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Abstract  

Range maximization for aircraft in cruise 

flight by the throttle control system is 

considered.  The full problem is decomposed 

into two sub-problems: finding the optimal 

cruise speed and the transition to the optimal 

cruise speed from non-optimal conditions. 

Dynamic Programming solves the first sub-

problem whereby we directly find the most 

economic cruise velocity. For the second sub-

problem, Approximate Dynamic Programming 

method is proposed. Numerical example is 

used to demonstrate the approach.   

1  Introduction 

Cruise optimization has the potential for saving 

significant amount of fuel both for civil and 

military applications. As the air traffic control 

requires that aircraft should hold specific 

altitudes, the optimization problem at a constant 

altitude is of great importance.  

Bryson [1], was probably the first to formulate 

the problem of cruise flight at a constant altitude 

in the framework of Optimal Control Theory. In 

his work, the objective is to optimize a given 

performance index. He analyzed the following 

cases: maximum range, minimum direct 

operating cost and minimum fuel with fixed 

arrival time. In cruise flight at a constant 

altitude (and constant heading), the only control 

variable left is thrust, which appears linearly in 

the equations of motion, as well as on the 

performance indices to be optimized; as a 

consequence, the Hamiltonian of the problem is 

also linear on the control variable, leading to a 

singular optimal control problem. 

Many researchers have followed Bryson's 

steps over the past five decades ([2-6] are just a 

few representative examples). More recently, 

Pargett and Ardema [7] analyzed the problem of 

range maximization in cruise flight at a fixed 

altitude.   The problem was formulated with two 

states - airspeed and mass - and one control - 

throttle setting. They show that it is a singular 

optimal control problem with singular arc. The 

Maximum Principle does not directly provide 

the optimal solution, so the Kelley condition is 

used to identify the singular arc. Alternatively, 

they have use Green's theorem to obtain the 

same results. Numerical examples, using the 

Boeing 747-400 aircraft, show that the fuel 

saving is about 7% , relative to the current 

constant cruise speed. Rivas and Valenzuela [8] 

generalized the analysis of the singular optimal 

control problem, by considering a general drag 

polar, so that compressibility effects are taken 

into account.  Numerical results are provided for 

a model of a Boeing 767-300ER aircraft. The 

results show that compressibility effects are 

very important; the differences with the 

incompressible case are shown to be not only 

quantitative, but also qualitative. Precise 

modeling of the system is therefore of extreme 

importance.  

The basic approach in the present paper is 

different from all previous works (known to the 

writers) on this problem. It proposes the use of 

dynamic programming (DP) for the cruise 
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optimization problem.  This approach can be 

used in open or in closed loop. For example, if 

in flight after a long turn, or after altitude 

changing (or for any other reason), there exists a 

difference between the current speed and 

optimal speed (calculated, as will be shown 

later, in open loop by dynamic programming), 

the objective of the proposed algorithm is to 

reduce this difference, by implementing closed-

loop throttle control in a most efficient way.   

The full problem is decomposed into two sub-

problems: (a) finding the optimal cruise speed, 

and (b) sub-optimal reaching/tracking the 

optimal cruise speed, from non-optimal 

conditions. Dynamic Programming (DP) can 

solve both sub-problems. However, the 

computation cost of dynamic programming is 

very high, as a result of the “curse of 

dimensionality”. Moreover, the models of the 

aircraft are highly complicated, and those of the 

environment are not always available a priory. 

Therefore, for Sub-problem (a) Dynamic 

Programming is used, whereas for Sub problem  

(b) we propose the use of Approximate 

Dynamic Programming (ADP), which is based 

on Dynamic Programming, but learns on-line 

from its own mistakes through the 

reinforcement signal from the obtained 

performance.  

An illustrative example of F-6 aircraft in cruise 

flight is given, whereby the obtained solution is 

compared with direct trajectory optimization.  

2  Problem Formulation  

2.1 Modeling  

A cruise flight for an aircraft at a constant 

altitude is assumed. The point-mass equations of 

motion are, as follows:  
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where: 

 

V- velocity,  

m- mass, 

x- distance, 

T- thrust force, 

L- lift force, 

D- drag force, 

ff - fuel flow, 

R - throttle setting, 

α- angle of attack. 
 

The angle-of-attack is determined by the 4
th

 

(algebraic) equation, imposing a fixed altitude.  

Thus, there are three dynamic states, the speed 

(V), the aircraft mass (m) and the distance (x), 

and one control – the throttle setting (R).  The 

initial values of speed, aircraft mass, and 

distance  are given. 

In this formulation, the drag is a general 

function D(V,α) of the speed and the angle-of-

attack. Similarly, the lift is a general function 

L(V,α) of the speed and the angle-of-attack.  The 

thrust T(V,R), and the fuel-flow ff(V,R), are both 

functions of the speed and throttle setting. It is 

important to note that these four functions are 

typically quite complex, obtained in a tabular 

form, and are based on intensive wind-tunnel 

and engine altitude chamber tests. Thus, in the 

following modeling and simulations (unless 

otherwise specified), they will also be 

represented in a tabular form. The numerical 

calculations are performed by the interpolation 

of several arguments.  

2.2 Optimization Problem 

The maximal range problem consists in finding 

the optimal throttle control that, for a given 

terminal mass mf, maximizes the following 

performance index: 

0
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Note that, under this formulation, tf is free, and 

so are Vf and xf.  Alternatively, a fixed-range 

problem may be specified, where the consumed 
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fuel will be minimized. Evidently, both 

problems are equivalent. 

3 Optimal Cruise Speed 

The aim of this paper is the generation of 

optimal throttle command for economic cruise 

(maximal distance for a given amount of fuel) at 

a given altitude.  As discussed above, the 

optimal control problem is typically a singular 

one and its solution cannot be easily obtained, 

certainly in closed loop (a requirement for real-

time applications).  

Due to the complexity of the problem, a two-

step approximate solution is proposed.  First, a 

simpler optimal cruise speed search is sought by 

Dynamic Programming. In the second step (next 

section), sub-optimal throttle autopilots that 

reach the desired speed and track this speed are 

designed by Approximate Dynamic 

Programming.  It will be demonstrated that this 

two-step solution approximates well the optimal 

solution.  

3.1 Finding the Optimal Cruise Speed by 

Dynamic Programming  

The fuel consumption per kilometer, for varying 

speed and mass, are used as the basis for the 

optimal speed determination in aircraft cruise 

flight.  The program of an optimal cruise 

speeds, as a function of the mass m, and the 

altitude H (i.e. V (m, H)), is thereby constructed. 

The Dynamic Programming (DP) method is 

proposed for the optimal velocity search. 

Dynamic Programming is a step-by-step 

planning of the multistage process, whereby at 

each stage a single step is optimized.   

Continuity of the velocity profile will be 

enforced by the following approach. The aircraft 

mass is considered in discrete values (steps), 

between the given initial and terminal values 

(Fig. 1). A cost function is defined as the sum, 

over all steps, of the fuel expenditure per unit 

distance.  For each value, the DP approach 

chooses the optimal speed that takes us to the 

next value while minimizing the residual cost.  

Throughout each step, the aircraft, starting with 

the flight speed under consideration, reaches 

and maintains the previously calculated 

reference speed. In this way the continuity of 

the velocity is guaranteed.   

 As a numerical example, calculations were 

performed for the F-6 aircraft in cruise flight at 

the altitude of 5000 ft (the simulated full aircraft 

model is given in [9]). To this end, a six-degree-

of-freedom (6DOF) simulation code has been 

employed. All aerodynamic coefficients, thrust, 

fuel consumption, etc., were used in a detailed 

tabular form. The initial and terminal masses 

were 32000 lb and 27000 lb, respectively. The 

incremental mass value is 1000 lb. The feasible 

speed range is between 540 ft/s  to 710 ft/s, with 

incremental values taken every 10 ft/s. As a first 

step, the (terminal) optimal speed for the 

minimal value mn. is evaluated. The fuel 

expenditure per unit distance In is minimized by 

a static optimization problem: 

/nI ff V=
    (3) 

Fig. 2 shows that, for 27000 lb, the optimal 

speed is V=610 ft/s. 

After the cost at the end point is calculated, 

intermediate calculations are initiated. The 

calculation process is performed in the 

backward direction. Thus, the speed transition 

during fuel usage of 1000 lb is evaluated for the 

transition from State (i-1) to State (i) (the state  

(i-1) being defined by mass W(i-1)=W(i)+1000 

lb). Different speeds for (i-1) are considered, 

and the corresponding transitions to state (i),  

with its previously calculated speed is 

evaluated.  A simplified throttle autopilot for the 

speed control (standard proportional + integral) 

is used during transitions.  

For each speed transition, the incremental cost 

function is calculated by the following formula:  

Fuel
r

X

∆
=

∆      (4) 

where: 

X∆ - aircraft distance during transition. 

Fuel∆ - amount of fuel used during transition. 

Finally, the optimal speed is selected by the 

minimization of the residual cost: 
*

1 1n n n nI r I− − →= +
     (5) 

This process continues until the maximal 

(initial) mass is reached (Fig. 3). The resulting 
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optimal cruise speed as function of mass is 

shown in Fig. 4.  

 

3.2 Optimal program based on quasi-static 

flight 

To check the validity of the optimal program 

V(m), calculated by DP, it is  compared  with 

the standard quasi-static flight calculations.   

The specific fuel consumption is defined as 

T

m
c

&
=

     (6) 

Assume (for trimming purposes only) α=0, and 

let β =D/L, then 

;T D L W W mgβ β= = = ≡
 (7) 

The fuel used per unit distance becomes: 

dm m cT c W

dx V V V

β
= = =

&

   (8) 

As the aircraft travels a distance dx, its mass 

changes from m to m+dm,  where 

c W
dm dx

V

β 
= − 

      (9) 

The specific range xs  is defined as the distance 

traveled per unit mass of fuel used, thus 

s

dx V
x

dm c Wβ
≡ − =

   (10) 

The optimal speed can be found such that xs is 

maximized. Note that the results of these 

calculations are based only on trimmed state 

(quasi-static check) and, therefore, are 

approximate.  Fig. 5 compares (for F-6 at 5000 

ft) the optimal speed program calculated by DP 

and by the quasi-static check formula. As 

shown, the optimal speeds calculated by DP 

method are higher than the quasi-static optimal 

speeds. The DP method provides the more 

accurate results, since it takes into account the 

fuel expenditure during transitions. This fact 

will be substantiated below by comparing the 

results with the numerical optimal results. 

 

4 Cruise Speed Transition  

In this step, the problem consists in constructing 

a closed loop control law for the throttle setting, 

when a deviation of the cruise speed from the 

optimal (pre-planned) speed is present.  That 

may be the case when, for example, the aircraft 

needs to increase its speed after a long turn (in 

patrolling aircraft, this could happen very 

frequently), or after a long climb.   The problem 

here is how to do it optimally. 

4.1 Formulating the Speed Transition 

Problem  

Rewriting the equations of motion for cruise at 

constant altitude: 

1
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Define the right-hand side of first equation as:  

1

1
( ( , ) ( , ) cos )T V R D V f

m
α α− ≡

  
     (12) 

and the right-hand side of the second equation 

as: 

2
( , )ff V R f− ≡

  (13) 

The optimal problem for the speed transition to 

the optimal speed V(m) consists in minimizing 

the cost 

21 )1( III ⋅+−= εε    (14) 
where 

1 2

0

transt

I f dt= ∫
    (15) 

2

2

0

( ( ) ( ))
transt

I V t V m dt= −∫
   (16) 

ttrans is the transition time and ε  is a weighting 

coefficient. 

The first term represents the consumed fuel, 

whereas the second term determines the 

difference between the actual speed and the 
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desired speed. The problem consists in finding 

the throttle setting R (preferably in feedback 

form) that provides the minimal value for the 

cost (14). 

4.2  Solving the Speed Transition Problem by 

DP 

The first approach to this sub-problem, as in the 

previous sub-problem, may be Dynamic 

Programming (Fig. 6). Thus, when a deviation 

of the speed V from the optimum speed of flight  

is identified, a search for an optimal throttle 

setting is performed. This throttle setting should 

provide the minimum value for the cost (14), 

which becomes, in discrete form 

  
2

2(1 ) ( ( ))req

j j

I f t V V m tε ε= − ⋅ ∆ + ⋅ − ∆∑ ∑
  

     (17) 

The optimal cost is a function of the 2-

dimensional state (V,m) (also called "optimal 

return function"). Similar to the above (5), the 

optimal throttle is selected by the minimization 

of the residual cost.  As this is a standard well-

known technique, it will not be presented here 

(see [9] for the details).   

 For example, F-6 aircraft flying at constant 

altitude h=5000ft is considered. The initial 

speed is V0=500 ft/sec, and the initial mass 

m0=29500 lb. The quasi-static optimal speed for 

these altitude and mass is Vreq= 610 ft/sec (Fig. 

5), so an initial deviation from the optimal speed 

of 110 ft/sec is present. (Similar results have 

been obtained for the DP optimal speed of  

630 ft/sec.) The design parameter is ε=0.5.  

Dynamic Programming throttle control was 

used to smoothly decrease this deviation.   

The results are compared with a regular 

(proportional) controller for throttle of the form: 

)( VVkR req −⋅=
    (18) 

The throttle setting and the flight velocity, for 

both autopilots) are presented in Fig. 7 and Fig. 

8, respectively. The comparison of the dynamic 

programming throttle controller with the regular 

(proportional) law shows an advantage in 

weight after a throttle maneuver: the difference 

in weight is 15 lb. Since the total fuel 

consumption for this transition is about 100 lb, 

it results in 15% fuel saving.  

The dynamic programming method used here 

required a predefined transition time (40 sec in 

the above example), and a backward calculation 

process to be started from this time. In general, 

it is difficult to know the optimal time for the 

transition from current speed to optimal speed 

and we may need to search for different values. 

A second limitation is that the computation cost 

of dynamic programming is very high; a grid for 

speeds and masses should be defined, and the 

calculations are performed for each 

combination. As a result, we are faced with 

“curse of dimensionality” problem. To resolve 

the problem, an Approximate Dynamic 

Programming method is considered next.     

4.3  Solving the Speed Transition Problem by 

SARSA 

SARSA (State-Action-Reward-State-Action) 

controller [10] aims in finding optimal throttle 

control to minimize the cost (14). The penalty 

function for each step of transition is defined as 

follows: 
2(1 ) ( )refr Fuel V Vε ε= − ⋅ ∆ + ⋅ −
  (19) 

The scheme of the SARSA algorithm is 

presented in Fig. 9.  

 

SARSA is based on learning the state-action 

value function (Q-function), which is the 

residual cost, obtained after using the control 

(action) at=a(t)  for the state st=s(t).  It can be 

employed either in real time using flight data, or 

off-line, using simulated data. During the 

learning process, SARSA does not assume that 

the optimal policy is imposed after a one-time 

step. The update rule is: 

 

1 1 1( , ) ( , ) ( ( , ) ( , ))t t t t t t t t tQ s a Q s a r Q s a Q s aλ γ+ + += + + −
  

(20) 

where rt+1 is the cost of transition from state t to 

state t+1,  chosen according to a greedy policy 

(i.e. minimizing rt+1 without considering the 

future).  The design parameter λ is the learning 

rate, and γ is a discount factor (unity in our 

case). 
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SARSA uses the concept of learning in 

episodes, in which there is a terminal state, and 

the episode terminates when this terminal state 

is reached. 

In our case, the state space is divided into a 

finite number of intervals for the mass and the 

speed. Q values are initialized for all states to 

some arbitrary values. For each episode, the 

following sequence is repeated: 

• Initialize time t , start the episode 

with initial speed 

• Select throttle action at   via greedy 

exploration on rt+1   

• Simulate the action at, and let the 

next state be st+1   

•  Select the action at+1 via greedy 

exploration  

• Update Q-factor Q(st,at) using (20) 

• If st+1 is a terminal state, terminate 

the current episode; otherwise, 

continue within the episode.   

For example, the F-6 cruise flight at 5000ft 

altitude is reconsidered.  The initial speed is 

600ft/s, and the optimal speed, for this aircraft 

mass (32000 lb.), is 660ft/s.  

First we set ε=1. Thus only the difference 

between the current and the reference speed 

appears in the penalty function: 

ε⋅−= 2)( refVVr
   (21) 

Fig. 10, Fig. 11 and Fig. 12 present the Q-

function, calculated after 1 episode, 2 episodes, 

and 10 episodes, respectively. Note that this is 

presented for a given initial mass (32000 lb). As 

episodes number increases, the Q-function is 

calculated more accurately. 

By changing ε, the relation between fuel used 

and difference between reference speed and 

current speed, we get different penalty 

functions. Fig. 14 and Fig. 15 present the Q-

functions and the controls for two other value of 

ε: 0.4 and 0.8, respectively.  Clearly, the results 

depend on this design parameter. 

4.4  Comparison with Optimal Numerical 

Results 

 

In order to validate the current approach, some 

reference solutions have been obtained using a 

Pseudo-Spectral (PS) method. PS optimal 

control is a direct computational method for 

solving complex nonlinear optimal control 

problems. The PS method approximates the 

state and control variables by a set of 

polynomials with domain over the entire 

elapsed time.  The states and controls are 

represented by discrete values at N+ 1 points. 

These points are calculated numerically. In this 

research work the code GPOPS [11] has been 

used.  

The following are the initial conditions: 

ftx

lbm

s
ft

V

0

32000

500

0

0

0

=

=

=

 
Figs. 16 -18 compare the mass, velocity and the 

throttle, respectively,  for the PS numerical 

solution and the DP with 1ε =  . As seen from 

the graph, the solutions for both methods are 

very close. 

Remarks:  

a. The small difference between the results 

is inevitable, because the model used in the 

PS solution is an approximated model (for 

the drag, lift, fuel flow, and thrust). It is very 

complicated, and difficult in 

implementation, to use the full aircraft 

model in the GPOPS tool.  

b. As a result, the optimal speed from DP is 

650 ft/sec, whereas GPOPS predicts 675 

ft/sec. The "true" optimal cruise lies 

between these values. Note that the quasi-

static optimization (Section 3b) yields an 

even slower cruise speed (640 ft/sec).   

To estimate the benefits of optimal cruise, a 

constant mean-value speed of 650 ft/sec is also 

considered.  After 1 hour and 12 min. (4360 sec) 

the mass for constant speed flight reaches 28000 

lbs. At this time, DP and GPOPS masses are 

about 28300 lbs.  The fuel saving by the optimal 

solutions is, therefore, 7.5% (similar to the 

results of [7]). Moreover, the cruise range under 

constant speed (consuming 4000 lb. of fuel) is  

2.82 10
6
 ft. For the same amount of fuel, the DP 

and GPOPS solutions cruise  ranges reach 2.96 

10
6
 ft. - an increase of 4.8%(!). This result 

clearly justifies the effort of using optimal 

policies. 
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5  Conclusions  

 Range maximization in cruise flight by the 

throttle control system is a singular optimal 

control problem. Rather than employing 

singular control techniques, the problem was 

solved by Dynamic Programming and 

Approximated Dynamic Programming. To 

overcome the curse-of-dimensionality, the full 

problem was decomposed into two sub-

problems: finding the optimal cruise speed and 

the transition to the optimal cruise speed from 

non-optimal conditions. Dynamic Programming 

solves the first sub-problem off line to produces 

a flight plan (velocity as a function of altitude 

and mass). Approximate Dynamic Programming 

method, working on-line, is proposed for the 

second sub-problem.  After a few flights, the 

aircraft will learn what the best policy is and 

will adjust itself to it. In case of changes in 

aircraft properties, or external environment, the 

aircraft will keep adapting its policy.  The flight 

trajectory will become near optimal in fuel 

usage.  
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Fig. 1.  Dynamic Programming process for Sub-problem (a) 
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Fig. 2: Cost value at the terminal state 
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Fig. 3: Cost value at intermediate states 
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Fig. 4:   Optimal speed as function of mass 
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Fig.  5:  Optimal speed for DP and quasi static check 

 

 

 

Fig. 6.  Dynamic programming process for Sub-problem (b) 
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Fig. 7.  The comparison between throttle settings of two types of autopilot 

 

 

 

 

 

Fig. 8. The comparison between fuel used by two types of autopilots 
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Fig. 9  SARSA scheme 
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Fig. 10: Q-function for transition from V=600 ft/s to V=660ft/s;   1
st
  episode 
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Fig. 11:  Q-function for transition from V=600 ft/s to V=660ft/s, 2
nd

  episode 
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Fig.  12:  Q-function for transition from V=600 ft/s to V=660ft/s;   10
th

  episodes 

The control after 10 episodes is presented in Fig. 10: 
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Fig. 13:  Control as function of speed for transition from V=600ft/s to V=660ft/s 



DOBROVINSKY, BEN-ASHER 

14 

 

Fig. 14: Q-function dependence on ε  

 

 

 

Fig. 15:  Control as function of ε  
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CRUISE FLIGHT THROTTLE OPTIMIZATION
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Figure 16 Weight calculated by GPOPS versus  DP 
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Figure 17:  Velocity change with respect to time 
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Figure 18:  Throttle GPOPS versus DP with respect to time 

 

 


