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Abstract  

The effects of longitudinal wall oscillation on 
the small disturbances developing in the two 
dimensional channel flow is investigated by the 
Floquet theory. The base flow consists of the 2D 
plane Poiseuille flow and the Stokes layer. A 
time-dependent Orr-Sommer (OS) equation 
expanded by the collocation points is used for 
the Floquet analysis. The parameters governing 
the present model are the frequency and 
amplitude of the wall oscillation, and Reynolds 
number. For the 2D Tollmein-Schlichting (TS) 
mode, the wall oscillation shows stabilizing or 
destabilizing effect depending on the parameters. 
The Floquet analysis also elucidated that the 
oblique mode can be more unstable than the TS 
mode. These results suggest that the oblique 
mode can appear earlier than TS mode contrary 
to the Squire’s Theorem.  

1  Introduction 

Drag reduction is one of the most important 
issues of the air transport system. The intensity 
of surface friction drag strongly depends on the 
flow condition of the boundary layer around 
airfoil. In order to suppress the friction drag, the 
ideas are roughly divided into two types; 
namely the passive control and the active one. 
As an example of the former, the airfoil-surface 
optimization technology can be given[1,2]. 
Although this approach shows some good 
results for subsonic airfoil, it is very hard for 
transonic one. For the latter, the boundary layer 
blowing or suction is given as an example[3,4]. 
The problem of this approach is that the input 
total energy generally exceeds the net gain. 
However Jung. et al[5] showed the drag 

reduction by spanwise wall oscillation on the 
2D channel flow. Then Quadrio and Ricco[6] 
numerically demonstrate the drag reduction of 
44.7% which corresponds to the net gain of 
7.3%. These fundamental studies shows the 
possibility of engineering feasibility. 

On the other hand, the above studies could 
not explain sufficiently the mechanism of the 
drag reduction. Thus author tried to investigate 
it using the model flow which is constructed by 
the 2D channel flow with longitudinal wall 
oscillation[7]. This system has a great advantage 
from the analytical viewpoint because the flow 
can be explained as an exact solution of the 
governing equation. In this study author showed 
by the Floquet analysis that the amplification 
rate of TS disturbance wave can be suppressed. 
This result suggests that the laminar-turbulence 
transition might be delay. This study also found 
that the amplification rate of oblique TS mode 
larger than the 2D TS mode in some cases. This 
finding implies massive potential in the flow 
control technology. 

Thus the present study focuses on the 
behavior of oblique wave developing in 2D 
channel flow with longitudinal wall oscillation. 
Since this system has a time periodicity, the 
Floquet theory might suit to examine the 
characteristics of the stability. To do this, the 
collocation method is used to build the 
eigenequation from the linearized disturbance 
equation. In the section 2, the model flow based 
on the plane Poseuille flow is defined. Then the 
governing equation and the procedure of the 
Floquet analysis are explained in Section 3. 
Numerical results for 2D TS and the oblique TS 
mode are given in the Section 4, and the 
conclusion is given in the Section 5. 
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2  Model flow  

The model flow examined in the present study 
is shown in Fig.1. A pair of infinite plates are 
arranged in parallel at distance of 2h. The 
maximum velocity of the base flow is of Umax 
and the nonslip condition above the walls is 
adopted. The two walls are oscillated in phase 
with the amplitude of Uw, and the frequency of 
Ω. The Reynolds number R is defined as R≡
Umax h /ν, here ν is the kinematic viscosity. Then 
the parameters which control this model flow 
are Uw ,Ω and R. The Cartesian coordinate 
system (x,y,z) is defined as x in the flow 
direction, y in the perpendicular to the walls, 
and z in the spanwise direction. 
 
 
 
 
 
 
 

Fig.1 The model flow. 
 

It can be considered that the present system 
consists of the plane Poiseuille flow and the 
Stokes layer. Since these two flow are the exact 
solutions of the linearlized equation which is 
derived from the Navier-Stokes equation with 
2D parallel flow approximation, the model flow 
can be described as the superposition of these 
two exact solution given by the following 
equation, and is shown in Fig.2. 
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Here  2/k ,  i denotes imaginary unit. 
Using above velocity profile, the amplification 
rate of the small disturbances is estimated by the 
linear stability analysis with the Floquet theory. 

3 Eigenvalue equation and Floquet analysis  

In common linear stability analysis, the famous 
Orr-Sommerfeld (OS) equation is used and the 
growth rate is estimated as magnitude of the 
eigenvalues. This OS equation is obtained by 
assuming the disturbance as the plane modal 
wave which the eigenfunction doesn’t have the 

time dependence.  In the present study, however, 
the assumption as the plane modal wave is not 
suitable because the base flow is variable in 
time. Thus the form of small disturbance u’ is 
assumed as the follows, 

)](exp[),(ˆ),,,( zxitytzyx   uu , (2)

here αand γ are the wavenumber in x and z 
direction. Substituting above equation for the 
linearized disturbance equation, so called time-
dependent OS equation is derived. 
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Appling the Chebyshev spectral collocation 
method in y direction, a matrix equation is 
obtained. 
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The collocation point yj is 
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When F(t) is rewrote as, 

F
T
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the behavior of the system is described by the 
eigenvalues μ  of the matrix Q. When μ is 
positive, the system is unstable. 
 

 
Fig.2 Velocity profiles at several instants. 
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4 Results 

4.1 Tollmein-Schlichting mode 

Orszag [8] numerically investigated the stability 
of the small disturbances developing in the 2D 
channel flow, and showed the critical Reynolds 
number of 5,722 for disturbance of (α, γ) = 
(1.0, 0.0). To compare this results, the mode is 
fixed as (1.0, 0.0) in this subsection. Then For 
the remaining parameters of (Uw, Ω ), the 
several cases of the Floquet analysis are 
examined and are shown in Fig.3.  The case of 
(Uw, Ω) = (0, 0) corresponds to the original 
channel flow investigated by Orszag. It can be 
seen that the sign of the floquet exponent 
changes from negative to positive around R = 
6,000 with the increase of R. It is confirmed that 
this critical value of R is of 5,722. Turning the 
attention to the other cases, the floquet 
exponents generally decrease affected by the 
wall oscillation. For this reason, the critical 
Reynolds numbers are larger than the case of 
the original channel flow. This means that the 
laminar-turbulent transition might be delayed. 
Since the Floquet exponent for the case of (Uw, 
Ω) = (0.4, 0.2) is larger than that of the original 
one, there is some possibility that the oblique 
TS wave can dominate the flow field. 
 

 
Fig.3 Variation of the Floquet exponents with 
the Reynolds number for the cases of (Uw, Ω) = 
(0.0, 0.0), (0.2, 0.2), (0.4, 0.4), (0.4, 0.2), (0.2, 
0.4), and  (α, γ) = (1.0, 0.0). 
 

Depending on the parameters of Uw and Ω, 
the critical Reynolds number is changes. Thus, 
the critical Reynolds numbers for various sets of 
the parameters are examined and the result is 
plotted in Fig.4. In this figure, the original 
channel flow corresponds to the origin. It can be 
seen that when the wall oscillation is added 
even just little bit, the system is stabilized. The 
system is strongly stabilized around (Uw, Ω) = 
(0.15, 0.15). On the other hand,  when Uw  
exceeds 0.25, the effect of the wall oscillation 
changes to destabilize feature around  Ω=0.2. 
Near the Uw axis, there is the stable area even if 
the Uw is increased. Although it is difficult to 
explain this feature, the assumption of the 
superposed model flow doesn’t appropriate 
because the thickness of the Stokes layer 
increases when Ω decreases. In the present 
model flow, the discussion has to be in a 
restriction that the wall motion doesn’t affect 
the another side. 
 

 
Fig.4 Neutral curves of the Floquet exponents 
for R=6,000, 7,000, 8,000, 9,000, 10,000 in Uw–
Ω plan for (α, γ) = (1.0, 0.0).  
 

It is mentioned that there is a possibility 
which the flow might be controlled by the 
oblique TS modes in some cases. However, the 
2D TS modes generally appeared earlier than 
the oblique TS modes, and rapidly develop due 
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to the nonlinear growth. If the oblique TS mode 
could be dominant, it is only the vicinity of the 
neutral curves.  Thus, the subsequence section 
focuses on the stability of the oblique TS mode 
around the neutral curves. 

4.2 Oblique TS mode 

The variation of the Floquet exponents versus 
Reynolds number for Ω = 0.1, 0.15, 0.2 are 
shown in Fig.5, respectively. the solid lines in 
these figures correspond to the 2D TS mode of 
( α,γ ) = (1.0, 0.0), and the dotted lines 
correspond to the oblique TS mode of (0.95, 
0.05). For eachΩ, a few cases of Uw  are shown 
and one of them is chosen so that Uw doesn’t 
exceed the neutral curve at R=10,000. Thus the 
lines corresponding to the most stable case in 
each figures reach the horizontal axis at 
R=10,000. In such condition, it can be expect 
that the oblique TS mode appears earlier than 
the 2D TS mode. In other cases, of course, the 
appearance of the oblique TS mode can be 
expected when dotted lines exceed the 
horizontal axis. 

As compared with these figures, some 
features are revealed. 

 
 2D TS modes are more unstable than the 

oblique TS mode at small R region. On 
the other hand, the oblique TS modes 
become unstable than 2D TS modes at 
large R region. These are able to say for 
all the cases of Ω. 

 At small R region, the Floquet exponents 
decrease when Ω is increased. However, 
it seems that at large R region the growth 
of the Floquet exponents  doesn’t change 
much. 

 At large R region, the gap of the Floquet 
exponents between 2D TS and the 
oblique TS modes is narrowed when Ω 
is increased. 

 Finally the overtaking 2D TS mode at 
large R region disappears when Ω  
exceeds about 0.3.  

 
 

 
        (a) Ω = 0.10 

 

 
        (b) Ω = 0.15 

 

 
        (c) Ω = 0.20 

 
Fig.5 Variation of the Floquet exponents for the 
case of (a) Ω = 0.10, (b) 0.15, and (c) 0.20. The 
solid lines correspond to 2D TS mode and the 
dotted lines correspond to the oblique TS mode. 
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For the cases of (Uw, Ω) = (0.06, 0.1), (0.1, 
0.15), (0.19, 0.2), the unstable oblique TS 
modes are investigated and shown in Fig. 6. 
These three cases are in the situation that the 2D 
TS mode is just before the neutral points. This 
means that the oblique TS mode can appear if 
the Floquet exponent is positive. Although it is 
already shown in Fig.5 that the mode of (α,γ) 
= (0.95, 0.005) can appear in above condition, 
the spread of the unstable oblique TS mode is 
not clear. Thus in these figure, the oblique TS 
modes with positive Floquet exponent are 
marked by solid circles. 

It seems that the existence of the the 
unstable TS mode is limited for all the cases of 
(Uw, Ω ). There is no possibility of the 
appearance of the oblique TS wave of the 
modes with small wavenumbers. Also, the 
oblique TS mode along byγaxis doesn’t have 
positive Floquet exponents. It means that the 
transvers wave of the small disturbance cannot 
appear. From these figures, the following 
features are perceived. 

 
 The unstable oblique TS modes have 

relatively largeαand smallγ , namely 
0.7 < α < 1.0, and 0 < γ < 0.7.  

 The direction of the unstable oblique TS 
modes is within 45 degrees from the 
mean flow direction. 

 When the angle of the wave vector of 
the oblique TS modes becomes large, the 
gap of the Floquet exponent between 
these oblique TS mode and the 2D TS 
mode decreases. 

 The region of the unstable oblique TS 
mode decreases with the increase of Ω. 
Finally, Then this region disappears.  

 
From the comparison of the neutral curves 

shown in Fig. 4, it can be understood that the 
region of the unstable oblique TS mode 
disappears for large Ω  for the case of R = 
10,000. However, it should be emphasized that 
this feature lends well to other R,  nevertheless 
the neutral curves exit. 

 
        (a) (Uw, Ω) = (0.06, 0.10) 

 

 
        (b) (Uw, Ω) = (0.10, 0.15) 
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        (c) (Uw, Ω) = (0.19, 0.20) 
 
Fig.6 Map of the unstable oblique TS modes. 
The oblique TS modes with positive Floquet 
exponent are plotted as the slid circles in  α-γ 
plane for the case of  (a) (Uw, Ω) = (0.06, 0.10), 
(b) (Uw, Ω) = (0.10, 0.15), and (c) (Uw, Ω) = 
(0.19, 0.20).  

5 Conclusion 

Destabilizing effects of the longitudinal wall 
oscillation on the oblique Tollmein-Schlichting 
mode developing in the two dimensional 
channel flow is investigated by the Floquet 
theorem. A time-dependent Orr-Sommerfeld 
equation is employed as the eigenvalue equation 
for the Floqeut analysis. It is cleared from the 
present study that the wall oscillation stabilizes 
the 2D TS modes for some cases of the 
frequency and the amplitude of the wall 
oscillation. Furthermore, the oblique TS mode 
can appear earlier than the 2D TS mode in some 
situations contrary to the Squire’s theorem. 
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