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Abstract

Range maximization for aircraft in cruise
[flight by the throttle control system is
considered. The full problem is decomposed
into two sub-problems: finding the optimal
cruise speed and the transition to the optimal
cruise speed from non-optimal conditions.
Dynamic Programming solves the first sub-
problem whereby we directly find the most
economic cruise velocity. For the second sub-
problem, Approximate Dynamic Programming
method is proposed. Numerical example is
used to demonstrate the approach.

1 Introduction

Cruise optimization has the potential for saving
significant amount of fuel both for civil and
military applications. As the air traffic control
requires that aircraft should hold specific
altitudes, the optimization problem at a constant
altitude is of great importance.

Bryson [1], was probably the first to formulate
the problem of cruise flight at a constant altitude
in the framework of Optimal Control Theory. In
his work, the objective is to optimize a given
performance index. He analyzed the following
cases: maximum range, minimum direct
operating cost and minimum fuel with fixed
arrival time. In cruise flight at a constant
altitude (and constant heading), the only control
variable left is thrust, which appears linearly in
the equations of motion, as well as on the

performance indices to be optimized; as a
consequence, the Hamiltonian of the problem is
also linear on the control variable, leading to a
singular optimal control problem.

Many researchers have followed Bryson's
steps over the past five decades ([2-6] are just a
few representative examples). More recently,
Pargett and Ardema [7] analyzed the problem of
range maximization in cruise flight at a fixed
altitude. The problem was formulated with two
states - airspeed and mass - and one control -
throttle setting. They show that it is a singular
optimal control problem with singular arc. The
Maximum Principle does not directly provide
the optimal solution, so the Kelley condition is
used to identify the singular arc. Alternatively,
they have use Green's theorem to obtain the
same results. Numerical examples, using the
Boeing 747-400 aircraft, show that the fuel
saving is about 7% , relative to the current
constant cruise speed. Rivas and Valenzuela [8]
generalized the analysis of the singular optimal
control problem, by considering a general drag
polar, so that compressibility effects are taken
into account. Numerical results are provided for
a model of a Boeing 767-300ER aircraft. The
results show that compressibility effects are
very important; the differences with the
incompressible case are shown to be not only
quantitative, but also qualitative. Precise
modeling of the system is therefore of extreme
importance.

The basic approach in the present paper is
different from all previous works (known to the
writers) on this problem. It proposes the use of
dynamic programming (DP) for the cruise
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optimization problem. This approach can be
used in open or in closed loop. For example, if
in flight after a long turn, or after altitude
changing (or for any other reason), there exists a
difference between the current speed and
optimal speed (calculated, as will be shown
later, in open loop by dynamic programming),
the objective of the proposed algorithm is to
reduce this difference, by implementing closed-
loop throttle control in a most efficient way.

The full problem is decomposed into two sub-
problems: (a) finding the optimal cruise speed,
and (b) sub-optimal reaching/tracking the
optimal cruise speed, from non-optimal
conditions. Dynamic Programming (DP) can
solve both sub-problems. However, the
computation cost of dynamic programming is
very high, as a result of the “curse of
dimensionality”. Moreover, the models of the
aircraft are highly complicated, and those of the
environment are not always available a priory.
Therefore, for Sub-problem (a) Dynamic
Programming is used, whereas for Sub problem
(b) we propose the use of Approximate
Dynamic Programming (ADP), which is based
on Dynamic Programming, but learns on-line
from its own mistakes through the
reinforcement signal from the obtained
performance.

An illustrative example of F-6 aircraft in cruise
flight is given, whereby the obtained solution is
compared with direct trajectory optimization.

2 Problem Formulation

2.1 Modeling

A cruise flight for an aircraft at a constant
altitude is assumed. The point-mass equations of
motion are, as follows:

1% :l(T(V,R)cosa—D(V,a'))
m

m=—ff(V,R)
x=V
mg =L(\V,x)+T(V,R)sino
(1)
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where:

V- velocity,

m- mass,

x- distance,

T- thrust force,

L- lift force,

D- drag force,

ff - fuel flow,

R - throttle setting,
a- angle of attack.

The angle-of-attack is determined by the 4™
(algebraic) equation, imposing a fixed altitude.
Thus, there are three dynamic states, the speed
(V), the aircraft mass (m) and the distance (x),
and one control — the throttle setting (R). The
initial values of speed, aircraft mass, and
distance are given.

In this formulation, the drag is a general
function D(V,a) of the speed and the angle-of-
attack. Similarly, the lift is a general function
L(V,a) of the speed and the angle-of-attack. The
thrust 7(V,R), and the fuel-flow ff(V,R), are both
functions of the speed and throttle setting. It is
important to note that these four functions are
typically quite complex, obtained in a tabular
form, and are based on intensive wind-tunnel
and engine altitude chamber tests. Thus, in the
following modeling and simulations (unless
otherwise specified), they will also be
represented in a tabular form. The numerical
calculations are performed by the interpolation
of several arguments.

2.2 Optimization Problem

The maximal range problem consists in finding
the optimal throttle control that, for a given
terminal mass my maximizes the following
performance index:

P=|: (x, =) :l

O =) @

Note that, under this formulation, # is free, and
so are Vyand xr Alternatively, a fixed-range

problem may be specified, where the consumed

2



fuel will be minimized. Evidently, both
problems are equivalent.

3 Optimal Cruise Speed

The aim of this paper is the generation of
optimal throttle command for economic cruise
(maximal distance for a given amount of fuel) at
a given altitude. As discussed above, the
optimal control problem is typically a singular
one and its solution cannot be easily obtained,
certainly in closed loop (a requirement for real-
time applications).

Due to the complexity of the problem, a two-
step approximate solution is proposed. First, a
simpler optimal cruise speed search is sought by
Dynamic Programming. In the second step (next
section), sub-optimal throttle autopilots that
reach the desired speed and track this speed are
designed by Approximate Dynamic
Programming. It will be demonstrated that this
two-step solution approximates well the optimal
solution.

3.1 Finding the Optimal Cruise Speed by
Dynamic Programming

The fuel consumption per kilometer, for varying
speed and mass, are used as the basis for the
optimal speed determination in aircraft cruise
flight. The program of an optimal cruise
speeds, as a function of the mass m, and the
altitude H (i.e. V (m, H)), is thereby constructed.
The Dynamic Programming (DP) method is
proposed for the optimal velocity search.
Dynamic Programming is a step-by-step
planning of the multistage process, whereby at
each stage a single step is optimized.
Continuity of the velocity profile will be
enforced by the following approach. The aircraft
mass is considered in discrete values (steps),
between the given initial and terminal values
(Fig. 1). A cost function is defined as the sum,
over all steps, of the fuel expenditure per unit
distance. For each value, the DP approach
chooses the optimal speed that takes us to the
next value while minimizing the residual cost.
Throughout each step, the aircraft, starting with
the flight speed under consideration, reaches
and maintains the previously calculated
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reference speed. In this way the continuity of
the velocity is guaranteed.

As a numerical example, calculations were
performed for the F-6 aircraft in cruise flight at
the altitude of 5000 ft (the simulated full aircraft
model is given in [9]). To this end, a six-degree-
of-freedom (6DOF) simulation code has been
employed. All aerodynamic coefficients, thrust,
fuel consumption, etc., were used in a detailed
tabular form. The initial and terminal masses
were 32000 1b and 27000 1b, respectively. The
incremental mass value is 1000 1b. The feasible
speed range is between 540 ft/s to 710 ft/s, with
incremental values taken every 10 ft/s. As a first
step, the (terminal) optimal speed for the
minimal value m, is evaluated. The fuel
expenditure per unit distance /, is minimized by
a static optimization problem:

I =ff1V 3)

Fig. 2 shows that, for 27000 Ib, the optimal
speed is V=610 ft/s.

After the cost at the end point is calculated,
intermediate calculations are initiated. The
calculation process is performed in the
backward direction. Thus, the speed transition
during fuel usage of 1000 Ib is evaluated for the
transition from State (i-1) to State (i) (the state
(i-1) being defined by mass W(i-1)=W(i)+1000
Ib). Different speeds for (i-1) are considered,
and the corresponding transitions to state (i),
with its previously calculated speed is
evaluated. A simplified throttle autopilot for the
speed control (standard proportional + integral)
is used during transitions.

For each speed transition, the incremental cost
function is calculated by the following formula:

. AFuel
AX 4)

where:

AX _ aircraft distance during transition.

AFuel _ ymount of fuel used during transition.
Finally, the optimal speed is selected by the
minimization of the residual cost:

Infl = rnfl—m +1 n (5)

This process continues until the maximal
(initial) mass is reached (Fig. 3). The resulting



optimal cruise speed as function of mass is
shown in Fig. 4.

3.2 Optimal program based on quasi-static
flight

To check the validity of the optimal program
V(m), calculated by DP, it is compared with
the standard quasi-static flight calculations.

The specific fuel consumption is defined as

m
C=—

T (©)
Assume (for trimming purposes only) a=0, and
let # =D/L, then

T=D=BL=pW;, W=mg )
The fuel used per unit distance becomes:
dm _m T _cpW
dx Vv Vv Vv (8)
As the aircraft travels a distance dx, its mass
changes from m to m+dm, where

dm = —(ﬂj dx
4 ©)

The specific range x; is defined as the distance
traveled per unit mass of fuel used, thus

de V

X, = =
dm cpW (10)
The optimal speed can be found such that x; is
maximized. Note that the results of these
calculations are based only on trimmed state
(quasi-static check) and, therefore, are
approximate. Fig. 5 compares (for F-6 at 5000
ft) the optimal speed program calculated by DP
and by the quasi-static check formula. As
shown, the optimal speeds calculated by DP
method are higher than the quasi-static optimal
speeds. The DP method provides the more
accurate results, since it takes into account the
fuel expenditure during transitions. This fact
will be substantiated below by comparing the
results with the numerical optimal results.
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4 Cruise Speed Transition

In this step, the problem consists in constructing
a closed loop control law for the throttle setting,
when a deviation of the cruise speed from the
optimal (pre-planned) speed is present. That
may be the case when, for example, the aircraft
needs to increase its speed after a long turn (in
patrolling aircraft, this could happen very
frequently), or after a long climb. The problem
here is how to do it optimally.

4.1 Formulating the Speed Transition
Problem

Rewriting the equations of motion for cruise at
constant altitude:

Vzl{HWRkwa—DW¢m
m

m=—ff(V,R)
x=V
mg=LV,x)+T(V,R)sin
(11
Define the right-hand side of first equation as:

l(T(V,R) -D(V,a)cos) = f,
m

(12)
and the right-hand side of the second equation
as:

The optimal problem for the speed transition to

the optimal speed V(m) consists in minimizing
the cost

where
1= | fut
0 (15)

[Imm
L= [ (vV@-Vm)dt
0 (16)
tuans 1S the transition time and € is a weighting
coefficient.
The first term represents the consumed fuel,
whereas the second term determines the
difference between the actual speed and the
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desired speed. The problem consists in finding
the throttle setting R (preferably in feedback
form) that provides the minimal value for the
cost (14).

4.2 Solving the Speed Transition Problem by
DP

The first approach to this sub-problem, as in the
previous sub-problem, may be Dynamic
Programming (Fig. 6). Thus, when a deviation
of the speed V from the optimum speed of flight
is identified, a search for an optimal throttle
setting is performed. This throttle setting should
provide the minimum value for the cost (14),
which becomes, in discrete form

I=(1-€)-) f,At+e- Y (V=V, (m))*At

(17)

The optimal cost is a function of the 2-
dimensional state (V,m) (also called "optimal
return function"). Similar to the above (5), the
optimal throttle is selected by the minimization
of the residual cost. As this is a standard well-
known technique, it will not be presented here
(see [9] for the details).
For example, F-6 aircraft flying at constant
altitude h=5000ft is considered. The initial
speed is Vyp=500 ft/sec, and the initial mass
mp=29500 Ib. The quasi-static optimal speed for
these altitude and mass is V,.,= 610 ft/sec (Fig.
5), so an initial deviation from the optimal speed
of 110 ft/sec is present. (Similar results have
been obtained for the DP optimal speed of
630 ft/sec.) The design parameter is &=0.5.
Dynamic Programming throttle control was
used to smoothly decrease this deviation.

The results are compared with a regular
(proportional) controller for throttle of the form:
R=k-(V, -V) (18)

req
The throttle setting and the flight velocity, for
both autopilots) are presented in Fig. 7 and Fig.
8, respectively. The comparison of the dynamic
programming throttle controller with the regular
(proportional) law shows an advantage in
weight after a throttle maneuver: the difference
in weight is 15 1b. Since the total fuel
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consumption for this transition is about 100 Ib,
it results in 15% fuel saving.

The dynamic programming method used here
required a predefined transition time (40 sec in
the above example), and a backward calculation
process to be started from this time. In general,
it is difficult to know the optimal time for the
transition from current speed to optimal speed
and we may need to search for different values.
A second limitation is that the computation cost
of dynamic programming is very high; a grid for
speeds and masses should be defined, and the
calculations are performed for each
combination. As a result, we are faced with
“curse of dimensionality” problem. To resolve
the problem, an Approximate Dynamic
Programming method is considered next.

4.3 Solving the Speed Transition Problem by
SARSA

SARSA (State-Action-Reward-State-Action)
controller [10] aims in finding optimal throttle
control to minimize the cost (14). The penalty
function for each step of transition is defined as
follows:

— —_— . : - 2
r=(-¢&)-AFuel+&-(V-V,,) (19)

The scheme of the SARSA algorithm is
presented in Fig. 9.

SARSA is based on learning the state-action
value function (Q-function), which is the
residual cost, obtained after using the control
(action) a,=a(t) for the state s;=s(¢). It can be
employed either in real time using flight data, or
off-line, using simulated data. During the
learning process, SARSA does not assume that
the optimal policy is imposed after a one-time
step. The update rule is:

O(s,»a,) = Q(s,.a,) + A1, + 7Q(s,,1.4,,,) — O(s,.4,))
(20)

where 7,7 is the cost of transition from state ¢ to
state #+1, chosen according to a greedy policy
(i.e. minimizing r,; without considering the
future). The design parameter A is the learning
rate, and y is a discount factor (unity in our
case).



SARSA uses the concept of learning in
episodes, in which there is a terminal state, and
the episode terminates when this terminal state
is reached.
In our case, the state space is divided into a
finite number of intervals for the mass and the
speed. Q values are initialized for all states to
some arbitrary values. For each episode, the
following sequence is repeated:
e Initialize time 7, start the episode
with initial speed
e Select throttle action @, via greedy
exploration on 7,
e Simulate the action a;, and let the
next state be s, ;
e Select the action a;; via greedy
exploration
e Update Q-factor Q(s,a,) using (20)
e If s,.; is a terminal state, terminate
the current episode; otherwise,
continue within the episode.

For example, the F-6 cruise flight at 5000ft
altitude is reconsidered. The initial speed is
600ft/s, and the optimal speed, for this aircraft
mass (32000 1b.), is 660ft/s.

First we set e=/. Thus only the difference
between the current and the reference speed
appears in the penalty function:

r=(V-V,)-e e

Fig. 10, Fig. 11 and Fig. 12 present the Q-
function, calculated after 1 episode, 2 episodes,
and 10 episodes, respectively. Note that this is
presented for a given initial mass (32000 1b). As
episodes number increases, the Q-function is
calculated more accurately.

By changing ¢, the relation between fuel used
and difference between reference speed and
current speed, we get different penalty
functions. Fig. 14 and Fig. 15 present the Q-
functions and the controls for two other value of
e: 0.4 and 0.8, respectively. Clearly, the results
depend on this design parameter.

4.4 Comparison with Optimal Numerical
Results

In order to validate the current approach, some
reference solutions have been obtained using a
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Pseudo-Spectral (PS) method. PS optimal
control is a direct computational method for
solving complex nonlinear optimal control
problems. The PS method approximates the
state and control variables by a set of
polynomials with domain over the entire
elapsed time. The states and controls are
represented by discrete values at N+ 1 points.
These points are calculated numerically. In this
research work the code GPOPS [11] has been
used.

The following are the initial conditions:

V, =500 ]%

m, =320001b

x,=0ft
Figs. 16 -18 compare the mass, velocity and the
throttle, respectively, for the PS numerical

solution and the DP with€ =1 . As seen from
the graph, the solutions for both methods are
very close.
Remarks:
a. The small difference between the results
is inevitable, because the model used in the
PS solution is an approximated model (for
the drag, lift, fuel flow, and thrust). It is very
complicated, and difficult in
implementation, to use the full aircraft
model in the GPOPS tool.
b. As aresult, the optimal speed from DP is
650 ft/sec, whereas GPOPS predicts 675
ft/sec. The "true" optimal cruise lies
between these values. Note that the quasi-
static optimization (Section 3b) yields an
even slower cruise speed (640 ft/sec).
To estimate the benefits of optimal cruise, a
constant mean-value speed of 650 ft/sec is also
considered. After 1 hour and 12 min. (4360 sec)
the mass for constant speed flight reaches 28000
Ibs. At this time, DP and GPOPS masses are
about 28300 Ibs. The fuel saving by the optimal
solutions is, therefore, 7.5% (similar to the
results of [7]). Moreover, the cruise range under
constant speed (consuming 4000 1b. of fuel) is
2.82 10° ft. For the same amount of fuel, the DP
and GPOPS solutions cruise ranges reach 2.96
10° ft. - an increase of 4.8%(!). This result
clearly justifies the effort of using optimal
policies.



5 Conclusions

Range maximization in cruise flight by the
throttle control system is a singular optimal
control problem. Rather than employing
singular control techniques, the problem was
solved by Dynamic Programming and
Approximated Dynamic Programming. To
overcome the curse-of-dimensionality, the full
problem was decomposed into two sub-
problems: finding the optimal cruise speed and
the transition to the optimal cruise speed from
non-optimal conditions. Dynamic Programming
solves the first sub-problem off line to produces
a flight plan (velocity as a function of altitude
and mass). Approximate Dynamic Programming
method, working on-line, is proposed for the
second sub-problem. After a few flights, the
aircraft will learn what the best policy is and
will adjust itself to it. In case of changes in
aircraft properties, or external environment, the
aircraft will keep adapting its policy. The flight
trajectory will become near optimal in fuel
usage.
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in Fig. 10:
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