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Abstract

A classifier, with which stable flight represented
by steady cruise is detected from flight data of
aircraft, is proposed. It enables us to utilize not
only dedicated but also ordinary flight data for
estimations of flight performance such as aero-
dynamic parameters. The classifier firstly per-
forms extracting instantaneous time-frequency
information from flight data with a filter bank.
Then, determining whether stable conditions
are satisfied based on differences of imitated
slopes is conducted. The slopes are calculated
with changes of the time-frequency information,
which enables the stable conditions to be config-
ured intuitively and makes filtering out outliers
easier. The proposed classifier is evaluated with
real flight data, and its effectiveness is proved by
computing lift coefficient with the data.

1 Introduction

Flight data consisting of time histories of air-
craft states such as attitude, control surface de-
flections, is valuable to analyze. Especially, it is
important to estimate performance by using the
data, because the estimated performance is used
for verification of prediction at design phase.
Moreover, quantitative performance represented
by aerodynamic parameters and stability deriva-
tives must be estimated to compare with results of
wind tunnel tests or computational fluid dynam-
ics calculations. These estimations are well es-
tablished to use system identification framework,
however, the framework has an essential guide-
line for application. It is summarized that accu-

racy of the estimated results is quite dependent
on quality of the flight data used for the estima-
tions. Thus, dedicated flight tests, in which pre-
ferred conditions such as calm wind are met, have
been conducted to gather appropriate flight data
for the estimations. In addition, not only stan-
dard but also special maneuvers, which excite
specific modes of flight dynamics such as verti-
cal short-period motion of fixed-wing aircraft, are
performed in the tests. Furthermore, data com-
patibility checks, which remove undesirable part
by measuring kinematic correlation between con-
trol inputs and responses, are applied to obtained
data.

Indeed the dedicated flight tests are requi-
site, however, all flight should be utilized for the
estimations. This is because longer flight data
is suitable to obtain more plausible results from
statistics point of view, and number of the ded-
icated flight tests is limited. Moreover, monitor-
ing changes of the flight performance, which con-
tributes to early detection of aircraft failure, will
be possible if part of the ordinary logged flight
data can be used for the estimations.

Here, there are questions; which parts of
flight data are selected, and how to extract them
automatically from massive flight data. In this
study, steady flight in cruise, ascend, and de-
scend phases, is selected as “stable flight”. This
is because the stable flight is required to estimate
static flight performance represented by lift and
drag coefficients. In addition, this selection in-
troduces another good point. The unselected part
also will be utilized for the estimation of dynamic
characteristics such as stability derivatives.

For effective extraction of the stable flight,
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a new classifier is proposed. This classifier de-
tects changes of flight data in terms of period,
and selects the stable flight parts in which the
changes are acceptable. To focus the changes is
effective for the extraction, because stable flight
mostly occupies ordinary flight. Moreover, it
is quite important to consider not only magni-
tude but also period of the changes. This is be-
cause parts of data in which short-term strong
changes derived mainly from maneuver and gust
are observed should be dismissed, while long-
term gradual changes such as constant increase
of altitude in ascend phase should be accepted.
In order to observe both magnitude and period,
the proposed classifier utilizes time-frequency in-
formation converted from time-series flight data
by a filter bank. The filter bank is configured with
techniques of multiresolution analysis (MRA) [1]
derived from discrete wavelet transform (DWT)
to calculate the information effectively. In ad-
dition, imitated slopes calculated with the time-
frequency information are introduced to make the
proposed method customize easily.

In the following, the contribution of this work
is defined with related studies in section2. Then,
the proposed classifier details are explained in
section3. The proposed classifier is evaluated
and its results are described in section4. Finally,
in section 5, this study is concluded.

2 Related studies and contribution of this
study

The flight data analysis in this study is corre-
lated to researches of time-series data analysis.
Thus, the contribution of this study is clarified
with summaries of the previous researches.

The time-series data analysis has been stud-
ied with its many applications such as analyses
of stock prices, brain wave, and earthquake. One
of major frameworks of these existing studies is
similarity search, whose goal is to find similar
parts corresponding to a given query from time
series data. The general procedure of the search
is firstly making indexes of the data and storing
the indexes and the original data in a database.
Then, the query is also converted to a correspond-
ing index with the same way applied to the data,

and indirect comparison between the data and
query, then, extraction of candidates for the sim-
ilar parts are performed with their indexes. Fi-
nally, results are obtained by refining the candi-
dates with direct comparison between their orig-
inal data and query.

Index generation techniques and special
database structures have been actively researched
in the above procedure for processing larger data
and answering queries more quickly. For in-
dex generation, feature extraction methods rep-
resented by fast Fourier transform (FFT), dis-
crete wavelet transform (DWT), singular value
decomposition (SVD), and landmark extraction
are well utilized [2, 3, 4, 5, 6]. Every method
is arranged to reduce dimension of the data and
generate appropriate indexes, which do not in-
voke any false dismissal at the cost of acceptance
of certain false alarm when the indirect compar-
ison is performed. For instance, several coeffi-
cients of Fourier transform results of the data are
selected as the indexes.

For database, multi dimensional and hier-
archical structures such asR-tree [7] and CS-
index [8] are utilized. These special structures
make the indirect comparisons quicker by arrang-
ing comparison order. The comparisons are per-
formed from coarse to fine levels, which implies
that if a coarse level comparison fails, then, the
remaining finer ones are pruned.

For this study, the existing index generation
techniques seem to be useful. However, accord-
ing to Keogh [9], usability of the existing tech-
niques is limited. It indicates that with just few
types of data, these techniques were evaluated in
order to prove their performance. In the worth
case, when they are applied to other data which
are not assumed, their performance was inferior
to the simplest and most redundant technique us-
ing Euclidean distance. This means an appropri-
ate method must be used based on characteris-
tics of application data. Therefore, the dedicated
method for the flight data analysis will be pro-
posed in this study.
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3 Proposed method

The proposed method is mainly characterized
by using time-frequency information converted
from time-series flight data. The information
is continuously obtained with a filter bank con-
figured by using MRA techniques. To observe
the information, long- and short-term changes,
which are mostly suspected to be intended and
unintended changes, respectively, can be distin-
guished. This is because the information repre-
sents how strong signal is in certain frequency
band and period. Moreover, the proposed method
utilizes the information to classify the data into
the stable flight by finding parts in which middle-
term changes are sufficiently identical to long-
term changes. The fundamental idea to se-
lect not short- but middle-term changes is lower
frequency is more deteriorated by measurement
noise, which are mostly localized in higher fre-
quency band.

In the following, MRA and the filter bank will
be briefly explained, and then, the procedure of
the proposed method is described. The charac-
teristics of the method can be determined with
parameters, whose tuning techniques are also de-
scribed.

3.1 Multiresolution analysis and filter bank

Time-frequency information is calculated by sev-
eral ways such as short-time Fourier transform
(STFT) and DWT. Especially, MRA is an effec-
tive way to apply DWT to time-series data. Fig-
ure1 shows a part of MRA calculation procedure
using Haar wavelet, the simplest one. This Haar
MRA consists of blocks which have identical
structure and are connected serially. In one block,
it performs calculation of difference and mean of
two adjacent samples, then, downsamples them
by two. The down-sampled mean value is prop-
agated to a next block. An example of the Haar
MRA applied to a chirp waveform whose period-
ical changes are more frequent as time passes is
shown in Fig.2, from which it is exactly con-
firmed that frequency component of the wave-
form is changed.

The MRA using Haar wavelet is modified in
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Fig. 1 Calculation procedure of multiresolution
analysis (MRA) using Haar wavelet
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Fig. 2 Time history of a linear chirp signal (bot-
tom) and its MRA results (top). The MRA re-
sults are shown with square of values consisting
of time-frequency information, which represents
signal strength.
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Fig. 3 Conceptual timing chart chart of MRA
using Haar wavelet
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this study. The information obtained with the
original MRA is scattered in terms of time shown
in Fig.3 because of down-sampling. Generally, it
is not problematic because the transformed time-
frequency information does not drop any content
that the original time-series data has due to or-
thonormal feature of Haar wavelet. However, for
the classification of this study, redundant time-
frequency information which is instantaneously
available at any time when time-series data is
sampled is useful. Thus, replacement of down-
sampling to delaying is introduced and the fil-
ter bank shown in Fig.4 is utilized in this study.
The filter bank contains additional delay in order
to compensate for delay contained in the Haar
blocks and to output the instantaneous informa-
tion. Consequently, the filter bank generates in-
stantaneous information like shown in Fig.5. The
red arrows in the figure correspond to the addi-
tional delay.

Fig. 4 Calculation procedure of the filter bank of
the proposed method

Figure6 shows instantaneous time-frequency
information of the same chirp waveform in Fig.2
obtained with the filter bank. It is the same as
Fig. 2 that higher frequency components gradu-
ally oscillate in larger amplitude.

3.2 Proposed method overview

Figure7 illustrates the overview of the proposed
method. The method receives time-series data as
inputs at the left side in the figure, and returns
classified results weather the data satisfies condi-
tions of the stable flight or not as outputs as the
right side in the figure. At the front stage, the
filter bank explained in the previous subsection
is applied to obtain instantaneous time-frequency
information.
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Fig. 5 Conceptual timing chart chart of the filter
bank of the proposed method. By sliding the area
to be used for calculation, instantaneous time-
frequency information is obtained.
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Fig. 7 Proposed classifier

Then, amplifiers to regulate magnitude of val-
ues consisting of time-frequency information ex-
ist. The gains of the amplifiers are selected for the
amplified values to be compared directly among
any frequency band. Here, a differential output
of i-th Haar blockyi is calculated as

yi =

k+2i−1−1

∑
j=k

a j −
k+2i−1

∑
j=k+2i−1

a j

√
2

i ,
(1)

wherea j is j-th sample of time-series data. Then,
√

2
i

4i−1 is multiplied as the gain, the amplified value
y′i is

y′i =

√
2

i

4i−1yi =
1

2i−1

2i−1

∑ak− 1
2i−1

2i−1

∑ak+2i−1

2i−1

≡
ā2i−1,k− ā2i−1,k+2i−1

2i−1 ,

(2)

whereā2i−1,k represents a mean value fromk-th to(
k+2n−1−1

)
-th samples. The distance between

ā2i−1,k and ā2i−1,k+2i−1 is 2i−1 samples, thus, the
amplified valuey′i imitates (negative) slopes in
time domain.

At the last stage, a discriminator checks
whether the stable flight conditions are satisfied
or not. The discriminator computes differences
between long- and middle-term changes based on
the imitated slopes. When the slope differences
are smaller than predefined thresholds∆, the dis-
criminator alarms that the stable flight is achieved
in terms of the input time-series data.

3.3 Parameter tuning

The proposed method has three kinds of tun-
able parameters; lowest frequency of the filter
bank, frequency band whose imitated slopes are
compared, and thresholds of the discriminator.
The lowest frequency of the filter bank is de-
termined based on minimum period of intended
changes. For example, intended changes of al-
titude are suspected to endure for 32 seconds at
least, the lowest frequency of the filter bank is
1/32 Hz. In other words, if the sampling pe-
riod of altitude is 8 Hz, this corresponds to that
8(= log2(32[s]/(1/8[1/s]))) of the Haar blocks
are cascaded in the filter bank.

The frequency bands whose imitated slopes
are compared with ones of the lowest frequency

5



MASARU NARUOKA

band are also determined empirically. To use the
altitude example, the imitated slopes generated
from the 6th and 7th Haar blocks will be ob-
served. This corresponds to middle-term changes
whose periods are 4 to 16 seconds.

Finally, the thresholds are easily defined by
using the fact that the amplified values imitate
the slopes in time-domain. With the altitude
example, it is reasonable to determine flight is
not stable when absolute deviation of altitude
rate between middle- and long-term changes is
larger than 100 fpm. Combined with the fre-
quency bands previously determined, in this ex-

ample, the thresholds will be
∣∣∣∆ f/26

∣∣∣= ∣∣∣∆ f/27

∣∣∣=
100/(60 [sec]∗8 [1/s]) feet per sample.

4 Evaluation and results

As evaluations of the proposed method, ordinal
flight data of experimental aircraft “Hisho” [10]
owned by Japan Aerospace Exploration Agency
(JAXA) is used. “Hisho” is modified aircraft
whose original is Cessna Model 680 fixed-wing
aircraft powered by two turbofan engines. The
data consists of time-series data recorded with
various instruments represented by ineartial mea-
surement unit (IMU), air data computer (ADC),
and engine controller known as FADEC. The
length of the flight data to be analyzed is approx-
imately one hour, and the data is aligned for its
sampling frequency to be 10 Hz.

To extract the stable flight from the flight
data, among various measured items, the follow-
ing four time histories are focused; altitudeh,
true airspeedVTAS, pitch angleθ, and roll an-
gle φ. The former two items are obtained with
ADC, while the latter two items are measured
with IMU. Each item will be monitored by each
dedicated classifier, and final classification re-
sults will be obtained by performing “AND” op-
eration for the outputs of these four classifiers. In
addition, minimum duration of the stable flight is
defined as 15 seconds, which means that even if
the data is classified as stable, and when length
of the data is shorter than 15 seconds, the data
is forcely recognized as not stable. The tunable
parameters of the classifiers are configured em-

pirically based on Sec.3.3, and are summarized
in Table1. Every filter bank of the classifiers for
the target items has eight Haar blocks, which is
equivalent to 10/256 Hz of its lowest frequency,
that is, dividing 10 Hz of the sampling frequency
by the 8th power of 2. Frequency bands whose
imitated slopes are compared are also configured
with a common band from 10/32 to 10/64 Hz,
which corresponds to monitoring outputs of the
6th Haar block in the discriminators.
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Figures8-11 are the classified results of the
focused items, i.e., altitude, true airspeed, pitch
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Table 1Parameters of the classifier

Item Symbol
Lowest frequency

Compared frequency band and thresholds
(Haar blocks)

Altitude h 10/256 [Hz] (8)
∣∣∆10/64

∣∣= 100[fpm]= 0.167[feet per sample]
True airspeed VTAS 10/256 [Hz] (8)

∣∣∆10/64

∣∣= 0.1[kt per sec]= 0.01[knots per sample]
Pitch angle θ 10/256 [Hz] (8)

∣∣∆10/64

∣∣= 0.02[dps]= 0.002[degrees per sample]
Roll angle φ 10/256 [Hz] (8)

∣∣∆10/64

∣∣= 0.1[dps]= 0.01[degrees per sample]
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Fig. 11 Roll angle

and roll angles, respectively. Each figure shows
time history of raw values and inputs to the dis-
criminator in bottom and top subfigures, respec-
tively. The shadowed area in the figures denotes
the data recognized as stable flight by the classi-
fiers. The blue lines in each top subfigure indicate
the thresholds of each discriminator. According
to the figures, while data including rapid changes
represented by rising and falling edges of roll an-
gles are dropped from the stable flight, graduate
changes such as decent phase decreasing altitude
are accepted. These facts conclude the proposed
classifier works as expected.

To utilize the stable data recognized by the
proposed method, lift coefficientCL is computed
by using the data. For the computation, steady
flight is always assumed. The data is segmented
into 5 seconds data, i.e., 50 samples, and their
mean values are utilized. Aircraft weight is es-
timated by subtracting fuel consumption calcu-
lated by accumulating fuel flow command of
FADEC from initial takeoff weight.

The computed coefficients are shown in
Fig. 12 with their approximate lines denoted by
CLαα+CL0. The horizontal axis of the figure in-
dicates angle of attackα estimated by subtracting
path angleΓ from pitch angleθ. According to the

figure, the lift coefficient is well estimated with
the stable data, because well-known linear rela-
tion between the coefficient and angle of attack is
clearly reflected. However, the computation with
the data recognized as not stable also seems to
succeed because of the same reason.
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Fig. 12 Lift coefficient computed with data of
“Flight 1”
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Fig. 13 Lift coefficient computed with data of
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For further analysis, additional three flights
are analyzed and their lift coefficients are shown
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Table 2 Properties of approximate lines of com-
puted lift coefficients

Item
Stable Not stable

CLα CL0 CLα CL0

Flight 1 0.102 0.123 0.091 0.131
Flight 2 0.093 0.139 0.064 0.145
Flight 3 0.099 0.110 0.083 0.138
Flight 4 0.092 0.136 0.077 0.138

in Fig. 13-15. Table2 summarizes properties of
the fitted lines of these four computations, and
indicates that theCLα results of the not stable
data vary more widely than ones of the stable
data. Therefore, we can conclude that the pro-
posed classifier is sufficiently useful for extrac-
tion of the stable flight and estimation of flight
performance.

5 Conclusion

This paper proposed the new classifier, which de-
tected the stable flight by searching time-series
flight data in order to utilize not only dedicated
but also ordinal flight for performance estima-
tion of aircraft. The classifier is characterized
by utilization of the time-frequency information
generated with the filter bank. In addition to the
filter bank, the amplifiers and discriminator are
comprised of the proposed method. The method
has tunable parameters, which can be configured
intuitively. The estimation results of lift coeffi-
cient by using the stable parts extracted from the
real flight data with the proposed classifier was
shown as the evaluations. The computed lift co-
efficient clearly indicated well-known linear re-
lation to the angle of attack. Therefore, it con-
cluded that the proposed classifier was effective.
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