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Abstract

In the present paper the method for determining
turbulent flow characteristics in a flow part of
turbomachines using a high-frequency pressure
probe is presented.

In the paper is shown how to use a high-
frequency pressure probe to determine the
Reynolds stress tensor and the turbulence
intensity of a gas flow, to find an one-
dimensional power spectrum, to find turbulent
length scales and the dissipation rate of a
turbulent kinetic energy in locally homogeneous
and locally isotropic flows.

Some drawbacks of the method for
determining turbulent flow characteristics
related to the probe head’s geometry are
pointed.

1 Introduction

One of the main problems arising in the
designing of turbomachines 1is a correct
assessment of a gas flow turbulent
characteristics. The proper assessment of
turbulent characteristics of a gas flow allows
more reliably predicts an efficiency of
turbomachines. Having known the real turbulent
characteristics of a gas flow in turbomachines it
could permit to verify CFD codes that will
enable to predict characteristics of a
turbomachines more correctly.

A certain number of papers concerned
measurements of turbulent flow characteristics
using high-frequency pressure probes were
published in literatures. For example, in [1] the
method of measurement the Reynolds stress

tensor in the flow part of the axial turbine using
the two-sensors high-frequency pressure probe
and some its results are presented. The main
drawback of the method [1] is that it based on
using the Bernoulli's equation, and hence is
suitable only for research incompressible flows.
Also, the method [1] does not allow to
determine the turbulent length scales, a
turbulent power spectrum and the dissipation of
turbulent kinetic energy. In [2] and [3] are
shown results of measurements of turbulent
flow characteristics in a wind tunnel and at the
outlet of a rotating nozzle by means of the four-
sensor high-frequency pressure probe. The
design of the four-sensor high-frequency
pressure probe [2] is made so that sensors are
placed outside a measurement area and are
connected with the probe head by means of
tubes. The probe made under this scheme [2]
does not provide an opportunity to measure high
frequency pulsations of three components of a
velocity vector.

This paper presents a method for
determining turbulent characteristics of a gas
flow in a flow part of turbomachines using the
five-sensor high-frequency pressure probe. The
presented method of measuring turbulent flow
characteristics is based on using a calibration
characteristic of the five-sensor high-frequency
pressure probe for determining discrete
oscillograms of three components of a velocity
vector followed by extraction of their turbulent
constituents.



2 The method's description

2.1 Defining the probe’s calibration
characteristic

Fig. 1 shows the scheme of the five-sensors
high-frequency pressure probe Kulite FAP-HT-
250 [4] which can be used for measurement of
turbulent characteristics of a gas flow.
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Fig 1. The scheme of the five-sensors high-
frequency pressure probe FAP-HT-250.

At the probe head of ~ 6.35 mm diameter
are five piezoresistive pressure sensors (Fig. 1).
Each sensor is designed as the four arm
Wheatstone bridge with transducers based on
silicon [4] and has two contact inputs and two
outputs. The sensors have a high sensitivity and
enable to make a registration of pressure
fluctuations in the flow with a frequency not
less than 200 kHz.

The pressure probe's calibration
characteristics are  essential to  make
measurements of flow’s parameters. The

calibration characteristic allows to establish a
connection between signals from the probe’s
five pressure sensors and the flow parameters
such as the total pressure p* and the static
pressure p, flow velocity ¢, the incidences at the
probe head in the plane of the sensors 1, 2, 3 -
oo (in the circumferential direction), and the
sensors 1, 4, 5 - Bo (in the radial direction).
Calibration characteristic is obtained
experimentally by testing the pressure probe in
the wind tunnel at different regimes of the
reduced flow velocity Ais and at the different
incidences at the probe head o, Po.

The incidence at the probe head in the
circumferential direction o is the function of
the regime Ais and the dimensionless parameter
hy.
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The incidence at the probe head in the
radial direction [y is the function of the regime
Ais and the dimensionless parameter 4,.
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The total pressure p* and the static pressure
p of a flow at the probe head are the function of
the incidences oy, Po, and a signal from pressure
sensor.

p* :f(ao’ Bos p]) (5)

pzf(oco, Bo,ﬂ] (6)
b

In (6) pi i1s a signal from one of the
peripheral sensor (1 = 2, 3, 4, 5) which is
selected depending upon an incidence at the
probe head.

The reduced velocity Ajs of the flow is the
function of the total pressure p*, static pressure
p, and the isentropic exponent k of a gas.

Ao =/(p"p k) (7)

The flow velocity ¢ is a function of the
reduced velocity A, isentropic exponent k of a
gas, the gas constant R, and the average total
flow temperature T "

c:,/ﬁ-R-T*-kis (8)
k+1

The equations (1) - (8) are determined by
the time-averaged signals form the sensors 1, 2,
3, 4, 5 of the pressure probe at the different
stationary regimes Aj; and at the different
stationary incidences o, By at the probe head.
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It can be assumed that the calibration
characteristic (1) - (8) obtained by the time-
averaged signals form the probe’s sensors will
be wvalid for determining the dynamically
changing parameters of a gas flow.

2.2 Definition of turbulent oscillograms of
three components of a velocity vector

To solve the problem of measuring dynamically
changing parameters of a turbulent flow the
information-measuring system of registration of
pressure fluctuations must have a sufficiently
large sampling frequency per one channel
(sensor). To measure the characteristics of
turbulent gas flow in the flow part of
turbomachines  the  minimum  sampling
frequency should be several times higher than
the frequency of passing rotor’s blades by the
high-frequency pressure probe.

Having applied a calibration characteristic
of the pressure probe using the equations (1) —
(8) to discrete recorded signals from probe’s
sensors we obtain discrete oscillograms of the
flow parameters (changing parameters on time).

P =p@:p=p@®,c=c); ©)
o = 0o (£); Po=Po (1)

According to the known velocity ¢ and the
incidences to the probe head at the
circumferential o and radial B¢ directions we
can define the velocity components in the
Cartesian coordinate system (in the axial,
circumferential and radial directions).

¢ =c-cos(a,); ¢, =c-sin(a,);

¢ =c sin(B, )

(10)

The next step i1s to apply the discrete
Fourier transform for all three components of a
velocity vector (velocity components) ¢
(i=1..3) and -construct their amplitude-
frequency characteristics. As an example, Fig. 2
shows the amplitude-frequency characteristics
of one component of a velocity vector.
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Fig. 2. The amplitude-frequency characteristic
of a velocity component.

Fig. 2 shows that the oscillogram of a
velocity component ¢; contains as a turbulent
constituent and an unsteady constituent
associated with the presence of wakes in a gas
flow from the blades’ trailing edges of a
turbomachine rotor. Unsteady components is
visible on the amplitude-frequency
characteristic as the sharp peaks at frequencies
proportional to the speed of a turbomachine
rotor and the number of blades at different
stages of a turbomachine, as well as their
superposition pointing to the impact of
individual stages to the entire flow pattern of a
turbomachine’s flow part.

Sharp peaks may be present on the
amplitude-frequency characteristic as a result of
electrical interference on the measuring
channels. These interferences can be easily
removed by filtration of the amplitude-
frequency characteristic.

The Fourier transform has the property of
linearity so it’s possible to extract the turbulent
constituent of a velocity component from the
initial oscillogram. Fig. 3 shows the amplitude-
frequency characteristic obtained after applying
the filtration of the initial amplitude-frequency
characteristic of a velocity component.

The upper area of the amplitude-frequency
characteristic (highlighted in blue) is the area of
unsteady effects, the lower area (highlighted in
red) is the area of the turbulent constituent of a
velocity component.
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Fig. 2. The filtered amplitude-frequency
characteristic of a velocity component.

The Inverse Fourier transform from the
upper area of the amplitude-frequency
characteristic will give the unsteady oscillogram
of a velocity component. The Inverse Fourier
transform from the lower area of the amplitude-
frequency characteristic will give the turbulent
oscillogram of a velocity component.

Thus, it is possible to determine the
turbulent oscillograms of all three velocity
components ¢; (i = 1...3) of a flow.

2.3 Definition of the turbulent flow
characteristics

Using the defined turbulent oscillograms of
three velocity components ¢; (i = 1...3) we can
find their double-point correlation Cj; (Reynolds
stress tensor) on a certain period 7.

— 1t ..
Cij = ¢¢; —-;!cicjdt (11)
ij=1..3

Turbulent kinetic energy of a flow we can
be defined as the first invariant of the Reynolds
stress tensor Cj (half the sum of the tensor’s
diagonal elements).

1 —
k=—-cc, 12
Jee (12)

The turbulence intensity of a flow is
defined by using turbulent kinetic energy k and
modulo of an averaged velocity vector U of a
flow.
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Tu = _“2'k (13)
U
Reynolds stress tensor Cjj written in the

principal axes has the following form:

ce, 0 0
Ci=| 0 o 0 (14)
0 0 c;c;

If the equality of the tensor components
(14) lying on the main diagonal is performed
then the turbulence of a flow is isotropic.

Hereinafter the method of definition of the
turbulent flow characteristics is assumed that
turbulence of a flow is isotropic.

The oscillogram of the velocity component
cu(?) along the direction of an averaged velocity
vector U on a certain period 7 can be found
using the angles o, between the averaged
velocity vector U with the axes of the Cartesian
coordinate system and three components of a
velocity ci(t) defined by (10).

€, =¢, +COSQ,, (15)

To find the turbulent flow characteristics
the turbulent constituent c'u of the velocity
component ¢, must be extracted. It could be
done by using a direct Fourier transform,
filtration and inverse Fourier transform (see
above).

The FEuler temporal correlation Rg
(normalized autocovariance of a time parameter
7> 0) [5] of the turbulent constituent ¢, can be
written as

cu(te,(t+7)

Ry = —=———= (16)
S () lirr)
If the oscillogram of the turbulent
constituent ¢, is an ergodic stationary random

function then the Euler temporal correlation Rg
can be defined as following integral:

1T
Ry =——r— —jc
c (t) t+7: TO

t+‘c dt (17)

In a locally homogeneous turbulence of a
flow the equation (17) has the following form:
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As an example, Fig.3 shows the Euler
temporal correlation Ry of the turbulent
constituent ¢, of the velocity component ¢,.
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Fig. 3. The Euler temporal correlation Rg of the
turbulent constituent ¢, of the velocity
component c,.

The Euler turbulent integral scale Ly along
the direction of an averaged velocity vector U
[5] is defined by integrating the Euler temporal
correlation Lg.

L, =[R.d (19)
0

The integration of the Euler temporal
correlation Rg (19) could be carried out either
numerically or analytically. In the second
approach is necessary to approximate Euler
temporal correlation Rg using an analytic
function.

Let’s further assume that the turbulence
field is locally homogeneous and locally has a
constant averaged velocity vector U. Then using
Taylor's hypothesis we can determine the
longitudinal turbulent integral scale A [5].

A =U-L, (20)

Longitudinal turbulent integral scale Afcan
be interpreted as the largest size of turbulent
eddies in the flow [5].

The one-dimensional power spectrum E(f)
of the turbulent constituent c'u of the velocity
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component ¢, along the direction of an averaged
velocity vector U can be written as [5]:

E(f)=4c. -TRE (t)-cos2mf)dr  (21)

The one-dimensional power spectrum E(f)
shows the change of the energy of the turbulent
constituent ¢, with a frequency f.

The Euler temporal correlation Rg is the
inverse Fourier transform of the power spectrum

E() [5].

Re(0)=—=5- [E(f)-cosCmfildf  (22)

C 0

If we take into account the identity of Euler
temporal correlation Rg and longitudinal
normalized autocovariance Ry we obtain the
same equations (21) and (22) for the
longitudinal normalized autocovariance Ry along
the direction of an averaged velocity vector U

[5]:

_% TR (o). x
E(f)— J.Rf(x) cos(2nijdx (23)

0

1 7 X
Rf(X)ZE—z- ! E(f )-008(2751’ Ujdf (24)

As an example, Fig.4 shows the one-
dimensional theoretical power spectrum E(f)
obtained using (23) wherein the longitudinal
normalized autocovariance Ry is taken as the
exponential function (25).

R, (x)zexp(— i] (25)

Ag
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Fig. 4. The one-dimensional theoretical power

spectrum E(f) of the turbulent constituent ¢, of
a velocity component ¢,.

The longitudinal turbulent microscale A¢ is
defined as the value of the second partial
derivative of the normalized longitudinal
autocovariance Reat x =0 [5].

1 1[&R,
—_—=—— 26
A 2 { Ox? l_o (26)

The longitudinal turbulent microscale A¢
can be interpreted as a size of turbulent eddies
through which the dissipation of a turbulent
kinetic energy is proceeded [5].

Taking into account the equation (24) the
longitudinal turbulent microscale Af can be
rewritten as follows:

L__ 2n?
Mo U

The equation (27) shows that the
longitudinal  turbulent microscale Af s
determined by the one-dimensional power
spectrum E(f) at high frequencies f.

[ fPE( RS 27)

2.4 Definition of the dissipation rate of a
turbulent kinetic energy

The main method of a mathematical
modeling  of  dynamic  processes in
turbomachines is based on a system of the
RANS equations. This system of the RANS
equations requires an additional equation or a
system of additional equations (turbulence
models) to set connection between turbulent
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parameters (Reynolds stress tensor) and
averaged parameters of a flow. Most popular
turbulence models such as k-e, k-, g-o etc. are
based on the isotropic nature of a turbulence.
Therefore as parameters of such models are
usually taken the turbulent kinetic energy (for
one-parameter models) or a turbulent scale and
the turbulent kinetic energy (for two-parameter
models). As a turbulent scale is usually used the
dissipation rate € of a turbulent kinetic energy or
the frequency turbulent scale o.

The dissipation rate € for compressible
viscous gases is proportional to the kinematic
viscosity of a gas v and a correlation of partial
derivatives of turbulent constituents of three
velocity components [5].

' Oc. | oc.
N LT (28)
Oox. Ox;, | Ox,

] 1

In an incompressible gas with an isotropic
turbulence the equation (28) can be rewritten as
follows [5]:

-2
c
e=v-30.2u (29)

2
f

The equations (27) and (29) show that the
magnitude of the dissipation rate € is determined
by small-scale  high-frequency  velocity
fluctuations.

The frequency turbulent scale o is directly
proportional to the dissipation rate € and
inversely proportional to the turbulent kinetic
energy k [6]:

€

®= (30)

The coefficient of the kinetic turbulent
viscosity is written as follows (up to a constant)

[6]:

v, = 31)



TURBULENCE MEASUREMENTS IN A FLOW PART OF TURBOMACHINES

3 Conclusion

In the present paper the method for
determining turbulent flow characteristics in a
flow part of turbomachines using the high-
frequency pressure probe is presented. The
method is based on the calibration
characteristics of a high-frequency pressure
probe to determine the discrete oscillograms of
three components of a velocity vector with the
next extraction their turbulent constituents.

The method allows:

® to determine the turbulent oscillograms
of three velocity components cj
(i=1...3) of a flow;

® to determine the Reynolds stress tensor
Cj;; and the turbulence intensity 7u of a
flow;

® to determine the longitudinal turbulent
integral scale Af and the longitudinal
turbulent microscale Ar in a locally
homogeneous and locally isotropic
turbulence as well as the one-
dimensional power spectrum E(f) of the
turbulent constituent c'u of the velocity
component along the direction of an
averaged velocity vector U,

® to determine the dissipation rate ¢ of a
turbulent kinetic energy and the
frequency turbulent scale ® in a locally
homogeneous and locally isotropic
turbulence.

The use of the high-frequency pressure
probe for measuring the turbulent characteristics
of a flow has the following drawbacks:

e the probe head is a blunt body which
would distort the turbulence intensity of
an oncoming flow. Therefore the
pressure probe have to be calibrated in

flows with known turbulent
characteristics before using it in
turbomachines;

e the use of the pressure probe is limited
in flows with a high turbulence intensity.
In such flows on the probe head may
occurs local separation which may lead
to a distortion of measured parameters.
A confidential turbulent intensity range
of the pressure probe can be determined
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experimentally by testing the probe in

flows with known turbulent
characteristics.
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