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Abstract

The present paper deals with the three-
dimensional flow in a shock layer at supersonic
transverse flow conditions over the front surface
of a cylinder under small, spatially-periodic
perturbations along the transverse coordinate.
Based on the numerical solution of the unsteady
three-dimensional Navier-Stokes equations, it is
shown that small imposed perturbations of the
free stream velocity (0.5 - 3 %) along the
transverse coordinate lead to the shock
curvature and cause the formation of vortex
structures in the shock layer and significant
perturbations of the heat flux on the surface.

1 Introduction

The problem of the influence of small
perturbations on the heat transfer in hypersonic
flow past blunt bodies is of great theoretical and
practical interest. Particularly, in wind tunnel
tests there are free-stream perturbations of
various nature and intensity which can affect the
measured characteristics.

Results of experimental investigations of the
flow structure on the cylinder front surface at
Mach numbers M=3, 5 and 6 were presented by
Lapina & Bashkin [1], Bae S. et al. [2] , where
the spatial periodicity of limiting streamlines
and heat-flux distribution along the transverse
coordinate were demonstrated. The amplitude of
the oscillations in the heat-flux distribution
reached more than 25%. In paper [3] was
suggested the following mechanism of this
phenomenon. When the curved shock wave
generates a vortex flow, the vortex remains
almost constant (because of its weak

dissipation) and maintains the shock curvature.
The computations [3] showed that the formation
of an essentially three-dimensional flow with an
internal vortex structure is possible. It was
attempted in [4] to verify this hypothesis
experimentally by introducing controlled
perturbations in the free stream. However, these
experiments showed that even after removal of
the imposed free stream perturbations (up to the
level of 50%), the flow returns to its two-
dimensional shape. Further computational and
theoretical studies of the spatial structures in
front of blunted bodies were performed [4] at
free stream Mach number M=8 and Reynolds
number Re ~10*, Numerical studies [5] showed
that small transversal perturbations on the free
stream velocity (0.5-3 %) can lead to the shock
curvature and formation of the periodic vortex
structures that causes significant perturbations
of the heat flux on the surface (more than 50%).

The present paper presents numerical
simulations of the three-dimensional structures
in the shock layer flow on the cylinder front
surface (at M=6.1 and M=8, Re=3240, y=1.4,
Tw=To/2, Pr=0.71) and on the sphere surface (at
M=8, Re=5524, y=1.4, T,/T¢=0.39, Pr=0.71).
These structures are induced by small spatially-
periodic perturbations along the transverse
coordinate. The obtained numerical solutions
help to explain the experimental results by [1]
and [2] on the heat flux.

1.1 Equations and boundary conditions

Simulations of the three-dimensional flow over a
blunted body are performed on the basis of
numerical solutions of the Navier-Stokes
equations. In an arbitrary curvilinear coordinate



system &, 1, C, these equations are written in the
divergence form
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Here Q is a vector of conservative dependent
variables; E, G, and F are vectors of the flows.
Vectors Q, E, G and F are related to the
corresponding vectors Q., E;, G, F. in the

Cartesian  coordinate  system x=x(&n,0),
y=n(En.0), z=z(En,0) as
Q=JQC3

where J=0(x,y,z)/d&n, ) 1s the Jacobian of
transformation,
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The Cartesian components of vectors Q., E., G¢
have the form
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where p is density, u#, v, w are the Cartesian
components of velocity vector V, p is pressure,
¢p and ¢, are specific heats at constant pressure
and volume, e=p(c,T+(’+"+w’)/2) is the total
energy per unit volume, H=c,T" P Hw)/2 s
the total enthalpy, A is heat conductivity, p is
dynamic viscosity, and T = — us is the viscous-
stress tensor:
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q = —Agrad(7) is the heat flux vector.

The system of equations is closed by the perfect
gas equation of state p = pRgT/m. Here Rg 1s the
universal gas constant; m is the gas molar
weight. The dynamic viscosity varies with
temperature in accordance with Sutherland's
law; and the Prandtl number is assumed to be
constant, Pr = pcy/A.

Computations are carried out using the

dimensionless  variables: x = xR, y=yR,
z:;R, uzﬁuw, v=1_/uoo, WZJ/MOO, t=2R/uw,
p:;poo’ p:ﬁ(pooVo:)’ T:TToo’ /’l:/’l#oo’
p.=1/yM2, Reynolds number

Re =p,u R/ u, , where R is the radius of
cylindrical blunt body or sphere.

1.2 Equations and boundary conditions

The initial boundary-value problem is solved
numerically using the time-relaxation method
on the basis of the integro-interpolation finite
volume method. The difference analogues of the
conservation laws are written as

n+] n+] n+l n+l
n+l n E _E G _G
Qijk_Qijk i+— ]k 1—7]k 1]+ k 1]—7k
> LS +
Tijk h h,
n+l n+l
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ijk+— ij.k——
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where n — number of the time layer; 7;;x — time
step size defined by the formula
z-i,j,k -7 (amm +(amax mm )X

J']k mln( ]k) )

X 1
max(J;;, )—min(J;;, )

where 7, — time step size corresponding to the
cell of the maximum volume at given values of
the parameters amin and amax (€.2. @min = 0.02
and amax = 1); 1, J, k and he, hy, he - node
numbers and steps for the coordinates &, m, C,

2




INFLUENCE OF SMALL SPATIAL PERTURBATIONS OF SUPERSONIC
FLOW VELOCITY ON THE HEAT FLUX TO THE CYLINDER SURFACE

correspondingly. The usage of the space-
variable time step proportional to the volume of
a unit cell, allows for considerable acceleration
(approximately in order of magnitude) in
obtaining of steady solutions by time-relaxation
method.

For the monotone difference scheme,
calculations of fluxes in half-integer nodes are
carried out using the Riemann problem solution.
Mathematically this problem comes to the
solution of nonlinear set of algebraic equations.
An approximate method of the problem solution
is representation of Jacobian matrix A = 0E/0Q
as A = RAR"', where A - diagonal matrix,
elements of which are eigen values of the
operator A. To approximate the convection
component of flux vectors E, G, F in half-
integer nodes, The Godunov-type monotone
scheme [6], [7] and the approximate Roe
method [8] for the Riemann problem solution
are used. Because the vectors E, G, F have
similar forms, we consider in detail the E vector
only. For this vector we have

E | = (E(Q,)+E(Qy)~ ROy )

xD( (% ))R(Oyx )" (0 =0, )
where ®(¢@(4,)) — diagonal matrix with

elements ¢ (Ai), A — eigen values of the

operator

A = 0E/0Q; R r = R(Qrr) — matrix, columns of
which are the right eigen vectors of the operator
A.

For calculations of the eigen values and eigen
vectors of operator A, the method of
approximate Riemann problem solution is used

[8]. ® (¢ (M), Rig, R are determined using
the values of dependent variables

uLR:uL o +uR\/p_R’
o e

VLR:VL P, +vR\/p_R’
o, e

WLR:WL pL+WR\/p_R’
P +px

b NP A He P

e

1
aLR2 =(y —D(H _5(“LR2 +VLR2 +WLR2))

where a — is the local speed of sound.
To fulfill the entropy condition for numerical
solutions, the function ¢ (A;) is specified as
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where € - parameter responsible for dissipative
characteristics of the difference scheme.
(typically € =107%).
To increase the approximation to the second
order, in the interpolation of dependent
variables on the unit cell edges, the principle of
minimum derivatives (MUSCL) is used [9-11]

QL = Qi +%m(Qi 'Qi.lsQi+1 'Qi)a

|A|£g

1
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and the function m(a,b) is taken in the form

a, ab>0, |a| < |b|

m(a,b)=4b, ab>0, |a|>|b|

0, ab<0
In approximation of the diffusive component of
flux vectors E, G and F on the unit cell edges,
the second-order central difference scheme is

employed. Calculations of derivatives are
carried out using the formulas
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here U — is the vector of non-conservative
dependent variables. The difference scheme
stencil, on which the full Navier-Stokes or
Reynolds equations are approximated, consists
of 25 points. It seems that the foregoing implicit
nonlinear difference scheme is unconditionally
stable for the linear problem.



1.3 Solution of nonlinear finite-difference
equations

The difference approximation of Section 1.2 and
the boundary conditions lead to the nonlinear
system of algebraic equations F(X) = 0, where
X — vector of the discrete variables (nodal
values of gas-dynamic variables, including
boundary nodes of the computational grid). The
problem is effectively solved using the well-
known Newton iterative method, the main
advantage of which is a quadratic convergence
rate. The system F(X) = 0 is solved using the
modified Newton method

. -1
X" =xM -z, DUFXY),

where Dy, = (OF/0X)y, - Jacobian matrix, k, k, -
iteration numbers, k, < k. The regularization
parameter of Newton method relative to the

initial approximation Tty is determined using the
formula [12]

(AX[k] _ Ax[kfl],x[k] _ X[kfl])
(AX[k] _ AX[k—l])Z 5
where AX™ - correction vector. As the iteration
process convergence Tx — 1, and the
convergence rate theoretically tends to the

quadratic one.

The most time-consuming parts of the Newton
method algorithm are generation of the matrix
Dy = 0F/0Xx and computations of a solution
related to this matrix. Because the
approximation for each computational grid
contains only few neighboring nodes (in three-
dimensional case 25 for TVD scheme), the
laboriousness of Jacobian matrix generation is
O(N), where N — the number of nodes for the
finite difference problem. The Jacobian matrix
is generated using the finite difference
procedure of the residual vector on the vector of
desired mesh variables. Application of the finite
difference method to generation of the Jacobian
matrix is based on long-term investigations on
numerical simulation of gas-dynamic problems.
For example, a similar procedure is used in [13]
for solutions of the initial-boundary problems
on adaptive grids.

RAM memory space and CPU time, which are
required for solving the linear system of
algebraic equations on iteration for nonlinearity

Ty =
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(OF/6X), AX™ = —F(X™)) |
considerably depends on the degree of matrix
(0F/0X)  sparseness. For  Navier-Stokes
equations approximation using the foregoing
second-order difference scheme, the operator
OF/0X has sparse block 25-diagonal structure,
and its elementary block is a full matrix of size
5x5. Solutions of the linear system of algebraic
equations related to each iteration of the
nonlinear problem, are carried out using the
direct [14] and iterative [15] methods. These
techniques were repeatedly tested in numerical
experiments and prove their reliability and high
efficiency.

2 Boundary conditions and computational
grid

The origin of Cartesian coordinate system
x=y=0 for the two-dimensional
computational domain coincides with the center
of circle, while the cylinder surface for x <0 is
located at a distance R=1. For x>0, this
surface is flat and has the length L =0.3.

Flgure 1. Pressure field (a) and the computatlonal grid
with clustering in the x-y plane (b) and in the x-z plane
(¢), M =6.1,T, =0.1,Re =3240.

The inflow boundary of the two-dimensional
computational domain is located in the
undisturbed free-stream with the parameters
w.=1, v,=0, T.=1, P,=1/yM?. On the body
surface, the velocity is u=v=0 and temperature
is T=Tw/To, where To/T=1+0.5(y-1)M?. The
symmetry conditions are imposed on the axis
y=0 (v=0, 0F/0t=0, F=u,P,T). On the outflow
boundary, the ‘soft’ boundary conditions are
imposed as 0F/0E=0, F=u,v,P,T (& is the normal
to the right boundary). In test calculations for
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the computational domains related to L=0.3-1,
the scheme was verified by means of removing
few grid lines near the outflow boundary. It was
found that the length L=0.3 was sufficient to
avoid any influence of the outflow boundary
conditions on the flow field for x<0. The two-
dimensional computational grid has N,=151
nodes along the normal and N¢=111 along the
body surface.

In the three-dimensional case, one spanwise
period of sinusoidal velocity perturbations
ux=1+A-sin(2-nz/A) with the amplitude A=0-
0.03 and period A=AZ/R=0.1+10 (AZ 1is the
computational domain size in z-coordinate) was
imposed on the free-stream velocity field

The three-dimensional computational grid with
151x111x122 nodes was constructed by a
uniform duplication of the two-dimensional grid
in z-direction. The periodic boundary condition
is imposed in this direction. Namely, the values
of the dependent variables of the problem of the
left (right) end were equated with their values in
the last but one right (left) node of the field. Let
us note that such a boundary condition
contained, as a particular case, the boundary
condition of the two-dimensional flow
implementation (0F/0z=0).

As the Reynolds number increases, the
boundary layer thickness and the near shock
layer thickness decrease and, consequently, the
number of nodes in the near shock layer also
decreases (Fig. 2). Therefore, the grid clustering
just behind the shock wave is performed, in
addition to the near-wall clustering, in order to
improve the resolution in the near shock layer.

10
T4

0 ; ; ; ; ; ;
0 0.25 X 05

Figure 2. Temperature distributions over axis y=0 in the

near-wall boundary layer (a) and in the near-shock layer

(b) for M=6.1, T,=0.1 (1 — Re=10", 2 - Re=3x10, 3 -
Re=2x10°%, 4 - Re=10°).

Figure 3 shows that the near-shock layer
thickness Agpw, obtained numerically, is
inversely proportional to the Reynolds number.
For the conservation of grid resolution in n-
coordinate (normal to the rigid boundary), it is
necessary to increase the number of nodes in the
near-shock layer proportionally to the Reynolds
number. In particular, only one computational
cell falls into the near-shock layer in the case of
uniform grid with number of nodes N,~100,
whereas 10-30 nodes fall into this layer in the
case of clustered grid.

A
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0.0030 — ®
0.0010 - \
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0.0003 —
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T T T T TTT T T T T 11T

1000 3000 10000 30000 100000

Figure 3. The near-shock layer thickness vs. the Reynolds

number.
The foregoing clustering is necessary to obtain a
reliable solution in the three-dimensional case,
because the shock wave stand-off distance
significantly varies versus the z-coordinate.

3 Boundary conditions and computational
grid Small spatial perturbations of flow over
a cylinder

The problem of a supersonic gas flow over a
cylindrical blunt body was solved (Fig. 4) under
imposed spanwise periodic perturbations of the
free stream velocity wu.=1+A-sin(2-nz/A). The
free-stream parameters were taken from [3]:
Re=3240, M=6.1, Prandtl number Pr=0.71, the
wall temperature Ty, = 0.5T¢ (where Ty is the
stagnation temperature), specific heat ratio
y=1.4.  Sutherland's law was used for the
viscosity law.



Figure 5 shows the pressure and temperature
distributions in the boundary layer and in the
near-shock layer for different values of the free-
stream velocity v, (from 0.94 to 1.06). These
distributions were obtained using the two-
dimensional calculations. The normalized

pressure distributions p=(p-pmin)/(Pmax-Pmin) and
temperature distributions T=(T-Tmin)/( Tmax-Tmin)
are collapsed to one curve, as shown in Fig. 6a.
It is seen from Fig. 6b, that a small free stream
velocity perturbation Au, leads to doubling of
the temperature and pressure disturbances in the
boundary layer.

b)

Figure 4. Pressure distribution (a) and temperature
distribution (b) on the cylinder front surface in the case of
imposed spanwise perturbations of free stream velocity
uoo=1+A-sin(2-nz/R) with amplitude A=0.03 and period
A=AZ/R=0.3.
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Figure 5. Temperature distribution (a, b) and pressure
distribution (c, d) along the axis y=0 in the boundary layer
(a, ¢) and in the near-shock layer (b, d) at different values

of the free-stream velocity uot+Auy,, Auy/tt=-6,-5,-4,-3,-
2,1,0,1,2,3,4,5,6%.
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Figure 6. The normalized distributions of pressure and

temperature (a) along the axis y=0, and variations of

normalized AP, AT (b) as functions of the free-stream

velocity variation Auy/u,, = £6%.

Figure 7 shows the shock wave fronts for
various periods of the imposed perturbations
A=AZ/R=0.1+10 with amplitude A=0.03. For
small A, the shock wave is close to its
undisturbed two-dimensional shape (2D). As A
increases, the shock shape tends to quasi-three-
dimensional  (2D-3D). The  quasi-three-
dimensional (2D-3D) flow is obtained as a
composition of the results of two-dimensional
calculations for the values of free stream
velocity u,=1+A-sin(2-nz/A). The maximum
stand-off distance of the shock is reached at A=
0.7.

A =070 1 2 4 10 2D-3D
Figure 7. The shock wave front for various periods

2=0.1+10, the imposed velocity amplitude A=0.03.

It is seen from the comparison of three types of
pressure and temperature fields in the x-z plane
(y=0) (two-dimensional without perturbations,
three-dimensional (A=0.7), and quasi-three-
dimensional flows) that the values of P and T in
the three-dimensional case do not exceed the
corresponding values in the quasi-three-
dimensional case (Figs. 8, 9a). Variations of the
boundary layer thickness are also seen in the
temperature field for the both three-dimensional
and  quasi-three-dimensional cases.  This
indicates the presence of maximum and
minimum heat fluxes on the body surface with
higher values than in the quasi-three-
dimensional case. A reverse subsonic three-
dimensional vortex flow is formed within the
shock layer due to the pressure difference in
different sections. This flow has maximum
Mach number M~0.4 in the case of A=0.7 at
A=0.03.
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Figure 8. Pressure fields (a) and temperature fields (b) in
x-z plane (y=0) at 3%-perturbations of the free-stream
velocity for the two-dimensional, three-dimensional
(A=0.7), and quasi-three-dimensional cases.
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Figure 9. Pressure distribution (a) and normalized heat
flux distribution (b) over the surface along the line x=y=0

Egorov L.V.

at 3%-perturbations of the free-stream velocity. Curves 1-
6 correspond to A=0.1, 0.2, 0.5, 1, 2, 4; the dot line 8
corresponds to the two-dimensional case; curve 7
corresponds to the quasi-three-dimensional case.

0

0.1 1 A 10
Figure 10. Normalized maximum and minimum heat
fluxes (upper and lower branches) on the cylinder surface
for M=6.1 (a) and M=8 (b) as functions of A=AZ/R at the
free stream velocity perturbation amplitudes A= 0.005,
0.01, 0.02, 0.03 for the grids 151x111x62 (light markers)
and 151x111x122 (dark markers).

Figure 10 shows the maximum and minimum
heat fluxes (normalized to their values in the
two-dimensional case) versus the period A of
imposed perturbation period. These distributions
reach their extreme values at A=0.3. The
velocity perturbation of 1% leads to the increase
in heat flux by approximately 50%. The heat
fluxes for small A tend to 1 (their value for the
two-dimensional case). The heat fluxes for high
A tend towards their values in the quasi-three-
dimensional case. Similar dependences were
obtained for Mach number M=8 at Re=3240 and
Tw=0.39. The foregoing numerical solutions
explain the experimental results on the heat flux
measurements. It is important to note that the all
three-dimensional solutions return to the
solution for the two-dimensional case, if the
considered herein small perturbations (A=1-3%)

were switched off.

Because actual perturbations may have different
spatial forms, it is interesting to compare the
heat flux disturbances induced by the z-periodic
perturbation u,=1+A-sin(2nz/A) and the y-
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perturbation  u,=1+A-sin(2my/\)
(Figure 11). Since the three-dimensional
problem for y-periodic perturbations 1is
equivalent to the two-dimensional problem, the
heat fluxes in this case are obtained from the
solution of two-dimensional problem. Figure 11
shows the dimensionless heat fluxes as
functions of A at Re=3240, A= —1%, —0.5%,
0.5% and 1%; the flow parameters are M=6.1,
Tw/To=0.5 and M=8, T./T¢=0.39. For
comparison, the corresponding distributions for
the z-periodic perturbations are shown by the
dotted lines.

periodic
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Figure 11. Maximum (upper branches) and minimum
(lower branches) heat fluxes to the cylinder surface as
functions of the period A at Re=3240, (a) M=6.1,
Tw/T¢=0.5 and (b) M=8, T,/T¢=0.39. The dotted lines
correspond to the z-periodic perturbations of amplitude

A=0.5% and A=1%, and the solid lines correspond to the
y-periodic perturbations of the same amplitude. (qo— heat
flux without perturbations for the two-dimensional case).

Small amplitudes of perturbations are chosen to
avoid considerable influence on the main flow.
It is seen that the heat flux disturbances induced
by the z-periodic perturbations approximately
two times larger than those induced by the y-
periodic perturbations. As the amplitude of
imposed perturbations decreases two times, the
heat flux deviations cut in half. As compared to
the case of z-periodic perturbations, the
maximum heat flux induced by the y-periodic
perturbations occurs at smaller values of the
perturbation wavelength: A,~0.2 (M=6.1) and
Am=0.3 (M=8). As A decreases, the heat flux
tends to the unperturbed level (u.=1). As A
increases, the heat flux approaches the value at
corresponding values of free stream velocity
(u=1+A).

5 Conclusions

A supersonic flow over a blunt cylinder under
imposed spanwise-periodic free-stream velocity
perturbations was investigated using numerical
solutions of the Navier-Stokes equations.

It was shown that the computational grid in the
near-shock layer significantly affects the
numerical solution. On a sufficiently fine
(versus the normal coordinate y) grid, three-
dimensional solutions in the near-shock layer
return to the two-dimensional form after
switching off the imposed velocity perturbations
of the level 1-3%. If the grid is not sufficiently
fine, the induced three-dimensional structures
do not vanish when the perturbation is switched
off.

Numerical computations on sufficiently fine
grids show that small (~1%) spanwise-periodic
perturbations of the free-stream velocity can
lead to a significant (~50%) increase of the heat
flux to the cylinder surface. This effect is due to
the three-dimensional structures formed in the
shock layer where the flow is subsonic.

The level of heat-flux fluctuations depends on
the period and amplitude of imposed three-
dimensional perturbations. High heat-flux
fluctuations are observed at the spanwise period
equal to 0.2+0.7 of the cylinder radius. In
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particular, the heat flux maximum is reached at
Am=0.3. For a perturbation period decrease, the
value of the heat flux fluctuation amplitude
reduces down to zero while when it increases, it
tends towards the values obtained for the two-
dimensional case at free-stream velocities
corresponding to those periodically varying in
the z-coordinate free stream.

As the perturbation period decreases (A<An),
the amplitude of heat-flux fluctuation reduces to
zero. As A increases (A>Any), the heat-flux
amplitude tends to the value obtained for the
two-dimensional case. The wall pressure
distributions for different periods are bounded
by the distributions corresponding to these two
limiting cases.

It should be noted that for all cases considered,
the spatial perturbations lead to appreciable
changes of the heat flux, and there is a length-
scale at which the heat-flux attains maximum
and minimum levels. E.g., the y-perturbations of
0.5% induce approximately 10% fluctuations of
the heat flux in the case of cylinder or sphere.
The z-periodic fluctuations of the same level
induce 20-25% fluctuations of the heat flux in
the case of cylinder. At higher levels of the
imposed perturbations, the induced heat-flux
fluctuations grow proportionally. The spatial
length scale, at which the heat-flux fluctuations
are extreme, is approximately a half of the
shock layer thickness at the critical point.

The foregoing results are consistent with the
theoretical studies and help to explain the
available experimental results [1-2].

The work has been carried out in Moscow
Institute of Physics and Technology (MIPT)
with the financial support of Russian Scientific
Foundation (project No. 14-19-00821) and
RFBR (project No. 14-08-00793)
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