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Abstract

The effects of longitudinal wall oscillation on
the small disturbances developing in the two
dimensional channel flow is investigated by the
Floquet theory. The base flow consists of the 2D
plane Poiseuille flow and the Stokes layer. A
time-dependent Orr-Sommer (0OS) equation
expanded by the collocation points is used for
the Floquet analysis. The parameters governing
the present model are the frequency and
amplitude of the wall oscillation, and Reynolds
number. For the 2D Tollmein-Schlichting (TS)
mode, the wall oscillation shows stabilizing or

destabilizing effect depending on the parameters.

The Floquet analysis also elucidated that the
obliqgue mode can be more unstable than the TS
mode. These results suggest that the oblique
mode can appear earlier than TS mode contrary
to the Squire’s Theorem.

1 Introduction

Drag reduction is one of the most important
issues of the air transport system. The intensity
of surface friction drag strongly depends on the
flow condition of the boundary layer around
airfoil. In order to suppress the friction drag, the
ideas are roughly divided into two types;
namely the passive control and the active one.
As an example of the former, the airfoil-surface
optimization technology can be given[l,2].
Although this approach shows some good
results for subsonic airfoil, it is very hard for
transonic one. For the latter, the boundary layer
blowing or suction is given as an example[3,4].
The problem of this approach is that the input
total energy generally exceeds the net gain.
However Jung. et al[5] showed the drag

reduction by spanwise wall oscillation on the
2D channel flow. Then Quadrio and Ricco[6]
numerically demonstrate the drag reduction of
44.7% which corresponds to the net gain of
7.3%. These fundamental studies shows the
possibility of engineering feasibility.

On the other hand, the above studies could
not explain sufficiently the mechanism of the
drag reduction. Thus author tried to investigate
it using the model flow which is constructed by
the 2D channel flow with longitudinal wall
oscillation[7]. This system has a great advantage
from the analytical viewpoint because the flow
can be explained as an exact solution of the
governing equation. In this study author showed
by the Floquet analysis that the amplification
rate of TS disturbance wave can be suppressed.
This result suggests that the laminar-turbulence
transition might be delay. This study also found
that the amplification rate of oblique TS mode
larger than the 2D TS mode in some cases. This
finding implies massive potential in the flow
control technology.

Thus the present study focuses on the
behavior of oblique wave developing in 2D
channel flow with longitudinal wall oscillation.
Since this system has a time periodicity, the
Floquet theory might suit to examine the
characteristics of the stability. To do this, the
collocation method is used to build the
eigenequation from the linearized disturbance
equation. In the section 2, the model flow based
on the plane Poseuille flow is defined. Then the
governing equation and the procedure of the
Floquet analysis are explained in Section 3.
Numerical results for 2D TS and the oblique TS
mode are given in the Section 4, and the
conclusion is given in the Section 5.



2 Model flow

The model flow examined in the present study
is shown in Fig.1. A pair of infinite plates are
arranged in parallel at distance of 2A. The
maximum velocity of the base flow is of Upax
and the nonslip condition above the walls is
adopted. The two walls are oscillated in phase
with the amplitude of U, and the frequency of
Q. The Reynolds number R is defined as R=
Umax h /v, here v is the kinematic viscosity. Then
the parameters which control this model flow
are U, ,Q and R. The Cartesian coordinate
system (x,),z) is defined as x in the flow
direction, y in the perpendicular to the walls,
and z in the spanwise direction.
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Fig.1 Thewmodel flow.

It can be considered that the present system
consists of the plane Poiseuille flow and the
Stokes layer. Since these two flow are the exact
solutions of the linearlized equation which is
derived from the Navier-Stokes equation with
2D parallel flow approximation, the model flow
can be described as the superposition of these
two exact solution given by the following
equation, and is shown in Fig.2.

cosh(ky)

: (1)
cosh(k) 1exp(iQ)

U(y,t)=1-y>+U, Re[

Here #k=+Q/2v, i denotes imaginary unit.
Using above velocity profile, the amplification
rate of the small disturbances is estimated by the
linear stability analysis with the Floquet theory.

3 Eigenvalue equation and Floquet analysis

In common linear stability analysis, the famous
Orr-Sommerfeld (OS) equation is used and the
growth rate is estimated as magnitude of the
eigenvalues. This OS equation is obtained by
assuming the disturbance as the plane modal
wave which the eigenfunction doesn’t have the
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time dependence. In the present study, however,
the assumption as the plane modal wave is not
suitable because the base flow is variable in
time. Thus the form of small disturbance U’ is
assumed as the follows,

u'(x,y,z,0) = U(y,0)expli(ax + )], (2)

here wand y are the wavenumber in x and z
direction. Substituting above equation for the
linearized disturbance equation, so called time-
dependent OS equation is derived.

[<§ +iaU(y,))D* —a’ —y*)—iaD*U(y,0) P (y.1)

_i 2 2,2\~ =§ (3)
—R(D a =y ) v, (hergD_atj

Appling the Chebyshev spectral collocation
method in y direction, a matrix equation is
obtained.

LN 4)
L F)=GOF(@).

The collocation point y; is

A e @
Y, cosN+1,(] N)

When F(t) is rewrote as,
0=lnr. @

the behavior of the system is described by the
eigenvalues p of the matrix Q. When pu is
positive, the system is unstable.

0 T T T T

02 fo E R i

-0.4

-0.6

-0.8

04 -02 0 02 04 06 08 1

Fig.2 Velocity profiles at several instants.
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4 Results

4.1 Tollmein-Schlichting mode

Orszag [8] numerically investigated the stability
of the small disturbances developing in the 2D
channel flow, and showed the critical Reynolds
number of 5,722 for disturbance of («a, v) =
(1.0, 0.0). To compare this results, the mode is
fixed as (1.0, 0.0) in this subsection. Then For
the remaining parameters of (U,, (), the
several cases of the Floquet analysis are
examined and are shown in Fig.3. The case of
(U, Q) = (0, 0) corresponds to the original
channel flow investigated by Orszag. It can be
seen that the sign of the floquet exponent
changes from negative to positive around R =
6,000 with the increase of R. It is confirmed that
this critical value of R is of 5,722. Turning the
attention to the other cases, the floquet
exponents generally decrease affected by the
wall oscillation. For this reason, the critical
Reynolds numbers are larger than the case of
the original channel flow. This means that the
laminar-turbulent transition might be delayed.
Since the Floquet exponent for the case of (U,
Q)= (0.4, 0.2) is larger than that of the original
one, there is some possibility that the oblique
TS wave can dominate the flow field.
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Fig.3 Variation of the Floquet exponents with
the Reynolds number for the cases of (U,,, Q)=
(0.0, 0.0), (0.2, 0.2), (0.4, 0.4), (0.4, 0.2), (0.2,
0.4),and («, v)=(1.0,0.0).

Depending on the parameters of U,, and (2,
the critical Reynolds number is changes. Thus,
the critical Reynolds numbers for various sets of
the parameters are examined and the result is
plotted in Fig.4. In this figure, the original
channel flow corresponds to the origin. It can be
seen that when the wall oscillation is added
even just little bit, the system is stabilized. The
system is strongly stabilized around (U,,, Q) =
(0.15, 0.15). On the other hand, when U,
exceeds 0.25, the effect of the wall oscillation
changes to destabilize feature around Q=0.2.
Near the U,, axis, there is the stable area even if
the U, is increased. Although it is difficult to
explain this feature, the assumption of the
superposed model flow doesn’t appropriate
because the thickness of the Stokes layer
increases when (0 decreases. In the present
model flow, the discussion has to be in a
restriction that the wall motion doesn’t affect
the another side.
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Fig.4 Neutral curves of the Floquet exponents
for R=6,000, 7,000, 8,000, 9,000, 10,000 in U,—
Q plan for (a, v)=(1.0,0.0).

It is mentioned that there is a possibility
which the flow might be controlled by the
oblique TS modes in some cases. However, the
2D TS modes generally appeared earlier than
the oblique TS modes, and rapidly develop due



to the nonlinear growth. If the oblique TS mode
could be dominant, it is only the vicinity of the
neutral curves. Thus, the subsequence section
focuses on the stability of the oblique TS mode
around the neutral curves.

4.2 Oblique TS mode

The variation of the Floquet exponents versus
Reynolds number for Q = 0.1, 0.15, 0.2 are
shown in Fig.5, respectively. the solid lines in
these figures correspond to the 2D TS mode of
(a, v) = (10, 0.0), and the dotted lines
correspond to the oblique TS mode of (0.95,
0.05). For eachQ, a few cases of U,, are shown
and one of them is chosen so that U, doesn’t
exceed the neutral curve at R=10,000. Thus the
lines corresponding to the most stable case in
each figures reach the horizontal axis at
R=10,000. In such condition, it can be expect
that the oblique TS mode appears earlier than
the 2D TS mode. In other cases, of course, the
appearance of the oblique TS mode can be
expected when dotted lines exceed the
horizontal axis.

As compared with these figures, some
features are revealed.

e 2D TS modes are more unstable than the
oblique TS mode at small R region. On
the other hand, the oblique TS modes
become unstable than 2D TS modes at
large R region. These are able to say for
all the cases of Q.

e At small R region, the Floquet exponents
decrease when Q is increased. However,
it seems that at large R region the growth
of the Floquet exponents doesn’t change
much.

e At large R region, the gap of the Floquet
exponents between 2D TS and the
oblique TS modes is narrowed when Q
is increased.

e Finally the overtaking 2D TS mode at
large R region disappears when Q
exceeds about 0.3.
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Fig.5 Variation of the Floquet exponents for the
case of (a) Q =0.10, (b) 0.15, and (c) 0.20. The
solid lines correspond to 2D TS mode and the
dotted lines correspond to the oblique TS mode.
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For the cases of (U, Q) =(0.06, 0.1), (0.1,
0.15), (0.19, 0.2), the unstable oblique TS
modes are investigated and shown in Fig. 6.
These three cases are in the situation that the 2D
TS mode is just before the neutral points. This
means that the oblique TS mode can appear if
the Floquet exponent is positive. Although it is
already shown in Fig.5 that the mode of («, v)
= (0.95, 0.005) can appear in above condition,
the spread of the unstable oblique TS mode is
not clear. Thus in these figure, the oblique TS
modes with positive Floquet exponent are
marked by solid circles.

It seems that the existence of the the
unstable TS mode is limited for all the cases of
(Uy, Q). There is no possibility of the
appearance of the oblique TS wave of the
modes with small wavenumbers. Also, the
oblique TS mode along by y axis doesn’t have
positive Floquet exponents. It means that the
transvers wave of the small disturbance cannot
appear. From these figures, the following
features are perceived.

e The unstable oblique TS modes have
relatively large o and small y , namely
07<a <1.0,and0< vy <0.7.

e The direction of the unstable oblique TS
modes is within 45 degrees from the
mean flow direction.

e When the angle of the wave vector of
the oblique TS modes becomes large, the
gap of the Floquet exponent between
these oblique TS mode and the 2D TS
mode decreases.

e The region of the unstable oblique TS
mode decreases with the increase of Q.
Finally, Then this region disappears.

From the comparison of the neutral curves
shown in Fig. 4, it can be understood that the
region of the wunstable oblique TS mode
disappears for large Q for the case of R =
10,000. However, it should be emphasized that
this feature lends well to other R, nevertheless
the neutral curves exit.
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Fig.6 Map of the unstable oblique TS modes.
The oblique TS modes with positive Floquet
exponent are plotted as the slid circles in « -y
plane for the case of (a) (U,, Q)= (0.06, 0.10),
(b) (Uy, Q) =(0.10, 0.15), and (¢) (U,, Q) =
(0.19, 0.20).

5 Conclusion

Destabilizing effects of the longitudinal wall
oscillation on the oblique Tollmein-Schlichting
mode developing in the two dimensional
channel flow is investigated by the Floquet
theorem. A time-dependent Orr-Sommerfeld
equation is employed as the eigenvalue equation
for the Flogeut analysis. It is cleared from the
present study that the wall oscillation stabilizes
the 2D TS modes for some cases of the
frequency and the amplitude of the wall
oscillation. Furthermore, the oblique TS mode
can appear earlier than the 2D TS mode in some
situations contrary to the Squire’s theorem.

TAKASHI ATOBE

References

[1] Selvarajan, S., Tulapurkara, E.G., and Vasanta Ram,
V. Stability Characteristics of Wavy Walled Channel
Flows. Phys. Fluids, 11 (1999), pp. 579-589.

[2] Floryan, J. M.: Stability of Wall-Bounded Shear
Layers in the Presence of Simulated Distributed
Surface roughness, J. Fluid Mech., 335 (1997), pp.
29-55.

[3] Choi, H., Moin, P., and Kim, J.: Active Turbulence
Control for Drag Reduction in Wall Bounded Flows,
J. Fluid Mech., 262 (1994), pp.75-110.

[4] Sumitani, Y. and Kasagi, N.: Direct Numerical
Simulation of Turbulent Transport with Uniform
Wall Injection and Suction, AIAA J., 33, (1995),
pp-1220-1228.

[5] Jung, W. J., Mangiavacchi, N., and Akhavan, R.:
Suppression of Turbulence in Wall-Bounded Flows
by High-Frequency Spanwise Oscillations, Phys.
Fluids, A 4 (8) (1992), pp.1605-1607.

[6] Quadrio, M. and Ricco, P.: Critical Assessment of
Turbulnet Drag Reduction Through Spanwise Wall
Oscillation, J. Fluid Mech., 521, (2004), pp.251-271.

[7] Atobe, T. Primary mode changes due to longitudinal
wall oscillation in two-dimensional channel flow,
Fluid Dyn. Res., 46 (2014) 025502.

[8] Orszag, S. A. Accurate Solution of the Orr-
Sommerfeld Stability Equation, J. Fluid Mech., 50,
689 (1971), pp.1441-1447.

Copyright Statement

The authors confirm that they, and/or their company or
organization, hold copyright on all of the original material
included in this paper. The authors also confirm that they
have obtained permission, from the copyright holder of
any third party material included in this paper, to publish
it as part of their paper. The authors confirm that they
give permission, or have obtained permission from the
copyright holder of this paper, for the publication and
distribution of this paper as part of the ICAS 2014
proceedings or as individual off-prints from the
proceedings.



