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Abstract 
The present paper deals with the three-
dimensional flow in a shock layer at supersonic 
transverse flow conditions over the front surface 
of a cylinder under small, spatially-periodic 
perturbations along the transverse coordinate. 
Based on the numerical solution of the unsteady 
three-dimensional Navier-Stokes equations, it is 
shown that small imposed perturbations of the 
free stream velocity (0.5 - 3 %) along the 
transverse coordinate lead to the shock 
curvature and cause the formation of vortex 
structures in the shock layer and significant 
perturbations of the heat flux on the surface. 

1  Introduction 
The problem of the influence of small 
perturbations on the heat transfer in hypersonic 
flow past blunt bodies is of great theoretical and 
practical interest. Particularly, in wind tunnel 
tests there are free-stream perturbations of 
various nature and intensity which can affect the 
measured characteristics.  
Results of experimental investigations of the 
flow structure on the cylinder front surface at 
Mach numbers M=3, 5 and 6 were presented by 
Lapina & Bashkin [1], Bae S. et al. [2] , where 
the spatial periodicity of limiting streamlines 
and heat-flux distribution along the transverse 
coordinate were demonstrated. The amplitude of 
the oscillations in the heat-flux distribution 
reached more than 25%. In paper [3] was 
suggested the following mechanism of this 
phenomenon. When the curved shock wave 
generates a vortex flow, the vortex remains 
almost constant (because of its weak 

dissipation) and maintains the shock curvature. 
The computations [3] showed that the formation 
of an essentially three-dimensional flow with an 
internal vortex structure is possible. It was 
attempted in [4] to verify this hypothesis 
experimentally by introducing controlled 
perturbations in the free stream. However, these 
experiments showed that even after removal of 
the imposed free stream perturbations (up to the 
level of 50%), the flow returns to its two-
dimensional shape. Further computational and 
theoretical studies of the spatial structures in 
front of blunted bodies were performed  [4] at 
free stream Mach number M=8 and Reynolds 
number Re ~104. Numerical studies [5] showed 
that small transversal perturbations on the free 
stream velocity (0.5-3 %) can lead to the shock 
curvature and formation of the periodic vortex 
structures that causes significant perturbations 
of the heat flux on the surface (more than 50%).  

The present paper presents numerical 
simulations of the three-dimensional structures 
in the shock layer flow on the cylinder front 
surface (at M=6.1 and M=8, Re=3240, =1.4, 
Tw=T0/2, Pr=0.71) and on the sphere surface (at 
M=8, Re=5524, =1.4, Tw/T0=0.39, Pr=0.71). 
These structures are induced by small spatially-
periodic perturbations along the transverse 
coordinate. The obtained numerical solutions 
help to explain the experimental results by [1] 
and [2] on the heat flux. 

1.1 Equations and boundary conditions 

Simulations of the three-dimensional flow over a 
blunted body are performed on the basis of 
numerical solutions of the Navier-Stokes 
equations. In an arbitrary curvilinear coordinate 
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system , , these equations are written in the 
divergence form 
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Here Q is a vector of conservative dependent 
variables; E, G, and F are vectors of the flows. 
Vectors Q, E, G and F are related to the 
corresponding vectors Qc, Ec, Gc, Fc in the 
Cartesian coordinate system x=x(,,), 
y=y(,,),  z= z(,,) as  
Q=JQc, 
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The Cartesian components of vectors Qc, Ec, Gc 
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where  is density, u, v, w are the Cartesian 
components of velocity vector  V, p is pressure, 
cp and cv are specific heats at constant pressure 
and volume, e=(cvT+(u2+v2+w2)/2) is the total 
energy per unit volume, H=cpT+(u2+v2+w2)/2 is 
the total enthalpy,  is heat conductivity,  is 
dynamic viscosity, and  =  sis the viscous-
stress tensor: 
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q = grad(T) is the heat flux vector. 
The system of equations is closed by the perfect 
gas equation of state р = RGT/m. Here RG is the 
universal gas constant; m is the gas molar 
weight. The dynamic viscosity varies with 
temperature in accordance with Sutherland's 
law; and the Prandtl number is assumed to be 
constant, Pr = cp/. 
Computations are carried out using the 
dimensionless variables: x xR , y yR , 
z zR , u uu , v vu , w wu , /t tR u , 

  , 2( )p p V  , T TT ,   , 
21/ Mp   , Reynolds number 

Re /u R     , where R is the radius of 
cylindrical blunt body or sphere. 

1.2 Equations and boundary conditions 
The initial boundary-value problem is solved 
numerically using the time-relaxation method 
on the basis of the integro-interpolation finite 
volume method. The difference analogues of the 
conservation laws are written as 
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where n – number of the time layer; i,j,k – time 
step size defined by the formula 
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where o – time step size corresponding to the 
cell of the maximum volume at given values of 
the parameters amin and amax  (e.g.  amin = 0.02 
and amax = 1); i, j, k and h, h, h  - node 
numbers and steps for the coordinates , , , 
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correspondingly. The usage of the space-
variable time step proportional to the volume of 
a unit cell, allows for considerable acceleration 
(approximately in order of magnitude) in 
obtaining of steady solutions by time-relaxation 
method. 
     For the monotone difference scheme, 
calculations of fluxes in half-integer nodes are 
carried out using the Riemann problem solution. 
Mathematically this problem comes to the 
solution of nonlinear set of algebraic equations. 
An approximate method of the problem solution 
is representation of Jacobian matrix A = E/Q 
as A = RR-1, where  - diagonal matrix, 
elements of which are eigen values of the 
operator A. To approximate the convection 
component of flux vectors E, G, F in half-
integer nodes, The Godunov-type monotone 
scheme [6], [7] and the approximate Roe 
method [8] for the Riemann problem solution 
are used. Because the vectors E, G, F have 
similar forms, we consider in detail the E vector 
only. For this vector we have 
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where ( i(λ ) ) – diagonal matrix with 
elements   (i), i – eigen values of the 
operator 
A = E/Q; RLR = R(QLR) – matrix, columns of 
which are the right eigen vectors of the operator 
A. 
For calculations of the eigen values and eigen 
vectors of operator A, the method of 
approximate Riemann problem solution is used 
[8].  (  (i)), RLR, RLR
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the values of dependent variables 
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where a –  is the local speed of sound. 
To fulfill the entropy condition for numerical 
solutions, the function  (i) is specified as 
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where  - parameter responsible for dissipative 
characteristics of the difference scheme. 
(typically 310  ).  
To increase the approximation to the second 
order, in the interpolation of dependent 
variables on the unit cell edges, the principle of 
minimum derivatives (MUSCL) is used [9-11] 
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In approximation of the diffusive component of 
flux vectors E, G and F on the unit cell edges, 
the second-order central difference scheme is 
employed. Calculations of derivatives are 
carried out using the formulas 
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here U – is the vector of non-conservative 
dependent variables. The difference scheme 
stencil, on which the full Navier-Stokes or 
Reynolds equations are approximated, consists 
of 25 points. It seems that the foregoing implicit 
nonlinear difference scheme is unconditionally 
stable for the linear problem. 
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1.3 Solution of nonlinear finite-difference 
equations 
The difference approximation of Section 1.2 and 
the boundary conditions lead to the nonlinear 
system of algebraic equations F(X) = 0, where 
X – vector of the discrete variables (nodal 
values of gas-dynamic variables, including 
boundary nodes of the computational grid). The 
problem is effectively solved using the well-
known Newton iterative method, the main 
advantage of which is a quadratic convergence 
rate. The system F(X) = 0 is solved using the 
modified Newton method 

   
1

1k +1 k kX X F(X )k ko
D 
  , 

where Dko = (FX)ko  - Jacobian matrix, k, ko  - 
iteration numbers, ko  k. The regularization 
parameter of Newton method relative to the 
initial approximation k  is determined using the 
formula [12] 
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where Xk  - correction vector. As the iteration 
process convergence k  1, and the 
convergence rate theoretically tends to the 
quadratic one. 
The most time-consuming parts of the Newton 
method algorithm are generation of the matrix 
Dk = FXk   and computations of a solution 
related to this matrix. Because the 
approximation for each computational grid 
contains only few neighboring nodes (in three-
dimensional case 25 for TVD scheme), the 
laboriousness of Jacobian matrix generation is 
О(N), where N – the number of nodes for the 
finite difference problem. The Jacobian matrix 
is generated using the finite difference 
procedure of the residual vector on the vector of 
desired mesh variables. Application of the finite 
difference method to generation of the Jacobian 
matrix is based on long-term investigations on 
numerical simulation of gas-dynamic problems. 
For example, a similar procedure is used in [13] 
for solutions of the initial-boundary problems 
on adaptive grids. 
RAM memory space and CPU time, which are 
required for solving the linear system of 
algebraic equations on iteration for nonlinearity  

)F(XΔXXF/ ]k[]k[
ko

)(  , 
considerably depends on the degree of matrix 
(FX) sparseness. For Navier-Stokes 
equations approximation using the foregoing 
second-order difference scheme, the operator 
FXk has sparse block 25-diagonal structure, 
and its elementary block is a full matrix of size 
55. Solutions of the linear system of algebraic 
equations related to each iteration of the 
nonlinear problem, are carried out using the 
direct [14] and iterative [15] methods. These 
techniques were repeatedly tested in numerical 
experiments and prove their reliability and high 
efficiency. 

2  Boundary conditions and computational 
grid  
The origin of Cartesian coordinate system 

0x y   for the two-dimensional 
computational domain coincides with the center 
of circle, while the cylinder surface for 0x   is 
located at a distance 1R  . For 0x  , this 
surface is flat and has the length 0.3L  . 

Figure 1.  Pressure field (a) and the computational grid 
with clustering in the -x y  plane (b) and in the -x z  plane 

(c), 6.1M  , 0.1wT  , Re 3240 . 
The inflow boundary of the two-dimensional 
computational domain is located in the 
undisturbed free-stream with the parameters 
u∞=1, v∞=0, T∞=1, P∞=1/M2. On the body 
surface, the velocity is u=v=0 and temperature 
is T=TW/T0, where T0/T∞=1+0.5(-1)M2. The 
symmetry conditions are imposed on the axis 
y=0 (v=0, F/=0, F=u,P,T). On the outflow 
boundary, the ‘soft’ boundary conditions are 
imposed as F/=0, F=u,v,P,T ( is the normal 
to the right boundary). In test calculations for 
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the computational domains related to L=0.3-1, 
the scheme was verified by means of removing 
few grid lines near the outflow boundary. It was 
found that the length L=0.3 was sufficient to 
avoid any influence of the outflow boundary 
conditions on the flow field for x<0. The two-
dimensional computational grid has N=151 
nodes along the normal and N=111 along the 
body surface.  
In the three-dimensional case, one spanwise 
period of sinusoidal velocity perturbations 
u=1+Asin(2z/) with the amplitude A=0-
0.03 and period =Z/R=0.110 (Z is the 
computational domain size in z-coordinate) was 
imposed on the free-stream velocity field  
The three-dimensional computational grid with 
151111122 nodes was constructed by a 
uniform duplication of the two-dimensional grid 
in z-direction. The periodic boundary condition 
is imposed in this direction. Namely, the values 
of the dependent variables of the problem of the 
left (right) end were equated with their values in 
the last but one right (left) node of the field. Let 
us note that such a boundary condition 
contained, as a particular case, the boundary 
condition of the two-dimensional flow 
implementation (F/z=0).   
As the Reynolds number increases, the 
boundary layer thickness and the near shock 
layer thickness decrease and, consequently, the 
number of nodes in the near shock layer also 
decreases (Fig. 2). Therefore, the grid clustering 
just behind the shock wave is performed, in 
addition to the near-wall clustering, in order to 
improve the resolution in the near shock layer. 

Figure 2. Temperature distributions over axis y=0 in the 
near-wall boundary layer (a) and in the near-shock layer 

(b) for M=6.1, Tw=0.1 (1 – Re=104, 2 - Re=3103, 3 - 
Re=2103, 4 - Re=103). 

Figure 3 shows that the near-shock layer 
thickness ShW, obtained numerically, is 
inversely proportional to the Reynolds number. 
For the conservation of grid resolution in -
coordinate (normal to the rigid boundary), it is 
necessary to increase the number of nodes in the 
near-shock layer proportionally to the Reynolds 
number. In particular, only one computational 
cell falls into the near-shock layer in the case of 
uniform grid with number of nodes N~100, 
whereas 10-30 nodes fall into this layer in the 
case of clustered grid.  

Figure 3. The near-shock layer thickness vs. the Reynolds 
number. 

The foregoing clustering is necessary to obtain a 
reliable solution in the three-dimensional case, 
because the shock wave stand-off distance 
significantly varies versus the z-coordinate. 

3 Boundary conditions and computational 
grid Small spatial perturbations of flow over 
a cylinder 
The problem of a supersonic gas flow over a 
cylindrical blunt body was solved (Fig. 4) under 
imposed spanwise periodic perturbations of the 
free stream velocity u=1+Asin(2z/). The 
free-stream parameters were taken from [3]: 
Re=3240, M=6.1, Prandtl number Pr=0.71, the 
wall temperature Tw = 0.5T0 (where T0 is the 
stagnation temperature), specific heat ratio 
=1.4.  Sutherland's law was used for the 
viscosity law. 
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Figure 5 shows the pressure and temperature 
distributions in the boundary layer and in the 
near-shock layer for different values of the free-
stream velocity u (from 0.94 to 1.06). These 
distributions were obtained using the two-
dimensional calculations. The normalized 
pressure distributions p=(p-pmin)/(pmax-pmin) and 
temperature distributions T=(T-Tmin)/(Tmax-Tmin) 
are collapsed to one curve, as shown in Fig. 6a. 
It is seen from Fig. 6b, that a small free stream 
velocity perturbation u∞ leads to doubling of 
the temperature and pressure disturbances in the 
boundary layer.  

a) 

b)
Figure 4. Pressure distribution (a) and temperature 

distribution (b) on the cylinder front surface in the case of 
imposed spanwise perturbations of free stream velocity 
u=1+Asin(2z/R) with amplitude A=0.03 and period 

=Z/R=0.3.

Figure 5. Temperature distribution (a, b) and pressure 
distribution (c, d) along the axis y=0 in the boundary layer 
(a, c) and in the near-shock layer (b, d) at different values 
of the free-stream velocity u+u, u/u=-6,-5,-4,-3,-

2,1,0,1,2,3,4,5,6%. 
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Figure 6. The normalized distributions of pressure and 
temperature (a) along the axis y=0, and variations of 

normalized P, T (b) as functions of the free-stream 
velocity variation u/u = ±6%. 

Figure 7 shows the shock wave fronts for 
various periods of the imposed perturbations 
=Z/R=0.110 with amplitude A=0.03. For
small  the shock wave is close to its 
undisturbed two-dimensional shape (2D). As  
increases, the shock shape tends to quasi-three-
dimensional (2D-3D). The quasi-three-
dimensional (2D-3D) flow is obtained as a 
composition of the results of two-dimensional 
calculations for the values of free stream 
velocity u=1+Asin(2z/). The maximum 
stand-off distance of the shock is reached at = 
0.7. 

Figure 7. The shock wave front for various periods 
=0.110, the imposed velocity amplitude A=0.03.

It is seen from the comparison of three types of 
pressure and temperature fields in the  x-z plane 
(y=0) (two-dimensional without perturbations, 
three-dimensional (=0.7), and quasi-three-
dimensional flows) that the values of P and T in 
the three-dimensional case do not exceed the 
corresponding values in the quasi-three-
dimensional case (Figs. 8, 9a). Variations of the 
boundary layer thickness are also seen in the 
temperature field for the both three-dimensional 
and quasi-three-dimensional cases. This 
indicates the presence of maximum and 
minimum heat fluxes on the body surface with 
higher values than in the quasi-three-
dimensional case. A reverse subsonic three-
dimensional vortex flow is formed within the 
shock layer due to the pressure difference in 
different sections. This flow has maximum 
Mach number M≈0.4 in the case of =0.7 at 
A=0.03.  

а)
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b) 
Figure 8. Pressure fields (a) and temperature fields (b) in 

x-z plane (y=0) at 3%-perturbations of the free-stream 
velocity for the two-dimensional, three-dimensional 

(=0.7), and quasi-three-dimensional cases. 

Figure 9. Pressure distribution (a) and normalized heat 
flux distribution (b) over the surface along the line x=у=0 

at 3%-perturbations of the free-stream velocity. Curves 1-
6 correspond to =0.1, 0.2, 0.5, 1, 2, 4; the dot line 8 

corresponds to the two-dimensional case; curve 7 
corresponds to the quasi-three-dimensional case. 

Figure 10. Normalized maximum and minimum heat 
fluxes (upper and lower branches) on the cylinder surface 
for M=6.1 (a) and M=8 (b) as functions of =Z/R at the 
free stream velocity perturbation amplitudes A= 0.005, 

0.01, 0.02, 0.03 for the grids 15111162 (light markers) 
and 151111122 (dark markers). 

Figure 10 shows the maximum and minimum 
heat fluxes (normalized to their values in the 
two-dimensional case) versus the period  of 
imposed perturbation period. These distributions 
reach their extreme values at =0.3. The 
velocity perturbation of 1% leads to the increase 
in heat flux by approximately 50%. The heat 
fluxes for small  tend to 1 (their value for the 
two-dimensional case). The heat fluxes for high 
 tend towards their values in the quasi-three-
dimensional case. Similar dependences were 
obtained for Mach number M=8 at Re=3240 and 
Tw=0.39. The foregoing numerical solutions 
explain the experimental results on the heat flux 
measurements. It is important to note that the all 
three-dimensional solutions return to the 
solution for the two-dimensional case, if the 
considered herein small perturbations (A=1-3%) 
were switched off.  
Because actual perturbations may have different 
spatial forms, it is interesting to compare the 
heat flux disturbances induced by the z-periodic 
perturbation u=1+Asin(2z/) and the y-
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periodic perturbation u=1+Asin(2y/) 
(Figure 11). Since the three-dimensional 
problem for y-periodic perturbations is 
equivalent to the two-dimensional problem, the 
heat fluxes in this case are obtained from the 
solution of two-dimensional problem. Figure 11 
shows the dimensionless heat fluxes as 
functions of  at Re=3240, A= –1%, –0.5%, 
0.5% and 1%; the flow parameters are M=6.1, 
Tw/T0=0.5 and M=8, Tw/T0=0.39. For 
comparison, the corresponding distributions for 
the z-periodic perturbations are shown by the 
dotted lines.  

0.01 0.1 1 10
0.5

1

1.5

q/qo 1

2

a

M=6, Re=3240
   1 % Y
0.5 % Y
   1 % Z
0.5 % Z

0.01 0.1 1 10
0.5

1

1.5

q/qo 1

2

в

M=8, Re=3240
   1 % Y
0.5 % Y
   1 % Z
0.5 % Z

Figure 11. Maximum (upper branches) and minimum 
(lower branches) heat fluxes to the cylinder surface as 

functions of the period  at Re=3240, (a) M=6.1, 
Tw/T0=0.5 and (b) M=8, Tw/T0=0.39. The dotted lines 

correspond to the z-periodic perturbations of amplitude 

A=0.5% and A=1%, and the solid lines correspond to the 
y-periodic perturbations of the same amplitude. (q0 – heat 
flux without perturbations for the two-dimensional case). 
Small amplitudes of perturbations are chosen to 
avoid considerable influence on the main flow. 
It is seen that the heat flux disturbances induced 
by the z-periodic perturbations approximately 
two times larger than those induced by the y-
periodic perturbations. As the amplitude of 
imposed perturbations decreases two times, the 
heat flux deviations cut in half. As compared to 
the case of z-periodic perturbations, the 
maximum heat flux induced by the y-periodic 
perturbations occurs at smaller values of the 
perturbation wavelength: m0.2 (M=6.1) and 
m0.3 (M=8). As  decreases, the heat flux
tends to the unperturbed level (u=1). As  
increases, the heat flux approaches the value at 
corresponding values of free stream velocity 
(u=1+A). 

5 Conclusions 
A supersonic flow over a blunt cylinder under 
imposed spanwise-periodic free-stream velocity 
perturbations was investigated using numerical 
solutions of the Navier-Stokes equations.  
It was shown that the computational grid in the 
near-shock layer significantly affects the 
numerical solution. On a sufficiently fine 
(versus the normal coordinate y) grid, three-
dimensional solutions in the near-shock layer 
return to the two-dimensional form after 
switching off the imposed velocity perturbations 
of the level 1-3%. If the grid is not sufficiently 
fine, the induced three-dimensional structures 
do not vanish when the perturbation is switched 
off.  
Numerical computations on sufficiently fine 
grids show that small (~1%) spanwise-periodic 
perturbations of the free-stream velocity can 
lead to a significant (~50%) increase of the heat 
flux to the cylinder surface. This effect is due to 
the three-dimensional structures formed in the 
shock layer where the flow is subsonic.  
The level of heat-flux fluctuations depends on 
the period and amplitude of imposed three-
dimensional perturbations. High heat-flux 
fluctuations are observed at the spanwise period 
equal to 0.2÷0.7 of the cylinder radius. In 
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particular, the heat flux maximum is reached at 
m=0.3. For a perturbation period decrease, the
value of the heat flux fluctuation amplitude 
reduces down to zero while when it increases, it 
tends towards the values obtained for the two-
dimensional case at free-stream velocities 
corresponding to those periodically varying in 
the z-coordinate free stream. 
 As the perturbation period decreases (<m), 
the amplitude of heat-flux fluctuation reduces to 
zero. As  increases (m), the heat-flux 
amplitude tends to the value obtained for the 
two-dimensional case. The wall pressure 
distributions for different periods are bounded 
by the distributions corresponding to these two 
limiting cases. 
It should be noted that for all cases considered, 
the spatial perturbations lead to appreciable 
changes of the heat flux, and there is a length-
scale at which the heat-flux attains maximum 
and minimum levels. E.g., the y-perturbations of 
0.5% induce approximately 10% fluctuations of 
the heat flux in the case of cylinder or sphere. 
The z-periodic fluctuations of the same level 
induce 20-25% fluctuations of the heat flux in 
the case of cylinder. At higher levels of the 
imposed perturbations, the induced heat-flux 
fluctuations grow proportionally. The spatial 
length scale, at which the heat-flux fluctuations 
are extreme, is approximately a half of the 
shock layer thickness at the critical point. 
The foregoing results are consistent with the 
theoretical studies and help to explain the 
available experimental results [1-2]. 
The work has been carried out in Moscow 
Institute of Physics and Technology (MIPT) 
with the financial support of Russian Scientific 
Foundation (project No. 14-19-00821) and 
RFBR (project No. 14-08-00793) 
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