ] are weighted by

two sums over trigonometric functions, namely
∑

Nb−1
s=0 cos[s(σnd ± kσp)] and ∑

Nb−1
s=0 sin[s(σnd ±

kσp)]. The following wavenumber and phase
shift therefore appear naturally

K±p,k = nd± kκp, (19a)

S±p,k = σnd ± kσp = K±p,kβ . (19b)

The previous sums of trigonometric functions
are developed with complex exponentials which
are interpreted as geometric progressions with
the common ratio ±S±p,k. These progressions
vanish except when K±p,k ≡ 0 (mod Nb) in which
case ∑

Nb−1
s=0 e±isS±p,k = Nb. As a consequence the

sum over the sines always vanishes and the sum
over the cosines is a Dirac comb XNb:

Nb−1

∑
s=0

cos(sS±p,k) = XNb(K
±
p,k)

= ∑
n∈Z

Nbδ (K±p,k−nNb).
(20)

After rearrangement of the terms, the Fourier
coefficients of the real part of the global general-
ized aerodynamic force can easily be determined
from their counterparts computed locally on Γ0:

ap,k[ f ℜ,Γ
ag ] = ap,k[ f ℜ,Γ0

ag ]
{
XNb(K

+
p,k)+XNb(K

−
p,k)
}

+bp,k[ f ℑ,Γ0
ag ]

{
XNb(K

−
p,k)−XNb(K

+
p,k)
}

(21a)

bp,k[ f ℜ,Γ
ag ] = bp,k[ f ℜ,Γ0

ag ]
{
XNb(K

+
p,k)+XNb(K

−
p,k)
}

−ap,k[ f ℑ,Γ0
ag ]

{
XNb(K

−
p,k)−XNb(K

+
p,k)
}

(21b)

The same type of relations can be established
for the imaginary part of the generalized aero-
dynamic forces, thus yielding the coefficients
ap,k[ f ℑ,Γ

ag ] and bp,k[ f ℑ,Γ
ag ] as a linear combination

of the local Fourier coefficients ap,k[ f C,Γ0
ag ] and

ap,k[ f C,Γ0
ag ].
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4.2 Expression of the aerodynamic work for
quasi-periodic signals

Once the global generalized aerodynamic forces
of the whole blade row are known from the pre-
vious expressions, the aerodynamic work defined
by Eqs (11) and (12) can be evaluated.

As a preliminary remark we mention the par-
ticular case of generalized aerodynamic forces
governed exclusively by the vibration frequency
ω0 (and possibly some harmonics) which write
f C,Γ
ag = ∑

Nh
k=0 aC,Γ

k cos(kω0t)+bC,Γ
k cos(kω0t) with

the shorthand notation aC,Γ
k = ak[ f C,Γ

ag ] and bC,Γ
k =

bk[ f C,Γ
ag ]. The aerodynamic work is then eas-

ily derived analytically as Wa = −πq∗[(aℜ,Γ
1 −

bℑ,Γ
1 )sinΨ+(aℑ,Γ

1 +bℜ,Γ
1 )cosΨ] and the expres-

sion is independent of the initial time instant t0.
Such an expression is useful for computa-

tions on an isolated flexible blade row in which
case the generalized aerodynamic forces involve
the sole vibration frequency (and some harmon-
ics). This is however no longer the case when
the generalized aerodynamic forces are approxi-
mated more generally by the expression Eq (17)
which is necessary when multiple perturbations
are involved. To address this problem, a mean
value of the aerodynamic work is first proposed
as the limit for an infinitely long time interval:

W a(t0) = lim
τ→∞
−2πq∗

τ

∫ t0+τ

t0
W̃a(t)dt. (22)

In this way the mean aerodynamic work is in-
dependent of the initial time instant t0. Indeed
it can be shown using the approximation of the
generalized aerodynamic forces Eq (17) that the
analytical expression is given by:

W a =−πq∗
Np

∑
p=1

Nh,p

∑
k=0

[
(aℜ,Γ

p,k −bℑ,Γ
p,k )sinΨ

+(aℑ,Γ
p,k +bℜ,Γ

p,k )cosΨ

]
δp,k.

(23)

The previous expression generalizes the one
given above for a single fundamental frequency
by means of the Dirac delta function δp,k =
δ (ω0 − kωp). The mean aerodynamic work is
therefore a measure of the work done by the com-
ponent of the generalized aerodynamic forces

whose frequency is identically equal to the vibra-
tion frequency ω0.

When multiple perturbations contribute to the
aeroelastic response, the aerodynamic work Wa
on a vibration cycle is no longer constant and
depends on the initial time instant t0. An an-
alytic expression of the (instantaneous) aerody-
namic work is derived using the approximation
Eq (17) of the generalized aerodynamic forces:

Wa(t0) =−ω0q∗
Np

∑
p=1

Nh,p

∑
k=1

[
A0

p,k+

A+
p,k cosΩ

+
p,k(t0)+B+

p,k sinΩ
+
p,k(t0)+

A−p,k cosΩ
−
p,k(t0)+B−p,k sinΩ

−
p,k(t0)

] (24)

with Ω
±
p,k(t0) = ω

±
p,kt0 +Ψ, ω

±
p,k = ω0±kωp and

the following definitions of the coefficients:

A0
p,k = (λ−p,k sinΨ+η

−
p,k cosΨ)δp,kT0 (25a)

A±p,k=
1−δp,k

ω
±
p,k

[
λ
±
p,k

(
1− cos(ω±p,kT0)

)
+η
±
p,k sin(ω±p,kT0)

]
,

(25b)

B±p,k=
1−δp,k

ω
±
p,k

[
η
±
p,k

(
cos(ω±p,kT0)−1

)
+λ
±
p,k sin(ω±p,kT0)

]
,

(25c)

λ
±
p,k =

(
ap,k[ f ℜ,Γ

ag ]±bp,k[ f ℑ,Γ
ag ]

)
/2, (25d)

η
±
p,k =

(
ap,k[ f ℑ,Γ

ag ]∓bp,k[ f ℜ,Γ
ag ]

)
/2. (25e)

The aerodynamic work is thus a quasi-
periodic function and fluctuates in an inter-
val [W min

a ;W max
a ] centered around a mean value

which converges to the mean value W a in the
sense of Eq (22). Indeed it may be shown that
W a =−ω0q∗∑p,k A0

p,k. The extrema of the func-
tion are hard to find analytically in the gen-
eral case and are therefore estimated numerically
from the evaluation of the aerodynamic work on
a very long time interval which is possible thanks
to the Fourier approximation proposed here. The
CFD simulations are indeed very time consuming
and the generalized aerodynamic forces are eval-
uated only on a small time interval which may be
insufficient to reach accurately the extrema.

6



AEROELASTIC DAMPING PREDICTIONS FOR MULTISTAGE CONFIGURATIONS

The mean value W a of the work and the ex-
trema W min

a , W max
a are finally used to estimate the

mean and extremal values of the damping with
the definition Eq (10). The aeroelastic damping
therefore oscillates in a bounded interval when
multiple perturbations contribute to the aeroelas-
tic response. The definitions proposed here are
coherent with those usually employed for peri-
odic responses in which case the aerodynamic
work is constant whatever the initial time instant.

5 Numerical results

The previous developments for the generalized
aerodynamic forces reconstruction and for the
aeroelastic damping predictions have been val-
idated numerically on a contrafan model with
Nb,0 = 10 and Nb,1 = 14 blades in each blade
row R0 and R1 respectively. A vibration is pre-
scribed to the 2nd blade row R1 with the first tor-
sion eigenmode and the different values of the
nodal diameter nd = 0, . . .±Nb,1/2. Further de-
tails on the configuration can be found in [12].

Numerical computations on a single passage
with phase-shifted boundary conditions are com-
pared to reference computations performed on
the full 360◦ annulus for different values of the
nodal diameter. The relative errors between the
reference local generalized aerodynamic forces
computed with the 360◦ configuration and the
single passage model with phase-shifted bound-
ary conditions and Np = 2 spinning modes are
listed in the second column of table 1. The agree-
ment is generally good except for some nodal
diameters (nd = −1;7) for which the error is
larger (about 30 %) and for the nodal diameter
nd = 5 which is poorly approximated. It should
be mentioned that the errors may be reduced for
some nodal diameters by increasing the number
of spinning modes for the field approximation on
the boundary conditions (see [12]).

The errors are also given in table 1 for the
global generalized aerodynamic forces recon-
structed from the expressions Eqs (17) and (21)
using either the local generalized aerodynamic
forces computed with the 360◦ model or with the
single passage model. The error is very low for
most of the nodal diameters (less than 2%). How-

nd ε( f ℜ,Γ0
ag,sp ) ε( f ℜ,Γ

ag,360) ε( f ℜ,Γ
ag,sp)

0 2.3% 0.01% 0.2%
+1 4.2% 0.01% 1.9%
−1 33.5% 0.00% 41.2%
+2 0.9% 0.02% 0.2%
−2 2.1% 0.01% 0.4%
+3 2.7% 0.01% 0.3%
−3 2.1% 0.01% 1.5%
+4 10.4% 0.02% 0.6%
−4 1.0% 0.02% 0.4%
+5 93.0% 10.20% 204.7%
−5 1.4% 0.24% 0.7%
+6 12.2% 0.11% 7.5%
−6 7.2% 0.03% 5.5%
±7 27.3% 0.02% 25.1%

Table 1: Averaged relative error on the real part of
the local generalized aerodynamic force ( f ℜ,Γ0

ag,sp )
computed with the single passage model and
of the global generalized aerodynamic force ap-
proximated with Eqs (17) and (21) from the local
generalized aerodynamic force computed with
the 360◦ model ( f ℜ,Γ

ag,360) or the single passage
model ( f ℜ,Γ

ag,sp). Similar errors (not reported here)
are found for the imaginary parts.
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(a) Local GAF f ℜ,Γ0
ag,sp approximation
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Fig. 1 : Comparison of the local and global re-
constructed generalized aerodynamic forces for
the nodal diameter nd = 0.

7



PLACZEK

0.0 1.0 2.0 3.0 4.0 5.0
Frequency 2πf/ω0>1

0.001

0.01

0.1

1.0

Fo
ur

ie
rc

oe
ff

m
ag

.
|c p

,k
|

c0,k, k = 1, . . . , 4

c1,k, k = 1, . . . , 6

c2,k, k = 1, . . . , 1

c3,k, k = 1, . . . , 1

c4,k, k = 1, . . . , 1

c5,k, k = 1, . . . , 1

c6,k, k = 1, . . . , 1

c7,k, k = 1, . . . , 1

300.0 300.5 301.0 301.5 302.0
Time t× fael

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ca

lG
A

F
f
< ag

(S
0
,t

)

ε = 10.41 %

Reference GAF from 360° simu.
Approx. GAF from 360° simu.
Approx. GAF from Multichoro simu.

(a) Local GAF f ℜ,Γ0
ag,sp approximation
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(b) Global GAF f ℜ,Γ
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ag,sp approximations

Fig. 2 : Comparison of the local and global re-
constructed generalized aerodynamic forces for
the nodal diameter nd = 4.

ever the nodal diameters nd = −1;5 and 7 for
which the local generalized aerodynamic forces
were poorly predicted are unsurprisingly large
since the approximation (17) is based on an accu-
rate approximation of the local generalized aero-
dynamic force. The periodicity property does not
seem to be appropriate to approximate the gener-
alized aerodynamic forces for the nodal diameter
nd = 5 since the error of reconstruction from the
local generalized aerodynamic force computed
with the 360◦ model is quite large (ε( f ℜ,Γ

ag,360) =
10.2%) whereas it is not greater than 0.25% for
all other nodal diameters. Investigations are fur-
ther made to better understand this inaccuracy.

The spectral content and the time histo-
ries of the local and global generalized aero-
dynamic forces are plotted on figures 1 and
2 for the nodal diameters nd = 0 and 4 re-
spectively. The spectra represent the magni-
tude cp,k[ f ℜ,•

ag ] = (ap,k[ f ℜ,•
ag ]+bp,k[ f ℜ,•

ag ])1/2 of
the Fourier coefficients of the local or global gen-
eralized aerodynamic forces. The following 8
pulsations are considered for the approximation:
ωp ∈ {ω0,ωR0�R1,mωR0�R1 +`ω0}with (`,m) =
(±1,1), (±2,1) and (±1,2) and Nh,p = 6 for
ωR0�R1 , Nh,p = 4 for ω0 and Nh,p = 1 otherwise.
For each pair of bars, the first one is the mag-
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Fig. 3 : Convergence of the mean aerodynamic
work W a.

nitude of the reference (local or global) gener-
alized aerodynamic force and the second is the
approximation computed with the single passage
approach. The spectral content of the global gen-
eralized aerodynamic force is strikingly less pop-
ulated than the one of the local generalized aero-
dynamic force because of the Dirac comb opera-
tor XNb(K

±
p,k) which filters out most of the com-

ponents. The resulting global generalized aero-
dynamic forces are therefore periodic for some
nodal diameters (e.g. nd = 0) but some compo-
nents are preserved when the condition for the
Dirac comb are satisfied: e.g. for nd = 4 the
1st harmonic of the spinning mode related to
the blade passage with κp = Nb,0 = 10 leads to
K+

p,k = nd + kκp = 14≡ 0 (mod Nb,1).
The convergence of the mean aerodynamic

work Eq (22) is illustrated on figure 3 for the
nodal diameter nd = 4. The time history is plot-
ted for a time interval 5 times longer than the
one computed by the CFD code. This is possi-
ble since the Fourier approximation of the gener-
alized aerodynamic forces allows the evaluation
for any time interval. The black dashed line is
the analytical mean value given by Eq (23) which
is reached only for an infinitely long time inter-
val. The grey dashed line represents a “numeri-
cal” mean value computed from the evaluation of
the integrand on the last 10% of the time history.

The time history of the instantaneous aero-
dynamic work Wa(t0) is finally computed using
the analytical approximation (24). From this time
history evaluated on a very long time interval
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Fig. 4 : Comparison of instantaneous aerody-
namic work Wa for the nodal diameter nd =−4.

(∼ 2500 vibration cycles), a numerical estimate
of the extrema and average values of the work
are computed. The comparison with the instan-
taneous aerodynamic work computed from the
generalized aerodynamic forces time history is
shown on figure 4.

The corresponding aeroelastic damping
Eq (10) is evaluated and the result is plotted on
figure 5 for all possible nodal diameters. The
evolution of the damping is more irregular when
the effects of the upstream blade row are taken
into account. A large difference is observed
for the nodal diameter nd = 5 in which case
the stability is significantly reduced. The single
passage simulations agree quite well with the
damping values computed from the 360◦ com-
putation except for the nodal diameters nd = −1
and 5 for which the generalized aerodynamic
forces approximation was not satisfactory.

6 Conclusion

In this paper single passage simulations with en-
hanced phased-lagged boundary conditions have
been used to evaluate the aeroelastic damping of
a contrafan. Such simulations are less time con-
suming but the generalized aerodynamic forces
are computed only on the reference passage mod-
eled. Under the same assumption of space-time
periodicity than the one used for the phase-lagged
boundary conditions, the global generalized aero-
dynamic forces of the whole blade row can be ap-
proximated analytically and the global stability

Nodal diameter
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in
g

 [
%

]

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Isolated
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Fig. 5 : Comparison of aeroelastic damping on
the isolated and stage blade row configurations.
Results are plotted for the 360◦ and single pas-
sage stage configurations.

can be assessed. The comparison of the aeroe-
lastic damping values obtained in this way with
reference 360◦ simulations shows a good agree-
ment for most nodal diameters. Besides, the ef-
fects of the upstream blade row on the stabil-
ity have proved to be significant for some nodal
diameters. Such a procedure for the aeroelas-
tic damping estimation of turbomachinery bladed
disc assemblies may therefore be a good compro-
mise between usual aeroelastic computations on
isolated blade row configurations and computa-
tionally expensive simulations on 360◦ configu-
rations.

7 Contact Author Email Address

antoine.placzek@onera.fr

References

[1] Cambier L, Heib S and Plot S. The Onera elsA
CFD software: input from research and feed-
back from industry. Mech. & Ind., Vol. 14, No. 3,
pp 159–74, 2013. doi: 10.1051/meca/2013056 .

[2] Carta F O. Coupled blade-disk-shroud flutter in-
stabilities in turbojet engine rotors. J. Eng. Gas
Turbines Power, Vol. 89, No. 3, pp 419–426,
1967. doi: 10.1115/1.3616708 .

[3] Castillon L. Evaluation of a multiple fre-
quency phase-lagged method for unsteady nu-

9

mailto:antoine.placzek@onera.fr
http://dx.doi.org/10.1051/meca/2013056
http://dx.doi.org/10.1115/1.3616708


PLACZEK

merical simulations of multistage turbomachin-
ery. 28th Int. Counc. Aeronaut. Sci., Bris-
bane, 2012. URL www.icas.org/ICAS_
ARCHIVE/ICAS2012/PAPERS/056.PDF.

[4] Dugeai A, Madec A and Sens A S. Numeri-
cal unsteady aerodynamics for turbomachinery
aeroelasticity. 9th Int. Symp. Unsteady Aerodyn.
Aeroacoust. Aeroelast. Turbomach., Lyon, 2000.

[5] Erdos J I, Alzner E and McNally W. Numeri-
cal solution of periodic transonic flow through a
fan stage. AIAA J., Vol. 15, No 11, pp 1559–68,
1977. doi: 10.2514/3.60823 .

[6] Gerolymos G A, Michon G J and Neubauer J.
Analysis and application of chorochronic peri-
odicity in turbomachinery rotor/stator interac-
tion computations. AIAA J., Vol. 18, No. 6, pp
1139–52, 2002. doi: 10.2514/2.6065 .

[7] He L. Method of simulating unsteady turboma-
chinery flows with multiple perturbations. AIAA
J., Vol. 30, No 11, pp 2730–35, 1992. doi:
10.1016/j.paerosci.2010.04.001 .

[8] Huang X Q, He L and Bell D L. Influence of
upstream stator on rotor flutter stability in a
low pressure steam turbine stage. J. Power En-
ergy, Vol. 220, No. 1, pp 25–35, 2006. doi:
10.1243/095765005X69170 .

[9] Kaul R K and Herrmann G. Free torsional vibra-
tions of an elastic cylinder with laminated pe-
riodic structure. Int. J. Solid. Struct., Vol. 12,
No. 6, pp 449–66, 1976. doi: 10.1016/0020-
7683(76)90021-4 .

[10] Li H D and He L. Blade aerodynamic damping
variation with rotor-stator gap: a computational
study using single-passage approach. J. Turbo-
mach., Vol. 127 , No. 3, pp 573–79, 2005. doi:
10.1115/1.1928932 .

[11] Neubauer J. Aérodynamique 3-D instation-
naire des turbomachines axiales multi-étages.
PhD thesis, University of Paris 6, 2004. URL
julien.neubauer.free.fr/THESE_
JN.pdf.

[12] Placzek A and Castillon L. Aeroelastic re-
sponse of a contrafan stage using full annu-
lus and single passage models. J. Aeroelast.

Struct. Dyn., Vol. 3, No. 2, pp 1–30, 2014. doi:
10.3293/asdj.2014.30 .

[13] Saiz G. Turbomachinery aeroelasticity using
a time-linearised multi blade-row approach.
PhD thesis, University of London, 2008.
URL workspace.imperial.ac.uk/
medynamics/Public/gaby_saiz_
thesis.pdf.

[14] Silkowski P D and Hall K C. A coupled mode
analysis of unsteady multistage flows in turbo-
machinery. J. Turbomach., Vol. 120, No. 3, pp
410–22, 1998. doi: 10.1115/1.2841732 .

[15] Tyler J M and Soffrin T G. Axial flow compres-
sor noise studies. SAE Trans., Vol. 70, pp 309–
32, 1962. doi: 10.4271/620532 .

[16] Valid R and Ohayon R. Théorie et calcul sta-
tique et dynamique des structures à symétries
cycliques. Rech. Aérosp., Vol. 4, pp 251–63,
1985.

Acknowledgments

This work was supported by the Direction Générale
de l’Aviation Civile (DGAC) under the Convention
no 2009 93 0834 for the research project Aerovista.
Thanks to SAFRAN (Snecma) for providing the con-
trafan model.

Copyright Statement

The authors confirm that they, and/or their company or or-
ganization, hold copyright on all of the original material
included in this paper. The authors also confirm that they
have obtained permission, from the copyright holder of any
third party material included in this paper, to publish it as
part of their paper. The authors confirm that they give per-
mission, or have obtained permission from the copyright
holder of this paper, for the publication and distribution of
this paper as part of the ICAS 2014 proceedings or as indi-
vidual off-prints from the proceedings.

10

www.icas.org/ICAS_ARCHIVE/ICAS2012/PAPERS/056.PDF
www.icas.org/ICAS_ARCHIVE/ICAS2012/PAPERS/056.PDF
http://dx.doi.org/10.2514/3.60823
http://dx.doi.org/10.2514/2.6065
http://dx.doi.org/10.1016/j.paerosci.2010.04.001
http://dx.doi.org/10.1243/095765005X69170
http://dx.doi.org/10.1016/0020-7683(76)90021-4
http://dx.doi.org/10.1016/0020-7683(76)90021-4
http://dx.doi.org/10.1115/1.1928932
julien.neubauer.free.fr/THESE_JN.pdf
julien.neubauer.free.fr/THESE_JN.pdf
http://dx.doi.org/10.3293/asdj.2014.30
workspace.imperial.ac.uk/medynamics/Public/gaby_saiz_thesis.pdf
workspace.imperial.ac.uk/medynamics/Public/gaby_saiz_thesis.pdf
workspace.imperial.ac.uk/medynamics/Public/gaby_saiz_thesis.pdf
http://dx.doi.org/10.1115/1.2841732
http://dx.doi.org/10.4271/620532

	Introduction
	Periodicity of the mechanical fields
	Wave form due to the cyclic symmetry
	Phase-shifted boundary conditions

	Numerical model of the aeroelastic system
	Structural model
	Fluid model
	Aeroelastic coupling strategy

	Aeroelastic damping definition
	Global generalized aerodynamic forces approximation
	Expression of the aerodynamic work for quasi-periodic signals

	Numerical results
	Conclusion
	Contact Author Email Address

