
VIRTUAL PROTOTYPING MODELING IN THE CAVE 3D
ENVIRONMENT

Shabrov N.N.∗ , Kuzin A.K.∗ , Orlov S.G.∗ , Chetverushkin B.N.∗∗ , Iakobovski M.V.∗∗
∗St. Petersburg State Polytechnical University (Russia), ∗∗Institute for Mathematical Modeling of

RAS, (Russia)

Keywords: virtual prototyping, isosurface, mesh simplification

Abstract

Currently, the technologies of digital engineering
are further developed in the direction of virtual
engineering. Virtual environment systems like
CAVE 3D play the key role in the analysis and
simulations of very large and multiscale models
in the framework of high performance computing
(HPC). This paper outlines various aspects of the
results of our investigations in the framework of
virtual prototyping:

• integration of CAD/CAE/CFD/PDM/FSI/
HPC/3DiVR technologies;

• development of the interactive functional-
ity of virtual reality systems with the help
of Fingertracking devices in real time op-
eration mode;

• development of new approaches for analy-
sis of the results for large models of com-
plex technical systems in real time opera-
tion mode.

One of the most serious problems encoun-
tered in addressing contemporary problems of
modeling is the current status of specialized com-
mercial software. This software is characterized
by extremely low efficiency of use with modern
HPC systems. The reason for this is the growing
day by day gap between software and hardware
architectures. Software architecture is more con-
servative with respect to the architecture of hard-
ware. As acknowledged by the world renowned
expert in the field of HPC Jack Dongarra, in light
of the “revolution” in the hardware architecture,

all the applied software must undergo renova-
tion in the coming years. To change the situ-
ation, the concepts of creating software should
also radically change, basing on the receipt and
application of new knowledge. This is a really
global problem. The creation of qualitatively new
software applications in the broad sense, includ-
ing advanced interactive 3D interfaces human-
computer interaction, will provide a qualitative
effect in virtual prototyping of large scale mod-
els. The increasing scale and complexity of sim-
ulations, and the data they produce, will be a key
driver of the research agenda in the area of data
analysis and visualization. Interactive data ex-
ploration will also become increasingly impor-
tant as dataset scale and complexity continue to
grow. These will force new approaches to mul-
tidisciplinary analysis and visualization compu-
tations to the larger datasets. In particular, there
is a significant problem to visualize the results of
modeling on large scale (109 nodes) meshes in
real time. We consider the problem of isosurface
visualization on such a mesh. At first, the isosur-
face is generated on the original tetrahedral mesh;
then it is reduced to be suitable for visualization.
Implementations are proposed for parallel algo-
rithms of isosurface generation, aimed on multi-
core and GPU hardware architectures. 3-Sided
CAVE 3D (Computer Aided Virtual Reality) sys-
tem and Display Walls are used to visualize iso-
surface of a field on large scale mesh in real time.

1

SHABROV N.N., KUZIN A.K., ORLOV S.G., CHETVERUSHKIN B.N., IAKOBOVSKI M.V.

1 Virtual prototyping concepts

Among the major challenges of the 21st cen-
tury in the field of breakthrough computer tech-
nologies the problems of software development
for high-performance computing (HPC) systems
and solving of the problems of predictive mod-
eling of technical systems with complex ge-
ometrical structure should be specified. The
tasks of computational support of the 21st cen-
tury’s breakthrough technologies have got their
deserved place in the IESP Roadmap, the doc-
ument prepared by international community of
software developers and devoted to fundamen-
tal revision of strategy and development of the
software for HPC systems for the period 2010–
2019. The amount of computational recourses,
which is necessary for the technologies support,
requires the creation of computational systems
with peta/exascale performance level. It is as-
sumed that the volume of data generated by the
peta/exaFLOPS computing reaches the level of
petabytes and exabytes of a dataset.

Analysis and visualization of massive dataset
streams of peta/exabytes level generated as a re-
sult of predictive modeling in engineering stud-
ies, requires the creation of both new software
technologies for analysis and visualization and
new hardware rendering facilities. It means that
real-time analysis of results of peta/exaFLOPS
simulation requires systems of virtual environ-
ment such as CAVE 3D (Computer Aided Virtual
Environment), which are the one and only effec-
tive tools for comprehension of the huge amount
of data and will play the key role in the near fu-
ture. These environments are most in demand in
high-tech industries such as aerospace and avia-
tion (see Fig. 1).

Virtual environment systems such as X-
sided CAVE 3D and DisplayWalls complete the
processing chain CAD/MBS/CAE/CFD/PDM/
FSI/HPC/3DiVR of virtual prototyping or virtual
engineering technologies. Virtual prototyping or
virtual engineering is the new stage of develop-
ment of simulation and analysis technology; it
represents the extension of digital engineering
technologies (see Fig. 2). Virtual engineering en-
vironment is an open functional interactive envi-

Fig. 1 Analysis of CAD model of main helicopter
rotor using displaywall based on 4 LCD NEC 46” UN
and optical tracking system TrackPack2

ronment where a set of virtual prototyping tech-
nologies are integrated into (Fig. 2). The set of
virtual prototyping technologies includes geome-
try modeling technologies through CAD/CADG
systems, MBS/CAE/CFD/FSI/HPC simulation
tools supporting work distribution between the
groups of researchers (Collaborative Work), sim-
ulation results analysis through 3DiVR hardware
and software tools, and decision-making tech-
nologies.

Currently there are many efforts around the
world to enhance the software in order to improve
the functionality of virtual environments. The
global goal is to create, develop and integrate dis-
tributed co-simulation and interactive virtual re-
ality environments that would provide real-time
results analysis. The solution of this problem
should allow the user to get basic functions nec-
essary for collaborative work within the frame-
work of granted session.

One of the main tasks related to the virtual en-
vironment functionality enhancement is the prob-
lem of visualization of simulation results on very
large meshes. There are difficulties associated
with rendering as well as with limited bandwidth
of transferring datasets into the visualization sys-
tem. Particularly, these problems arise when the
results of dynamics simulations are to be visual-
ized. Specialized computer simulation systems
are currently able to process and generate enor-
mous amounts of data; however, in practice the

2

VIRTUAL PROTOTYPING MODELING IN THE CAVE 3D ENVIRONMENT

Fig. 2 Integration scheme of virtual prototyping technology of the technological systems

tasks of modeling are usually not performed in
real time. At the same time visualization systems
must process data with rate sufficient for the real
time user work.

The most promising approaches for solving
of this problem are:

1. Preprocessing of simulation results in or-
der to reduce the amount of data. Algo-
rithms should be developed to determine
and extract a fraction of data necessary for
visualization.

2. Compression of geometric data before
transferring to the visualization system
with fast decompression afterwards using
processors installed on the graphics accel-
erators. This approach should solve the
bandwidth bottleneck problem.

3. Execution of calculations directly on pro-
cessors of visualization system (GPU).
This approach is efficient when the visual

representation of an object can be partially
reconstructed from parameters of simula-
tion results, the amount of which is sub-
stantially less than the amount of data to be
restored. Recovery algorithm is partially
being implemented on the GPU.

An important component of a hardware-
software complex like CAVE virtual environment
system is the optical tracking system that largely
determines the quality of the analysis of simula-
tion results. The tracking system gives user the
necessary set of interactive functionality through
the tools such as Flystick and Fingertracking.
Fingertracking technology gives user the unique
opportunity of interactive modification of the sur-
face of the virtual object in real time and allows
to make decisions directly in the virtual environ-
ment (see Fig. 3).

3

SHABROV N.N., KUZIN A.K., ORLOV S.G., CHETVERUSHKIN B.N., IAKOBOVSKI M.V.

Fig. 3 Demonstration of interactive modification of the surface of a virtual object in the framework of 3-sided
CAVE 3D in real time. Original shape (left) and the shape after modification (right)

2 Problem overview

The next two basic approaches to the problem
of simplified isosurface generation may be con-
sidered. The classical approach is to apply one
of the mesh simplification algorithms to the en-
tire isosurface, which has to be extracted before.
One of the main problems of such an approach is
big memory consumption due to the necessity to
store the whole uncompressed isosurface; there-
fore, so-called out-of-core mesh simplification
techniques have to be used. On the other hand
simplified mesh quality control looks straightfor-
ward because the whole initial mesh is known at
the beginning of the simplification procedure.

The method of choice for the uncompressed
isosurface extraction depends on the structure
and the sizes of original 3D grid. In rather generic
case of unstructured tetrahedral grid with lin-
ear interpolation the modifications of marching
tetrahedra are widely used [1]. Also more ad-
vanced techniques, for example, marching dia-
monds method, introduced in [2], may be applied.

Finally the whole isosurface is the subject
to be reduced by one of the mesh simplification
techniques that are usually the combinations of
vertex clustering [3, 4] and edge contraction [5]
operations.

Another approach to the simplified isosurface
generation is to simplify the mesh directly during
the isosurface extraction. There are promising re-
searches in this direction, such as so-called tan-
dem algorithm introduced in [6]. An extended
parallel version of this method can be found in

[7]. It is worth mentioning that [1] also suggests
a sort of simultaneous isosurface generation and
simplification. In addition to the marching tetra-
hedra step, the vertex clustering takes place.

So let us consider original unstructured mesh,
split into domains each containing about 106

nodes (thus, there are about 1000 domains);
the correspondence between nodes at interface
boundaries between domains is also provided.
Each domain can be processed separately, inde-
pendently from the others. The result of domain
processing is a piece of reduced isosurface on it.
Pieces of isosurface obtained after domain pro-
cessing are seamed pairwise, and then further re-
duced.

A scheme of operation of the proposed soft-
ware implementation of algorithms of isosurface
generation and reduction is shown in Fig. 4.

In the beginning, a pool of MPI processes is
created. One of them, the controlling process,
executes job scheduler code, and others wait for
tasks from the scheduler. The scheduler gives
tasks to working processes as they accomplish
previous tasks. In each task, one domain is pro-
cessed. Thus, dynamic balancing of CPU load is
achieved. The performance grows with the num-
ber of available processors, as soon as the number
of domains exceeds the number of CPUs.

After all domains are processed, the seaming
of isosurface part is performed, as well as fur-
ther reduction of larger isosurface parts that re-
sult. The process continues until the only part
remains. At this stage, a task for a working pro-

4

VIRTUAL PROTOTYPING MODELING IN THE CAVE 3D ENVIRONMENT

Controlling MPI process

MPI working process pool

Generation of isosurface
parts on mesh domains

more
domains

left?

choose domain

wait for working
process

give domain
processing task

yes

Isosurface seaming

more
than one piece?

choose pair of pieces

wait for working
process

give isosurface part
seaming task

yes

no
no

wait for
task

receive
task

perform
task

Fig. 4 Scheme of operation of software

cesses is to seam a pair of isosurface parts and to
reduce the resulting part. The choice of pairs is
done by job scheduler process.

For domain sizes of about 106 nodes, it can
be processed either on CPU or GPU. We can ex-
pect that the time of processing on GPU will be
much less due to the parallelization within the
domain. Specialized parallel implementations of
isosurface generation and reduction algorithms
have been developed in order to utilize GPU re-
sources efficiently. Working MPI processes de-
termine whether to use CPU or GPU, depending
on whether a GPU waiting for new tasks is avail-
able. A resource manager has been developed for
this, which keeps track on the utilization of com-
putational resources.

Therefore, there are several distinct parts in
the software, which are as follows: algorithm of
isosurface generation at a separate domain (CPU
and GPU implementations); isosurface reduction
algorithm (CPU and GPU implementations); al-
gorithm for seaming a pair of isosurface parts
(CPU implementation); job scheduler; resource
manager.

3 Isosurface generation algorithm

It’s essential for the isosurface generation algo-
rithm that the mesh consists of tetrahedra, and the
scalar field is linear within each of them. Thus,
each mesh edge intersects the isosurface at most
at one point. The intersection of the isosurface

Fig. 5 Intersections of tetrahedron and plane

and a tetrahedron is either a triangle of a rectan-
gle, as soon as isosurface part within a tetrahe-
dron is flat (Fig. 5).

Special attention has to be paid to the case
when the value of the field at certain node is equal
to field value at the isosurface. This case leads to
an uncoarse situation that significantly increases
the complexity of the entire algorithm. The de-
veloped algorithm versions avoid this problem by
adding small terms to those nodal values of the
field that are equal to the value at the isosurface.

The isosurface generation algorithm consists
of the following steps.

1. Calculate the range [fmin, fmax] of nodal
values of the field f .

2. Add small terms to nodal field values
that coincide with the value of isosur-
face level f0. The magnitude of the term
is taken equal to ε f0, if f0 6= 0, and to
ε(fmax− fmin), if f0 = 0. The value of ε is
assumed to be 10−7, since the calculations
are done in single-precision floating point
numbers. The change of the field doesn’t
affect the visible isosurface geometry; at
the same time, this makes the algorithm
significantly simpler due to the absence of
uncoarseness.

3. In a loop over all edges, check for the in-
tersection of an edge with the isosurface.
If the intersection is found, the correspon-
dence between the edge and a new isosur-
face mesh node number is set. Besides, a

5

SHABROV N.N., KUZIN A.K., ORLOV S.G., CHETVERUSHKIN B.N., IAKOBOVSKI M.V.

parameter in the range [0, 1] is calculated
that determines the position of the node on
the edge.

4. Generate isosurface triangles. At this
stage, all tetrahedra intersecting the isosur-
face are processed. For each of them, one
or two triangles are generated, that make
up a part of the isosurface within the tetra-
hedron. The concordance of orientations
of triangles can be set basing only on the
knowledge of field values at each certain
tetrahedron (notice, however, that the ori-
entations of tetrahedra in the original mesh
are expected to be concordant)

5. Generate isosurface nodes. At this stage,
isosurface node coordinates are calculated;
the nodes are in fact found at stage 3.

6. Set correspondence between the nodes at
isosurface border and the edges of domain
mesh at its boundary. This step is necessary
for further seaming of isosurface parts be-
longing to neighboring domains. The men-
tioned correspondence makes it possible
to find nodes corresponding to each other
algebraically, without coordinate compari-
son.

Let us mention that the GPU implementation
of this algorithm is nontrivial, though it can
be deduced to the sequence of standard algo-
rithms for_each, transform, partition,
sort, scan, gather, scatter, unique,
remove_if, copy [8]. The developed soft-
ware employs the Thrust library [9] that provides
the parallel GPU implementations of these algo-
rithms.

4 Isosurface reduction and seaming

The proposed algorithm allows to significantly
decrease the size of isosurface mesh, obtained
at the previous stage. The basic operation per-
formed on the isosurface mesh is edge collaps-
ing (Fig. 6), such that the edge collapses, turn-
ing into a node, so this is the sort of edge con-
traction method in the terms of [5]. Besides,

a
b

c
d

e

f
g

h
i

j

a
b d

e

f
g i

j

Fig. 6 Edge collapsing

A

B

C

D

A

B

C

D

Fig. 7 Edge flipping

some pairs of neighboring triangles are replaced
by other pairs, in which the common edge goes in
a different way (Fig. 7); notice that each of such
pairs is identified by certain edge of isosurface
mesh. Let us call the second operation the edge
flipping. The possibility of performing one of
the mentioned two operations on an edge of the
mesh is determined by the value of criterion Φ

calculated on that edge (the criterion is discussed
below). It’s important that the collapse or flip op-
eration on the edge affects the value of criterion at
nearby edges. Keeping the parallel implementa-
tion (using GPU) in mind, we had to impose cer-
tain limitations on the order of operations. The
algorithm performs a sequence of iterations; at
each iteration, the following steps are taken.

1. Calculate the value of criterion Φi at i-th
edge, for all edges of the isosurface mesh.
This operation can be performed in par-
allel (in particular, GPU implementation
uses one thread per edge). Edges at which
Φi exceeds certain Φ∗ (which in turn de-
termines the quality of reduced isosurface)
are potentially suitable for collapsing (or
flipping, which is determined by a special
per-edge flag). Denote as G∗ the set of
edges gi at which Φi > Φ∗. Notice that
in the case of edge collapsing, an addi-
tional parameter is also calculated that de-
termines the position of node replacing the
edge.

2. Choose subset G∗1 of edges that can be

6

VIRTUAL PROTOTYPING MODELING IN THE CAVE 3D ENVIRONMENT

gi

gi,1
e

gi,2
e

gi,1
gi,2

Fig. 8 Leaves centered at edge nodes; faces contain-
ing the edge

collapsed or flipped simultaneously. The
possibility of simultaneous edge collaps-
ing implies that the collapsing of each edge
from G∗ do not affect the value of crite-
rion at any other edge also belonging to
G∗1. For the criterion that we have chosen
this means that in the graph formed by the
nodes and edges of the isosurface mesh,
the length of the path between any two
nodes belonging to any two different edges
from G∗1 should be not less than two. Cur-
rently only sequential algorithm for choos-
ing such a subset is implemented.

3. Collapse or flip each edge from G∗1. This
operation can be performed in parallel.

The iterations continue until G∗1 is empty, or un-
til two consecutive iterations appear, at each of
which no edges are collapsed.

To calculate the criterion Φi at edge gi, the in-
formation is necessary about all isosurface faces
that contain nodes of the edge. Let us call a leaf
centered at k node, Lk, the set of all isosurface
faces containing that node. The value Φi is deter-
mined by the union of leaves Lgi,1 ∪ Lgi,2 , where
gi,1 and gi,2 — are the numbers of nodes at the
ends of edge gi (Fig. 8). Let us also denote as
egi,1 and egi,2 the numbers of faces containing the
edge gi. Notice that the isosurface generation al-
gorithm guarantees that each edge belongs to ei-
ther two faces or (for edges at isosurface mesh
border) to one face.

Fig. 9 Flat and “bended” leaves

The procedure of calculation of the criterion
Φi at the edge gi is rather branched. The most
often the value is calculated basing on the esti-
mation of local curvature of leaves Lgi,1 and Lgi,2 .
For example, consider an inner edge — it be-
longs to two faces. Denote unit normal vectors
to these faces as nnn1 and nnn2. Each of the leaves
Lgi, j (j = 1,2) is divided into two parts, Lgi, j,1 and
Lgi, j,2, in the following way. The first face, egi,1 ,
falls into the first part. Further the neighboring
faces of the leaf are traversed; the traversal di-
rection is such that a face other than egi,2 follows
face egi,1 . All subsequent faces, whose normals
are closer to nnn1, rather than to nnn2, also fall into
the first part. The remaining faces fall into the
second part. Denote the sets of unit normal vec-
tors to faces from first and second parts as nnngi, j,1,
nnngi, j,2. For each of two leaves centered at edge
ends, now calculate

Φi, j = min
s=1,2

{
min

nnn∈nnngi, j ,s
{nnns ·nnn}

}
, j = 1,2

The closer the normal vectors of faces from Lgi, j,1
to nnn1, and the normal vectors from Lgi, j,2 — to nnn2,
the more the value of Φi, j is. The maximum of 1
is achieved at flat and “bended” leaves (Fig. 9).
Finally, the value of criterion Φi at the edge is
calculated by the formula

Φi = Φi,1ti +Φi,2(1− ti), ti =
2
π

arctan
Φi,2

Φi,1
.

The parameter ti determines the position of node
that replaces the edge as it collapses.

The use of the above formulas for the calcu-
lation of Φi allows reducing isosurfaces with cor-
ners by collapsing the edges lying at the corners
(not just at “flat” parts of the mesh).

The calculation of criterion value at edger
sometimes involves other branches, allowing

7

SHABROV N.N., KUZIN A.K., ORLOV S.G., CHETVERUSHKIN B.N., IAKOBOVSKI M.V.

to collapse very short edges; specifically con-
sider edges with leaves consisting of three faces;
specifically consider edges lying at the isosurface
mesh border; flip long edges between narrow tri-
angles. We cannot describe all these branches
here, but their presence in the algorithm allows
to significantly improve the quality and decrease
number of faces of reduced isosurface. Besides,
a number of tests are performed that cull edges
whose collapse would cause topology faults or
appearance of nearly degenerate faces. Due to
these tests, the homeomorphism of original and
reduced isosurface meshes can be guaranteed.

Let us also notice that the isosurface reduc-
tion algorithm allows do keep a subset of nodes
at mesh border unchanged. This feature is nec-
essary for providing the possibility of seaming
of isosurface parts belonging to neighboring do-
mains.

The seaming of a pair of isosurface parts con-
sists in the generation of common numbering of
nodes and faces, taking into account that nodes
belonging to the interface between domains is
common at both parts. Besides, the seaming is
followed by another reduction pass. This is done
in order to reduce the mesh hear the seam line.

5 Load balancing and job scheduling

The development of an application for a multi-
processor system unavoidably arises the problem
of load balancing. In our particular case, this is
done using a simple and at the same time efficient
mechanism of dynamic distribution of workload
between MPI processes. One of MPI processes is
the controlling one. Its objective is to distribute
the work among other processes. A working pro-
cess informs the controlling one when it is ready
to perform a new task, and the task is provided by
the controlling process in the reply message. As
soon as the task is complete, the working process
sends the result to the controlling process and
again starts waiting for either a new task or the
termination command. The controlling process
gives tasks from the queue. Due to specific fea-
tures of our case, this approach is rather efficient
and allows to reduce CPU downtime to zero.

However, the use of heterogeneous computa-

tional hardware, such as a cluster with GPUs in-
stalled on its nodes, creates a new problem of dis-
tribution of tasks among processors in such a way
that maximum performance is achieved. To ac-
complish this task, a resource manager has been
developed that helps a working process to take
the decision if it should use GPU or CPU for the
minimization of task running time.

The manager has the ability to predict the job
running time, basing on the statistics accumu-
lated on previously completed tasks.

Besides, the manager keeps track the load-
ing of hardware devices and distributes the tasks
such that the loading level does not exceed cer-
tain device-specific level.

The manager sets the correspondence be-
tween processors of the node and a set of n coun-
ters Ni, (i = 1 . . .n). Counters having numbers
i= 1 . . .n−1 correspond to GPUs installed on the
node, and the last counter corresponds to CPUs.
The possibility of allocation of a separate counter
for each CPU of a node is easily implemented but
seems useless in our case.

When the manager is requested for a proces-
sor, the client process specifies some quantity of
resource units ∆Ni, i = 1 . . .n that is to be used
for processor i (CPU or GPU) in the case of al-
location of that processor. The manages uses the
specified ∆Ni and determines the time tb

i when
the value of the counter Ni becomes greater than
∆Ni. As mentioned above, the manager is able
to predict the duration of an operation, τi, basing
on the statistics of previous calculations. Firstly,
this is necessary to find tb

i and, secondly, for
the prediction of time of completion of opera-
tion te

i = tb
i + τi at i-th processor. Finally, the

processor is being chosen for the task, at which
predicted time of task completion te

i is minimal.
Let us notice that the client process is put into

waiting state until time instant tb
i . After that, the

client obtains the number of processor i, and the
value of resource counter Ni is decreased by ∆Ni
units.

As soon as there is one resource manager per
node, it serves several client working processes
running on the node, and client requests for pro-
cessor resources form, in general, a queue of re-
quests.

8

VIRTUAL PROTOTYPING MODELING IN THE CAVE 3D ENVIRONMENT

The meaning of units used in counters Ni re-
mains an open question. Obviously, the value
∆Ni characterizes the hardness of the task: the
more it is, the less number of tasks can share the
usage of the processor.

For counter Nn (CPU) we assume for all tasks
that ∆Nn = 1, i. e., the reason of current value
of the counter is the number of processes that
can be currently run on CPU. For GPU (coun-
ters with i < n) the value ∆Ni is currently propor-
tional to the required memory size. Of course,
such a parameter can be introduced in infinitely
many ways. In particular, it appears reasonable to
set for GPU counter the same reason as for CPU
counters: the number of processes that can be si-
multaneously run on the device.

6 Testing software implementation

As a test problem, a cube-shaped volume has
been considered. The cube has sizes 5× 5× 5.
The mesh of tetrahedra having 500× 500× 500
nodes is specified, and the nodal field values are
calculated by the following formula:

f (x,y,z) = 2cos(10x)+2sin(10y)+ cos(10z);

the isosurface was generated for the level of f =
0.5; its fragment is shown in Fig. 10. The soft-
ware implementation of algorithms of isosurface
generation and reduction has been tested on a
node having 12 Gb operating memory, 16 CPU

Fig. 10 Fragment of test isosurface

cores and two Tesla GPUs having 4 Gb memory
each.

Three test series have been carried out, in
which domain sizes changed as follows:

• 250 domains having 5 ·105 nodes each;

• 125 domains having 106 nodes each;

• 63 domains having 2 ·106 nodes each.

Let us notice that in each of these cases, ap-
proximately equal-sized isosurface part bbelongs
to each domain.

The dependencies of calculation time on the
number of working MPI processes and on the do-
main size have been considered. The plots are
presented in Fig. 11. Notice that in this test no
GPUs have been used.

0

4

8

12

16

0 4 8 12 16

number of MPI working processes

s
p
e
e
d
-u

p

domain processing seaming total ideal speed-up

Fig. 11 Speed up of isosurface calculation with
growth of number of MPI work processes used

7 Conclusions

The testing of the developed software implemen-
tation of algorithms of isosurface generation and
reduction has shown its workability and scalabil-
ity in case that number of processors used is sig-
nificantly less than the number of domains in the
original mesh.

The analysis of tests has shown that the bot-
tleneck for the decrease of speed-up with the
growth of CPU count is most likely the memory
bandwidth. The more processes are run, the more
the load on memory subsystem is.

9

SHABROV N.N., KUZIN A.K., ORLOV S.G., CHETVERUSHKIN B.N., IAKOBOVSKI M.V.

The attempt to use GPUs installed on the sys-
tem has not led to any growth of performance,
thow isosurface reduction algorithm runs on a
GPU much faster than on a CPU. The research
in this area is currently in progress.

References

[1] Treece G. M., Prager R. W. and Gee A. H.
Regularised marching tetrahedra: improved iso-
surface extraction. Computers and Graphics,
Vol. 23, No. 4, pp 583–598, 1999.

[2] Anderson J.C., Bennett J. and Joy K.I. March-
ing Diamonds for Unstructured Meshes. IEEE
Visualization 2005, pp 423–429, 2005.

[3] Rossignac J. and Borel P. Multi-resolution 3d
approximations for rendering complex scenes.
Modeling in Computer Graphics: Methods and
Applications. Falcidieno B., Kunii T., (Eds.),
Springer Verlag, pp 455–465, 1993.

[4] Lindstrom P. Out-of-core simplification of large
polygonal models. In SIGGRAPH ’00: Pro-
ceedings of the 27th annual conference on
Computer graphics and interactive techniques,
ACM Press/Addison-Wesley Publishing Co.
New York, NY, USA, pp 259–262, 2000.

[5] Garland M. and Heckbert P. S. Surface sim-
plification using quadric error metrics. SIG-
GRAPH ’97: Proceedings of the 24th annual
conference on Computer graphics and inter-
active techniques, ACM Press/Addison-Wesley
Publishing Co. New York, NY, USA, pp 209–
216, 1997.

[6] Attali D., Cohen-Steiner D. and Edelsbrunner
H. Extraction and simplification of iso-surfaces
in tandem. SGP ’05: Proceedings of the third
Eurographics symposium on Geometry process-
ing, Eurographics Association, Aire-la-Ville,
Switzerland, pp 139–148, 2005.

[7] Dupuy G., Jobard B., Guillon S., Keskes N.
and Komatitsch D. Parallel extraction and sim-
plification of large isosurfaces using an ex-
tended tandem algorithm. Computed Aided De-
sign, Vol. 42, No. 2, pp 129–138, 2010.

[8] S. Gorlatch, C. Lengauer. (De)Composition for
Parallel Scan and Reduction. Proc. 3rd Working
Conf. on Massively Parallel Programming Mod-
els (MPPM’97), pp 23–32, 1997.

[9] Thrust — a CUDA library of parallel algo-

rithms. http://code.google.com/p/thrust/

8 Contact Author Email Address

mailto:kuzin_aleksei@mail.ru

Copyright Statement

The authors confirm that they, and/or their company or or-
ganization, hold copyright on all of the original material
included in this paper. The authors also confirm that they
have obtained permission, from the copyright holder of any
third party material included in this paper, to publish it as
part of their paper. The authors confirm that they give per-
mission, or have obtained permission from the copyright
holder of this paper, for the publication and distribution of
this paper as part of the ICAS 2014 proceedings or as indi-
vidual off-prints from the proceedings.

10

