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Abstract  

Having the constant population size  and 
crossover/mutation probability, standard 
genetic algorithm (SGA) has such 
disadvantages as premature convergence, low 
stability and optimization efficiency for large 
design variables situation. This paper presents 
an improved adaptive genetic algorithm (IAGA), 
which adjusts the population size and the 
crossover/mutation probability adaptively and 
linearly, as well as integrating the IAGA 
running in a high performance parallel 
computing platform with high efficiency. The 
IAGA has been tested on an aeroelastic 
optimization of a composite wing. The case 
shows that the IAGA has realized improving the 
premature convergence, stability and 
optimization efficiency. 

1 General Introduction  
The aeroelastic optimization of composite 

wing is a problem with complex and huge scale 
design variables, including the layers’ thickness, 
angle and stacking sequence in all optimization 
elements[1]. The genetic algorithm with some 
advantages like global searching capability and 
implied parallelism, etc, which could solve the 
optimization problem with discrete/continuous 
design variables in the composite aeroelastic 

tailoring design, shows very good application 
prospect[2-5]. 

Having the constant population size and 
crossover/mutation probability, standard genetic 
algorithm (SGA) has good robustness in solving 
the global optimal problem of simple structure, 
while it has such disadvantages as premature 
convergence, low robustness and optimization 
efficiency in complex structure[6]. At present, 
according to the SGA improvement research, 
people focus much time on crossover/mutation 
probability, and little on taking population size 
into account. Moreover, in the existing effects 
of improved genetic algorithm (IGA) [6,7], the 
majority of the IGAs have verified through 
some classic numerical function, and the rest of 
IGAs only do some optimization on simple 
engineering structures with small design 
variables. They didn’t take any consideration on 
complex engineering optimization with huge 
scale design variables. It brings about an 
enormous searching space, finally affecting the 
genetic algorithm optimal precision, 
stability/robustness and optimization efficiency, 
etc. 

This paper presents an improved adaptive 
genetic algorithm(IAGA) based on the above 
problems, emphasizing on improving the 
genetic algorithm operators. The IAGA has 
been tested on an aeroelastic optimization of 
composite wing with huge scale design 
variables, and the optimization results have been 
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compared with that of SGA, thus demonstrating 
the IAGA’s validity and rationality. 

2 Adaptive Genetic Algorithm 

2.1 Operation Process of Algorithm 
This paper uses a set of existing genetic 

algorithm optimization system[8], which 
integrates the IAGA operators, and running the 
optimization example. The optimization system 
has been operated stably for nine years, through 
a lot of practical examples[1,4,5]. The 
optimization system process is shown in figure 
1 the optimization workflow. 

 Fig. 1 the optimization workflow 
 
The system implementation steps are as 

follows: 

1) Establish coding. The chromosome 
constitutes the adding layers’ thickness 

tΔ and the adding layers’ angle 
)9090( °≤≤°− αα . 

2) Initial the population. The population is 
generated through producing 

)~1( MiM i =  individuals randomly. 
3) Establish the fitness evaluation formula, i.e. 

the non-dimensional flutter velocities of 
wing is greater than 1. 

4) Genetic operation, which includes selection, 
crossover and mutation. Selection operator 
roulette wheel selection method as well as 
elitist strategy, ensuring the best individual 
can be completely inherited to the next 
generation. Crossover operator adopts 
single point crossover method. Mutation 
operator adopts allele’s mutation method. 

5) Determine whether the optimization reaches 
the maximum inner circulation number. If 
yes, complete the genetic evolution, output 
the best individual’s fitness and gene value. 
If not, repeat from step 3) to step 5). 

2.2 Strategy of Dynamically Adjusting 
Population Size 

In a standard genetic algorithm, the 
population size is set by the user to a fixed value 
at the beginning of the search and remains 
constant through the entire run. Due to the size 
of solution space for different optimization 
problems being so different, the population size 
M  in each generation of SGA is so difficult to 
determine. When the value of M  is smaller 
than needed, it’s likely to produce large 
sampling error, reduce the diversity of 
population and often lead the SGA to premature 
convergence, although the SGA can get a higher 
operation speed in optimization. On the contrary, 
when the value of M  is larger than normal 
situation, it’s likely to produce the waste of 
computing resources, moreover, to reduce the 
optimization efficiency of SGA[9], especially in 
engineering problems with large scale design 
variables. Usually optimization efficiency is the 
key factor of engineering optimization problems. 

Therefore it’s a difficult task to find an 
adequate population size. It has been shown, 
both theoretically and empirically, that the 
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optimal size is something that differs from 
problem to problem. A somewhat widely 
accepted intuition behind population sizing is 
that it should be set proportionally to the 
problem’s size and difficulty. However, 
problem difficulty is very hard to estimate for 
real-world problems, which brings us back to 
the difficulty of setting the appropriate 
population size[10]. At present, the value of 
population size M  is often determined by its 
user subjectively and keeping constant in the 
evolution, which often produce large deviation 
in the practical application. 

Based on these observations, the 
researchers have put forward various schemes 
that try to calculate a proper population size 
during the SGA running. Goldberg[11] etc gave 
the estimated formula of population size 
through studying the problem from SGA in 
theory, and Harik[12] etc improved that formula. 
Actually, it’s not functional in practical 
application, because those parameters like the 
size, number and fitness variance of building 
blocks should be calculated first. This paper 
presents a strategy, which can adjust the next 
generation’s population size dynamically 
according to the change of contemporary 
evolution algebra. The adjusting formula (1) is 
as follows:  
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Among the formula (1): 

minmax / MM represent the maximum/minimum 
population size;  
κ is a scale factor, generally taking 0.8~1.0;  

maxN represents the maximum evolution 
generation;  

iM is population size of the )1( maxNiith <<  
generation. 

From the formula (1), we can see that the 
population size  decreases along with the 
inner loop generation increases. In the earlier 
stage of optimization, the individual’s fitness 
difference between the average and the best is 
much greater; therefore a large scale population 

size should be kept. With the population 
evolving, the individual’s fitness of the average 
is more and more close to the best, i.e. the 
population diversity becomes smaller and 
therefore a small scale population size should be 
used, in order to improve the algorithm’s 
efficiency. The maximum/minimum population 
size should be constrained at the same time in 
the evolution. 

2.3 Strategy of Dynamically Adjusting 
Crossover/ Mutation Probability 

Both crossover probability cP  and mutation 
probability mP  have a great influence on the 
performance of genetic algorithm. If the value of 

cP  and mP  were chosen inappropriately, the 
good genes would be destroyed or hybridize 
with relatives, leading the evolution to premature 
convergence or slow convergence speed. At 
present, there is an effective method that the 
individuals’ crossover/mutation probability is 
often determined by their fitness value in the 
evolution. This paper adopts the strategy of 
adaptively linear adjusting icP , and imP , , and 
adjusting formula (2) and (3) are as follows: 
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Among the formula (2) and (3): 
min,max, / cc PP represent the maximum/minimum 

crossover probability, 10 max,min, ≤≤≤ cc PP ;  

min,max, / mm PP represent the maximum/minimum 
mutation probability, 10 max,min, ≤≤≤ mm PP ;  

minmax ,, FFF avg  represent the maximum/average/ 
minimum fitness respectively;  

)~1( MiFi = represent the thi  individual’s 
fitness. 
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From the formula (2) and (3), we can see 
that the values of icP ,  and imP ,  will increase 
when maxF  is close to avgF , in order to ensure 
the population diversity, so icP ,  and imP ,  have 
inverse ratio with avgFF −max . On the contrary, 
the values of cP  and mP  have direct ratio with 

iFF −max . 

3 An Aeroelastic Optimization Example of 
Composite Wing  

In order to demonstrate the IAGA’s 
validity, the IAGA has been tested on an 
aeroelastic optimization of composite wing, and 
the optimization results have been compared 
with that of SGA.  

The finite element model of composite 
wing is shown in figure 2. The model contains 
1263 nodes and 2821 elements. 558 skin 
elements have been selected as optimal design 
variable units from the above and below wing 
skins, which can be seen from figure 2. The 
design variables are the adding layers’ thickness 

tΔ  and the adding layers’ angle 
)9090( °≤≤°− αα   from the 558 skin elements, 

and the optimal design space is calculated as 
huge as 5582180 × . The optimization objective is 
to target the wing’s flutter speed smV f /340≥  
under the constraint condition of every element 
layer’s thickness being less than 15 millimeter. 
In the optimal computing, 1% total weight 
volume was added every optimal step until the 
result met the design requirements. The table 1 
shows the operating parameters of SGA and 
IAGA. 

The SGA operators and IAGA operators 
were integrated into the high performance 
parallel computing platform respectively for 
optimization, and the parallel computers’ 
configurations are as follows: CPU--Intel Core2 
Duo E8600(3.33GHz)，HD--320GB，RAM-
2GB. 

 
Fig. 2 the wing model and optimal design elements 

 
Table 1 the operating parameters of SGA and IAGA 

Algorithm 
parameter 

SGA IAGA 

Population 
size/M 

M=600 300,600 minmax == MM

Crossover 
probability/Pc 

Pc=0.8 5.0,8.0 min,max, == cc PP

Mutation 
probability/Pm

Pm=0.01 
05.0max, =mP  

005.0min, =mP  

Inner 
circulation 

generation/N 
15 10 

Others  κ =1.0 
 

The figure 3 shows the optimization results 
of SGA optimization and IAGA optimization, 
respectively. 

Firstly, from the figure 3, we can see that 
the flutter speed reaches to 340.94m/s after 16 
IAGA optimal steps, while the SGA needs 22 
steps coming to the same goal. Here a step 
means maxN  evolution generation of inner 
circulation, shown in figure 1. Therefore it’s not 
difficult to learn that the IAGA’s optimization 
ability exceeds that of the SGA greatly, i.e. the 
SGA’s premature convergence is improved by 
the IAGA effectively. 
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Fig. 3 the optimization results of SGA and IAGA 

 
Secondly, from the optimization process of 

figure 3, the IAGA optimization curve has been 
rose steadily step by step, which could be 
ascribed to the algorithm stability. However, the 
optimization process seems fluctuate for SGA, 
which could be due to the unreasonable 
distribution of local stiffness in the optimization, 
leading to the change of wing’s flutter mode. 
Therefore the phenomenon could be accounted 
for the IAGA’s better stability than that of SGA 
in the optimization.  

Thirdly, The IAGA optimization spends 
1680 minutes for 16 steps i.e. 105 minutes for 
each step, while the SGA optimization spends 
2970 minutes for 22 steps i.e. 135 minutes for 
each step. Compared with SGA optimization 
efficiency, the IAGA has increased by 43.43%. 
Therefore we can see that the IAGA, with the 
strategy of dynamically adjusting population 
size, could decrease the computing time in 
optimization greatly, i.e. increase the 
optimization efficiency substantially. 

 

4 Conclusions 
In summary, the IAGA could improve the 
premature convergence of SGA as well as the 
global optimal precision effectively; the 
optimization process of IAGA appears better 
stability; the IAGA spends less time than SGA 
on optimization, yet a same result. The IAGA 

has more practical application value for that 
optimization with huge scale design variables 
and complex structure. 
This research is supported by the Major 
Program of the National Natural Science 
Foundation of China (Grant No.91330206).  
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