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Abstract  

In this paper, a mesh adaptation technique for 

simulation of unsteady flow with moving-

boundaries is presented. In each adaptation 

period, the mesh is refined in the regions where 

the phenomena evolve and is coarsened in the 

regions where the phenomena deviate since the 

last adaptation. A simple indicator of mesh 

adaptation that accounts for the solution 

progression is defined. The unsteady flow and 

the fluid-solid interface are recomputed on the 

adapted mesh. There is no phase shift in time 

between the computed solution and the adapted 

mesh, and the frequency of mesh adaptation can 

also be controlled to reduce the interpolation 

errors due to the solution transferring. To 

validate the present method, several unsteady 

flows with fixed or moving boundaries have 

been simulated. 

1 Introduction  

Techniques of mesh adaptation have been 

extensively explored as an indispensable 

approach not only to pursue an accurate 

numerical solution but also to reduce the 

computational cost. For time-dependent 

problems, mesh adaptation is more crucial as 

the physical phenomena may progress 

arbitrarily in the computational domain.  

In most of the existing methods of mesh 

adaptation for unsteady flows, the approach 

taken is to simply adapt the mesh per n  time-

steps using the initial solution of this period to 

construct the adaptation indicators. Therefore, 

the adapted mesh always lags behind the 

unsteady solution. The features of interest may 

move outside the refined region. In order to 

reduce the lag and contain the feature evolution 

within the resolved region, the mesh was 

adapted frequently [1-3]. In this situation, an 

important source of errors due to solution 

transferring from the old mesh to the current 

adapted mesh is introduced. In the approaches 

of [1] and [2], two layers of cells adjacent to the 

marked critical region are refined to ensure that 

the marked region contains the traveling feature. 

In the mentioned approaches, the adaptation 

frequency cannot be controlled and the errors 

due to the interpolation of solution from the 

previous mesh to the adapted one cannot be 

prevented effectively. In [4], Cavallo et al. 

proposed a mesh adaptation technique for 

transient flows, which is based on a new 

projection and error-wake concept. Mesh 

refinement is performed by projecting the error 

ahead of its current position. Mesh coarsening is 

performed in the “wake” region where the errors 

have propagated. Alauzet et al. [5-6] proposed 

an approach, in which the flow-field and mesh 

are computed iteratively over each period till 

their coupling is converged. The mesh 

adaptation is based on a metric intersection in 

time procedure and reflects the flow-field 

evolving during that period.  

In this paper, we present an approach for 

mesh adaptation in the simulation of an 

unsteady flow over moving immersed 

boundaries. For the remainder, the content is 

arranged as follows. In Section 2, the basic 

numerical method is described in brief. In 

Section 3, the mesh adaptation approach is 

presented. In Section 4, numerical results are 

presented and compared with experimental data 

or the published results obtained on 
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conventional meshes. Finally, in Section 5, we 

summarize this work and present the 

conclusions. 

2 Basic Numerical Methods  

The Navier-Stokes/Euler equations are solved 

by using the so-called domain-free 

discretization (DFD) method. This method has 

been described in detail in [7-8], so only a brief 

description is given herein. In the DFD method, 

a partial differential equation is discretized at all 

mesh points inside the solution domain, but the 

discrete form at an interior point may involve 

some points outside the domain, which serve as 

the role to implement the boundary condition. 

The critical issue for successful implementation 

of the DFD method is how to calculate the 

functional values at the exterior dependent 

points, i.e. to construct some approximate form 

of solution in the vicinity of the wall boundary. 

The functional values are updated at each time 

step by proper extrapolation along the direction 

normal to the wall boundary in conjunction with 

the no-slip (for viscous flows) or no penetration 

(for inviscid flows) conditions and the 

simplified momentum equation in the vicinity of 

the wall. The Galerkin finite-element 

approximation [9] is employed for spatial 

discretization, and the discrete equations are 

integrated in time via a dual-time-stepping 

scheme [10]. 

The DFD method belongs to the non-

boundary-conforming methods. Therefore, the 

moving-boundary flows can be simulated on a 

fixed mesh and there is no need to update the 

mesh at each time-step in order to follow the 

motion or deformation of the solid object. 

3 Mesh Adaptation for an Unsteady Flow 

with Immersed Moving-Boundaries  

The conventional strategy of mesh adaptation 

for unsteady flows is to adjust the mesh per a 

specified number n  of time-steps only 

according to the solution at the first time-step of 

this period, so the mesh always lags behind the 

unsteady solution. If the mesh is adapted 

frequently to diminish the lag, an important 

source of errors due to solution transferring (by 

interpolation) from the old mesh to the newly-

adapted one is introduced. For a long-time scale 

simulation, the interpolation errors may 

accumulate and the solution accuracy will 

decrease quickly.  

In this work, mesh adaptation is also 

performed per n  time-steps (one adaptation 

period), but the mesh is adapted to the 

phenomenon evolving in each period. This is 

the principle of the present approach.  

3.1 Adaptation Strategy  

In the present strategy, mesh adaptation is 

performed per n  time-steps. Staring from the 

initial solution for each adaptation period, the 

instantaneous solution and fluid-solid interface 

at each time-step is predicted firstly. Then, an 

adaptation indicator that takes into account the 

solution progression is calculated, and a new 

adaptive mesh is generated for this period. After 

that, the initial solution on the previous mesh is 

transferred onto the newly-adapted mesh. 

Finally, the computation is restarted on the new 

mesh to obtain the time-dependent solution and 

the position of the evolving fluid-solid interface 

for this time period. For each adaptation period, 

the mesh is refined in the regions where the 

solution evolves and is coarsened in the regions 

where the phenomena or the solid objects 

deviate since the last adaptation. Using the 

adapted mesh as the initial mesh and the 

solution at the last time-step as the initial 

solution, the next adaptation period can be 

started. 

The solution obtained on the old mesh 

must be recovered on the current adapted mesh 

to restart the computation from the previous 

state. This stage is critical in the mesh-adaptive 

simulation of unsteady flows as the errors due to 

solution transferring may accumulate 

throughout the long-time computations. The 

preservation of conservation property is also 

mandatory. Therefore, a P1-conservative 

interpolation [11] is used in the present method 

to transfer solution from the previous mesh to 

the current mesh. 

In the present adaptation procedure, the 

mesh is adaptive to solution progression, so 
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there is no lag between the adapted mesh and 

the computed solution. Also, there is no need to 

adapt the mesh frequently and the errors due to 

solution-transferring can be controlled. In our 

numerical experiments, n  is determined 

empirically to be 50 ~ 100, which is much larger 

than the values ( 10~5n ) taken in those 

methods [1-3] which are based on the frequent 

mesh adaptation. 

For more details of description and 

discussion of this mesh adaptation strategy, the 

readers are referred to our previous paper [12]. 

3.2 Criteria for Mesh Adaptation  

It is necessary to define an indicator of mesh 

adaptation which can determine automatically 

the zones of mesh where some refinement or 

coarsening are required. In this work, the 

gradient of density is employed to capture shock 

waves, and the vorticity is used to capture 

boundary layers and vortices. 

For unsteady flows, the adaptation 

indicator must take into account the solution 

progression since the physical phenomena 

develop with time. We solve this problem by 

defining the indicator of mesh adaptation for 

each triangle K  during the ith adaptation period 

as 
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piecewise linear solution, the magnitude of 
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where KA  is the area of element K . For each 

vertex P , the adaptation indicator is defined as 

   KEPE i
K

i
P

 max   (3) 

where P  is the sub-region formed by all 

triangles that share the vertex P . 

Two values of maxE  and minE  are specified 

for mesh adaptation. In the thi  mesh adaptation 

period, when   maxEKEi   the element K  is 

refined and when  KEi  or   minEPEi   the 

element K  or the vertex P  is deleted. In the 

non-boundary-conforming methods, such as the 

DFD method, the mesh in the vicinity of wall 

should be fine enough to reflect the effect of the 

solid boundary. So, the elements near the wall 

are specified large values of indicator to ensure 

that the mesh in this region will be the finest. To 

prevent extremely large gradient of mesh 

density and keep the geometric integrity of the 

domain as a whole, the original mesh will not be 

coarsened further in the mesh adaptation. 

3.3 Refinement and Coarsening  

In this work, the original triangular mesh is 

generated by dividing the square cells of a 

uniform Cartesian mesh. Therefore, the original 

mesh consists of equilateral right-angled 

triangles. Two techniques are developed to 

generate adaptive meshes dynamically. 

In the first method, a multi-level 

refinement/coarsening strategy is employed. 

The mesh is regularly and successively refined 

by dividing a triangle into four similar triangles. 

This creates a tree structure of triangles. Only a 

refined triangle will possibly be unrefined by 

deleting its four sons. In order to eliminating the 

“hanging point” generated in the regular 

refinement and coarsening, the triangle with one 

hanging point is irregularly refined into two 

triangles by connecting the hanging point to the 

opposite vortex of the triangle. The generation 

of a newly-adapted mesh begins by removing all 

triangles generated by irregular refinement in 

the last mesh adaptation. Then, the regular 

refinement starts from the top level. In the 

refinement process, any triangle not marked for 

refinement will be refined if it has more than 

one hanging points or it has more than one 

neighbors that have been regularly refined [13]. 

The coarsening starts also from the top level. In 

the coarsening process, any triangle marked for 

coarsening will not be coarsened if the number 

of its neighbors that will not be coarsened is 

greater than one. If a triangle is not marked for 

coarsening, the neighbors of its farther triangle 

will not be coarsened. 
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In the second method, the refinement 

procedure is based on the longest-edge-bisection 

algorithm proposed by Rivara [14]. The selected 

element is bisected along its longest edge by the 

midline. The neighbor element sharing the 

longest edge is also bisected in the same way. 

The process is recursively applied to the longest 

edge neighbors till it stops. The coarsening step 

consists of deleting vertices from the mesh, 

rather than directly deleting elements. Each 

vertex P  is associated with a sub-region P . In 

the coarsening process, the selected vertex and 

all its incident edges are eliminated from the 

mesh. The sub-region associated with this 

vertex is then re-triangulated. 

A value of minimal mesh size is specified 

to control the mesh density and prevent 

numerical instability due to the elements with 

very small volume. 

Employing the first method, all the 

triangles on the adapted mesh except those 

obtained from irregular refinement are similar to 

the triangles on the original mesh, and any 

triangle is irregularly refined at most one time. 

So, after mesh adjusting, the detriment of the 

geometrical quality of triangles can be 

controlled. Its disadvantage is the record of 

some history information, while there is no 

extra requirement of memory in the second 

method. 

4 Numerical Experiments 

In this section, numerical experiments for 

unsteady flows with stationary or moving 

boundaries are performed to validate the present 

mesh adaptation method. maxE  is related to the 

mesh size. The value of maxE  are determined 

empirically. In the following computations, we 

set 3

max 105.2 E  for the circular cylinder 

and the NACA0012 airfoil and 4

max 105 E  

for the swimming fish, corresponding to 

different expected minimal mesh sizes. In all 

computations, we always set 10/maxmin EE  . 

The longest-edge-bisection/vortex-deleting 

strategy is employed to generate dynamic 

adaptive meshes in the first test case while the 

multi-level refinement/coarsening strategy is 

employed for all the other cases. 

4.1 Unsteady Flow over a Stationary Circular 

Cylinder for Re=300  

A large domain of DD 3050   has been used to 

minimize the outer boundary effects. The initial 

mesh has 76126   nodes. The non-dimensional 

time-step size is taken to be 210  . The mesh is 

adapted per 50n  time-steps. 

The adapted mesh in the wake region near 

the cylinder for the period [75, 75.5] and the 

vorticity field at the end of this time period are 

shown in Figure 1. The node number of the 

current mesh is 47995. In Figure 2, the initial 

position (blue) and the end position (red) of 

vorticity progressing in this period are plotted. It 

can be seen from these figures that the mesh in 

the region of vorticity convection is refined 

while mesh in the region where the phenomena 

deviate is coarsened, and the mesh density 

matches well the intensity of the vorticity. 
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Fig. 1. Adapted Mesh and Vorticity Distribution 

in the Wake Region for Re=300 
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Fig. 2. Evolving of Vorticity in One Adaptation 

Period for Re=300 

4.2 Transonic Inviscid Flow around an 

Oscillating NACA0012 Airfoil  
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In this subsection, the performance of the 

present method is investigated with the 

simulation of the inviscid transonic flow at 

755.0M  past the NACA0012 airfoil 

undergoing forced oscillation in pitch 

)1618.0sin(51.2016.0)( tt              (4) 

about the quarter-chord point. It is the CT5 case 

of the experiment of AGARD [15]. The flow is 

characterized by the presence of a strong shock 

wave, which develops alternatively on the upper 

and lower surface of the airfoil. The non-

dimensional time-step size is taken to be 
210 
, 

and the mesh adaptation is performed per every 

50n  time-steps. 

The contours of Mach number and the 

adapted meshes are displayed in Figure 3. It can 

be seen clearly that the mesh in the regions near 

body surface and the shock wave has been 

refined dynamically. 

The hysteresis curve of the lift coefficient 

is depicted in Figure 4. DFD Euler results on 

uniform mesh [16], the experimental data [15] 

and Euler results obtained on adaptive body-

fitted grid [17] are also plotted in this figure for 

comparison. We can see that the numerical 

results agree well with each other. 
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(a) 
34.2  (downward) 
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(b) 
41.2  (downward) 

Fig. 3. Contours of Mach Number and Adapted 

Meshes for Oscillating NACA0012 Airfoil 
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Fig. 4. Hysteresis Curve of Lift Coefficient for 

Oscillating NACA0012 Airfoil 

4.3 Simulation of Self-propelled Anguilliform 

Swimming  

Here, we apply the proposed mesh adaptation 

method to the numerical simulation of self-

propelled anguilliform swimming. The 

deformation of the fish body is prescribed in the 

local body system. The position and orientation 

of the fish body are defined in the global system, 

which are determined by the fluid force. The 

algorithm for loose coupling of fluid-structure 



C. H. ZHOU  

6 

interaction presented in [18] is employed to 

simulate the self-propelled swimming. The fish 

geometry and the prescribed deforming motion 

of the body are taken from the work of Kern and 

Koumoutsakos [19].   

All simulations are conducted with a 

constant viscosity of 4104.1  , body length 

1L , density 1bodyfluid   , and undulation 

frequency 1f . The size of computational 

domain is 1240  and the initial mesh has 

31101  nodes. The time-step size is taken to be 
4105  . The mesh is adapted per every 100n  

time-steps. 

In Table 1, the asymptotic forward velocity, 

the amplitude of lateral velocity, and the 

amplitudes of the coefficients of longitudinal 

force, lateral force and yaw moment are 

compared with the results of Zhou and Shu [18], 

Kern and Koumoutsakos [19]. All numerical 

results agree well with each other. Due to the 

reduction of the numerical dissipation, the 

asymptotic mean forward velocity of the present 

computation is slightly larger than those 

obtained on conventional meshes. 

Table 1. Results for a Swimming Fish 

References | |V  
V

~
 | |

~
C  

C
~

 
MC

~
 

Present work 0.557 0.038 0.031 0.038 0.030 

Zhou et al. 

[18] 
0.550 0.039 0.030 0.040 0.031 

Kern et al. 

[19] 
0.540 0.04 0.03 0.04 0.03 

| |V : mean value of 
||V ;  

V
~

, | |

~
C , 

C
~

,
MC

~
: amplitudes of V , 

||C , C , MC  

The global view of vorticity field at 15t  

is shown in Figure 5. The partial view of 

vorticity distribution in the region near the fish 

tail at 15t  and the adapted mesh in the 

adaptation period [14.95, 15] are shown in 

Figure 6. The solid object is moving relative to 

the mesh. The flow is only induced by the 

motion of the fish body, so the convection 

velocity of vortex is small. In Figure 6, the 

triangles concentrated around the vortices have 

been refined obviously.  

Figure 7 illustrates the motion and 

deformation of the fish within this adaptation 

period. The red line represents the position and 

shape of the body at the start instant, and the 

green represents those at the end instant. During 

each adaptation period, the mesh in the region 

through which the fish is passing has been 

refined dynamically. So the effect of geometry 

can be reflected accurately in the non-boundary-

conforming method, and the boundary layer 

adjacent to the solid object can also be resolved. 
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Fig. 5. Global View of Vorticity Field around a 

Swimming Fish at t=15 
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Fig. 6. Close up View of Adapted Mesh and 

Vorticity Distribution near the tail at t=15 
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Fig. 7. Motion and Deformation of the Fish 

Body during [14.95, 15] 

5 Summary and Conclusions  

In this work, we have developed a mesh 

adaptation method for unsteady flows with 

moving immersed boundaries. Via a predictor-

corrector step, the mesh in each adaptation 
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period is adapted to the phenomena evolving 

and the motion or deformation of solid objects. 

There is no phase shift in time between the 

solution and the adapted mesh. The frequency 

of mesh adaptation can be controlled to reduce 

the errors due to solution transferring. The 

number of mesh nodes can be reduced greatly 

when using a non-boundary-conforming method 

to simulate complex moving-boundary flows. 
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