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Abstract

In this paper, a mesh adaptation technique for
simulation of unsteady flow with moving-
boundaries is presented. In each adaptation
period, the mesh is refined in the regions where
the phenomena evolve and is coarsened in the
regions where the phenomena deviate since the
last adaptation. A simple indicator of mesh
adaptation that accounts for the solution
progression is defined. The unsteady flow and
the fluid-solid interface are recomputed on the
adapted mesh. There is no phase shift in time
between the computed solution and the adapted
mesh, and the frequency of mesh adaptation can
also be controlled to reduce the interpolation
errors due to the solution transferring. To
validate the present method, several unsteady
flows with fixed or moving boundaries have
been simulated.

1 Introduction

Techniques of mesh adaptation have been
extensively explored as an indispensable
approach not only to pursue an accurate
numerical solution but also to reduce the
computational  cost. For  time-dependent
problems, mesh adaptation is more crucial as
the physical phenomena may progress
arbitrarily in the computational domain.

In most of the existing methods of mesh
adaptation for unsteady flows, the approach
taken is to simply adapt the mesh per n time-
steps using the initial solution of this period to
construct the adaptation indicators. Therefore,
the adapted mesh always lags behind the
unsteady solution. The features of interest may

move outside the refined region. In order to
reduce the lag and contain the feature evolution
within the resolved region, the mesh was
adapted frequently [1-3]. In this situation, an
important source of errors due to solution
transferring from the old mesh to the current
adapted mesh is introduced. In the approaches
of [1] and [2], two layers of cells adjacent to the
marked critical region are refined to ensure that
the marked region contains the traveling feature.
In the mentioned approaches, the adaptation
frequency cannot be controlled and the errors
due to the interpolation of solution from the
previous mesh to the adapted one cannot be
prevented effectively. In [4], Cavallo et al.
proposed a mesh adaptation technique for
transient flows, which is based on a new
projection and error-wake concept. Mesh
refinement is performed by projecting the error
ahead of its current position. Mesh coarsening is
performed in the “wake” region where the errors
have propagated. Alauzet et al. [5-6] proposed
an approach, in which the flow-field and mesh
are computed iteratively over each period till
their coupling is converged. The mesh
adaptation is based on a metric intersection in
time procedure and reflects the flow-field
evolving during that period.

In this paper, we present an approach for
mesh adaptation in the simulation of an
unsteady flow over moving immersed
boundaries. For the remainder, the content is
arranged as follows. In Section 2, the basic
numerical method is described in brief. In
Section 3, the mesh adaptation approach is
presented. In Section 4, numerical results are
presented and compared with experimental data
or the published results obtained on
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conventional meshes. Finally, in Section 5, we
summarize this work and present the
conclusions.

2 Basic Numerical Methods

The Navier-Stokes/Euler equations are solved
by using the so-called domain-free
discretization (DFD) method. This method has
been described in detail in [7-8], so only a brief
description is given herein. In the DFD method,
a partial differential equation is discretized at all
mesh points inside the solution domain, but the
discrete form at an interior point may involve
some points outside the domain, which serve as
the role to implement the boundary condition.
The critical issue for successful implementation
of the DFD method is how to calculate the
functional values at the exterior dependent
points, i.e. to construct some approximate form
of solution in the vicinity of the wall boundary.
The functional values are updated at each time
step by proper extrapolation along the direction
normal to the wall boundary in conjunction with
the no-slip (for viscous flows) or no penetration
(for inviscid flows) conditions and the
simplified momentum equation in the vicinity of
the wall. The Galerkin finite-element
approximation [9] is employed for spatial
discretization, and the discrete equations are
integrated in time via a dual-time-stepping
scheme [10].

The DFD method belongs to the non-
boundary-conforming methods. Therefore, the
moving-boundary flows can be simulated on a
fixed mesh and there is no need to update the
mesh at each time-step in order to follow the
motion or deformation of the solid object.

3 Mesh Adaptation for an Unsteady Flow
with Immersed Moving-Boundaries

The conventional strategy of mesh adaptation
for unsteady flows is to adjust the mesh per a
specified number n of time-steps only
according to the solution at the first time-step of
this period, so the mesh always lags behind the
unsteady solution. If the mesh is adapted
frequently to diminish the lag, an important
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source of errors due to solution transferring (by
interpolation) from the old mesh to the newly-
adapted one is introduced. For a long-time scale
simulation, the interpolation errors may
accumulate and the solution accuracy will
decrease quickly.

In this work, mesh adaptation is also
performed per n time-steps (one adaptation
period), but the mesh is adapted to the
phenomenon evolving in each period. This is
the principle of the present approach.

3.1 Adaptation Strategy

In the present strategy, mesh adaptation is
performed per n time-steps. Staring from the
initial solution for each adaptation period, the
instantaneous solution and fluid-solid interface
at each time-step is predicted firstly. Then, an
adaptation indicator that takes into account the
solution progression is calculated, and a new
adaptive mesh is generated for this period. After
that, the initial solution on the previous mesh is
transferred onto the newly-adapted mesh.
Finally, the computation is restarted on the new
mesh to obtain the time-dependent solution and
the position of the evolving fluid-solid interface
for this time period. For each adaptation period,
the mesh is refined in the regions where the
solution evolves and is coarsened in the regions
where the phenomena or the solid objects
deviate since the last adaptation. Using the
adapted mesh as the initial mesh and the
solution at the last time-step as the initial
solution, the next adaptation period can be
started.

The solution obtained on the old mesh
must be recovered on the current adapted mesh
to restart the computation from the previous
state. This stage is critical in the mesh-adaptive
simulation of unsteady flows as the errors due to
solution  transferring may  accumulate
throughout the long-time computations. The
preservation of conservation property is also
mandatory. Therefore, a Pl-conservative
interpolation [11] is used in the present method
to transfer solution from the previous mesh to
the current mesh.

In the present adaptation procedure, the
mesh is adaptive to solution progression, so
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there is no lag between the adapted mesh and
the computed solution. Also, there is no need to
adapt the mesh frequently and the errors due to
solution-transferring can be controlled. In our
numerical experiments, n is determined
empirically to be 50 ~ 100, which is much larger
than the values (n=5~10) taken in those
methods [1-3] which are based on the frequent
mesh adaptation.

For more details of description and
discussion of this mesh adaptation strategy, the
readers are referred to our previous paper [12].

3.2 Criteria for Mesh Adaptation

It is necessary to define an indicator of mesh
adaptation which can determine automatically
the zones of mesh where some refinement or
coarsening are required. In this work, the
gradient of density is employed to capture shock
waves, and the vorticity is used to capture
boundary layers and vortices.

For unsteady flows, the adaptation
indicator must take into account the solution
progression since the physical phenomena
develop with time. We solve this problem by
defining the indicator of mesh adaptation for
each triangle K during the ith adaptation period
as

K K
E (K) = jﬁg?éw{wxuh 7NN
where j is the index for time-step. For the
piecewise linear solution, the magnitude of
gradient of density and the magnitude of
vorticity on each triangle can be calculated as
below
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where A, is the area of element K. For each
vertex P, the adaptation indicator is defined as
E (P)=max E(K) 3

|V><u|:.< =A

where Q, is the sub-region formed by all
triangles that share the vertex P .

Two values of E,, and E_;, are specified
for mesh adaptation. In the ith mesh adaptation

period, when E,(K)>E,, the element K is
refined and when E,(K) or E/(P)<E,, the

element K or the vertex P is deleted. In the
non-boundary-conforming methods, such as the
DFD method, the mesh in the vicinity of wall
should be fine enough to reflect the effect of the
solid boundary. So, the elements near the wall
are specified large values of indicator to ensure
that the mesh in this region will be the finest. To
prevent extremely large gradient of mesh
density and keep the geometric integrity of the
domain as a whole, the original mesh will not be
coarsened further in the mesh adaptation.

3.3 Refinement and Coarsening

In this work, the original triangular mesh is
generated by dividing the square cells of a
uniform Cartesian mesh. Therefore, the original
mesh consists of equilateral right-angled
triangles. Two techniques are developed to
generate adaptive meshes dynamically.

In the first method, a multi-level
refinement/coarsening strategy is employed.
The mesh is regularly and successively refined
by dividing a triangle into four similar triangles.
This creates a tree structure of triangles. Only a
refined triangle will possibly be unrefined by
deleting its four sons. In order to eliminating the
“hanging point” generated in the regular
refinement and coarsening, the triangle with one
hanging point is irregularly refined into two
triangles by connecting the hanging point to the
opposite vortex of the triangle. The generation
of a newly-adapted mesh begins by removing all
triangles generated by irregular refinement in
the last mesh adaptation. Then, the regular
refinement starts from the top level. In the
refinement process, any triangle not marked for
refinement will be refined if it has more than
one hanging points or it has more than one
neighbors that have been regularly refined [13].
The coarsening starts also from the top level. In
the coarsening process, any triangle marked for
coarsening will not be coarsened if the number
of its neighbors that will not be coarsened is
greater than one. If a triangle is not marked for
coarsening, the neighbors of its farther triangle
will not be coarsened.



In the second method, the refinement
procedure is based on the longest-edge-bisection
algorithm proposed by Rivara [14]. The selected
element is bisected along its longest edge by the
midline. The neighbor element sharing the
longest edge is also bisected in the same way.
The process is recursively applied to the longest
edge neighbors till it stops. The coarsening step
consists of deleting vertices from the mesh,
rather than directly deleting elements. Each
vertex P is associated with a sub-region Q. . In

the coarsening process, the selected vertex and
all its incident edges are eliminated from the
mesh. The sub-region associated with this
vertex is then re-triangulated.

A value of minimal mesh size is specified
to control the mesh density and prevent
numerical instability due to the elements with
very small volume.

Employing the first method, all the
triangles on the adapted mesh except those
obtained from irregular refinement are similar to
the triangles on the original mesh, and any
triangle is irregularly refined at most one time.
So, after mesh adjusting, the detriment of the
geometrical quality of triangles can be
controlled. Its disadvantage is the record of
some history information, while there is no
extra requirement of memory in the second
method.

4 Numerical Experiments

In this section, numerical experiments for
unsteady flows with stationary or moving
boundaries are performed to validate the present
mesh adaptation method. E,,, is related to the

mesh size. The value of E_, are determined
empirically. In the following computations, we
set E,, =25x10"° for the circular cylinder
and the NACA0012 airfoil and E,, =5x10""

for the swimming fish, corresponding to

different expected minimal mesh sizes. In all

computations, we always set E;, = E,, /10.
The longest-edge-bisection/vortex-deleting

strategy is employed to generate dynamic
adaptive meshes in the first test case while the
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multi-level refinement/coarsening strategy is
employed for all the other cases.

4.1 Unsteady Flow over a Stationary Circular
Cylinder for Re=300

A large domain of 50D x30D has been used to
minimize the outer boundary effects. The initial
mesh has 126 x 76 nodes. The non-dimensional

time-step size is taken to be 10 . The mesh is
adapted per n=50 time-steps.

The adapted mesh in the wake region near
the cylinder for the period [75, 75.5] and the
vorticity field at the end of this time period are
shown in Figure 1. The node number of the
current mesh is 47995. In Figure 2, the initial
position (blue) and the end position (red) of
vorticity progressing in this period are plotted. It
can be seen from these figures that the mesh in
the region of vorticity convection is refined
while mesh in the region where the phenomena
deviate is coarsened, and the mesh density
matches well the intensity of the vorticity.
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Fig. 1. Adapted Mesh and Vorticity Distribution
in the Wake Region for Re=300
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Fig. 2. Evolving of Vorticity in One Adaptation
Period for Re=300

4.2 Transonic Inviscid Flow around an
Oscillating NACAO0012 Airfoil
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In this subsection, the performance of the
present method is investigated with the
simulation of the inviscid transonic flow at
M_=0.755 past the NACAO0012 airfoil
undergoing forced oscillation in pitch

a(t) =0.016° + 2.51° sin(0.1618t) 4)
about the quarter-chord point. It is the CT5 case
of the experiment of AGARD [15]. The flow is
characterized by the presence of a strong shock
wave, which develops alternatively on the upper
and lower surface of the airfoil. The non-

dimensional time-step size is taken to be 1072,
and the mesh adaptation is performed per every
n=>50 time-steps.

The contours of Mach number and the
adapted meshes are displayed in Figure 3. It can
be seen clearly that the mesh in the regions near
body surface and the shock wave has been
refined dynamically.

The hysteresis curve of the lift coefficient
is depicted in Figure 4. DFD Euler results on
uniform mesh [16], the experimental data [15]
and Euler results obtained on adaptive body-
fitted grid [17] are also plotted in this figure for
comparison. We can see that the numerical
results agree well with each other.
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Fig. 3. Contours of Mach Number and Adapted
Meshes for Oscillating NACA0012 Airfoil
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Fig. 4. Hysteresis Curve of Lift Coefficient for
Oscillating NACAQ012 Airfoil

4.3 Simulation of Self-propelled Anguilliform
Swimming

Here, we apply the proposed mesh adaptation
method to the numerical simulation of self-
propelled  anguilliform  swimming.  The
deformation of the fish body is prescribed in the
local body system. The position and orientation
of the fish body are defined in the global system,
which are determined by the fluid force. The
algorithm for loose coupling of fluid-structure
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interaction presented in [18] is employed to
simulate the self-propelled swimming. The fish
geometry and the prescribed deforming motion
of the body are taken from the work of Kern and
Koumoutsakos [19].

All simulations are conducted with a

constant viscosity of zz=1.4x10", body length
L=1, density oq,s= s =1, and undulation
frequency f =1. The size of computational

domain is 40x12 and the initial mesh has
101 x 31 nodes. The time-step size is taken to be

5x107*. The mesh is adapted per every n =100
time-steps.

In Table 1, the asymptotic forward velocity,
the amplitude of lateral velocity, and the
amplitudes of the coefficients of longitudinal
force, lateral force and yaw moment are
compared with the results of Zhou and Shu [18],
Kern and Koumoutsakos [19]. All numerical
results agree well with each other. Due to the
reduction of the numerical dissipation, the
asymptotic mean forward velocity of the present
computation is slightly larger than those
obtained on conventional meshes.

Table 1. Results for a Swimming Fish

- ~

~

References Vi Vv, ¢, C,  C,

Present work  0.557 0.038 0.031 0.038 0.030
Zh‘;‘ige]t al. 0550 0039 0030 0040 0031
Kern et al.

[19] 0.540 0.04 0.03 0.04 0.03

\7” : mean value of V|| :

V.. C,. C,.Cy amplitudesof V,, C,, C,, C,

The global view of vorticity field at t =15
is shown in Figure 5. The partial view of
vorticity distribution in the region near the fish
tail at t=15 and the adapted mesh in the
adaptation period [14.95, 15] are shown in
Figure 6. The solid object is moving relative to
the mesh. The flow is only induced by the
motion of the fish body, so the convection
velocity of vortex is small. In Figure 6, the
triangles concentrated around the vortices have
been refined obviously.

Figure 7 illustrates the motion and
deformation of the fish within this adaptation
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period. The red line represents the position and
shape of the body at the start instant, and the
green represents those at the end instant. During
each adaptation period, the mesh in the region
through which the fish is passing has been
refined dynamically. So the effect of geometry
can be reflected accurately in the non-boundary-
conforming method, and the boundary layer
adjacent to the solid object can also be resolved.

Fig. 5. Global View of Vorticity Field around a
Swimming Fish at t=15
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Fig. 6. Close up View of Adapted Mesh and
Vorticity Distribution near the tail at t=15
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Fig. 7. Motion and Deformation of the Fish
Body during [14.95, 15]

5 Summary and Conclusions

In this work, we have developed a mesh
adaptation method for unsteady flows with
moving immersed boundaries. Via a predictor-
corrector step, the mesh in each adaptation
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period is adapted to the phenomena evolving
and the motion or deformation of solid objects.
There is no phase shift in time between the
solution and the adapted mesh. The frequency
of mesh adaptation can be controlled to reduce
the errors due to solution transferring. The
number of mesh nodes can be reduced greatly
when using a non-boundary-conforming method
to simulate complex moving-boundary flows.
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