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Abstract

This paper presents a dynamic time-series model |y, ly, 17, Jx,

representing the longitudinal attitude movement
of aircraft for a wide range of altitude and ve-
locity. The model consists of a linear time-series
equation of angle of attack and that of pitch rate,
with coefficients depending on air density and
aircraft velocity. It has been developed based
on the results of various flight simulations over
a wide range of altitude, velocity, and maneuver-
ing movement, using the 6-DOF (six-degrees-of-
freedom) nonlinear model of the aircraft. The
model is nonlinear in parameters, which have
been identified with nonlinear optimization to
minimize the same cost function as that used in
predictive control. Thus, the model is suitable to
predictive control of longitudinal movement. The
model accuracy with the 6-DOF model as the ref-
erence is considered satisfactory.

Nomenclature

m : aircraft mass

g : gravity acceleration

pPa : atmosphere (air) density (dependent on al-
titude)

V, : aircraft velocity

F«. Ry, F2 © aerodynamic force components in
the body frame

Th : engine thrust

L, M, N : aerodynamic moment components in
the body frame

U,V,W : velocity components in the body
frame

P, p; Q, g, R r :roll rate; pitch rate; yaw rate

@, 0,y : Eiler angles (roll, pitch, yaw)

a, B : angle of attack, side-slip angle

: moment of inertia and product of
inertia of the aircraft in the body frame

Oth, O : €Nngine thrust command, elevator deflec-
tion

h : altitude (height)

{-}T : transposed vector or matrix

tx :time in sampling interval (0.2 s)

Ax(k,k—i) : difference value of a variablg
between two sampling instants fpf= k and
tc =k—1i,wherek,i=1,2--- andk >1i.

Ax(k) : the same afx(k,k — 1) for x :# &, OF
Ax(k,k—0.5) for x:= &

o{x} : standard deviation of a varialke

1 Introduction

To achieve high performances in flight control of
an aircraft, it is desirable to apply some model-
based control scheme. Model-based predictive
control (MBPC), also known as receding-horizon
control (RHC), is widely applied because it can
incorporate various constraints and its parameters
can be tuned fairly easily in an intuitive way.

The aircraft motion is described most ac-
curately by the six degrees-of-freedom (6DOF)
nonlinear dynamic model [4], as far as aerody-
namic coefficients and other parameters are accu-
rately determined. In some studies on MBPC ap-
plications, this nonlinear model is computed on-
line to obtain optimal control inputs [2, 5]. How-
ever, online computation of the nonlinear model
was reported to suffer heavy computational bur-
den [2, 3]. Moreover, it sometimes involves nu-
merical problems [3]. In addition, it is difficult



to apply linear control techniques to systems de-
scribed by nonlinear models.

Because of these disadvantages, many stud-
ies on MBPC applications use a linear state-space
model for online computation [1, 6]. In most of
the studies, a linear model is obtained by lineariz-
ing the nonlinear model at a certain trim point,
I.e., at a certain flight condition. When the model
is applied to different flight conditions, it be-
comes necessary to have multiple linear models,
each trimmed at each flight condition.

The above linear model, or a set of multiple
linear models, has its drawbacks. Firstly, the lin-
ear model represents small perturbations from a
trimmed flight, steady-state flight with constant
velocity. Large maneuvering movements are out
of scope of the model.

Secondly, in order to cover a wide range of
flight conditions, a large number of linear mod-
els, i.e., a large number of sets of model param-
eters, are required. Letdenote the number of
model parameters at each trimmed point, and
denote the number of trimmed points, then the
total number of parameters beconmes m. This
number could be quite large, making it rather dif-
ficult to tune or modify parameter values by using
actual data. On the other hand, Keviczky, et al.
[3] reported that using multiple models in online
computation may result in a significant computa-
tional overhead coming from the need for inter-
polation over different linear models.

To overcome the drawbacks of both nonlin-
ear and linear models, this paper presents a new
linear time-series model representing longitudi-
nal attitude movements of an aircraft. The model
is linear in variables: angle of attack) pitch
rate () and elevator deflectiord§). The coeffi-
cient of each time-series term is expressed by a
nonlinear continuous equation of air densipy)
and aircraft velocity ;) with parameters to be
identified. The model is nonlinear in these pa-
rameters.

The features and advantages of the model are
described below:

Al One can design various linear control sys-
tems such as MBPC, robust control, etc., by
using this model, because the model is lin-
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ear in variables and because the coefficients
can be set constant at each control instant by
setting all thep; andV, values at the current
value.

A2 The model can be applied to a wide range of
flight conditions and to large maneuvers, be-
cause the model has been identified by using
simulation results of these flights.

A3 The model is most suitable to MBPC, be-
cause the model identification is designed to
minimize the same cost function as that used
in MBPC.

The author previously proposed a control of
flight trajectory for a fixed-wing aircraft [7]. The
control mainly employs PID (Proportional, Inte-
gral, and Differential) control scheme. In order
to achieve better control performances, however,
replacing the PID control with MBPC has been
considered desirable. The model presented here
will be used in the MBPC in the proposed con-
trol.

2 The 6DoF nonlinear dynamic model and
linearized model

Considering the relative motion of the body
frame of fixed-wing aircraft against the inertial
frame, the 6DoF nonlinear dynamic model is ex-
pressed as [4]:

Fc=mU+QW—RV+gsing)—T, (1)
Fy=m(V +RU—PW—gcosdsing)  (2)
F, = m(W+ PV — QU —gcosBcosp) (3)
L= PIX—R\l(z+QR(|Z_Iy)_PQ‘1(Z 4)
M = Qly+PR(x— 1)+ (PP~ R, (5)
N =Rl —PJ;+PQ(ly—Ix) + QRL, (6)
@= P+ Qsingtand + Rcosptan®  (7)
6 = Qcosp— Rsing (8)

The aerodynamic forces and moment of longitu-
dinal movementsFK, F;, M) largely depend on
dynamic pressurg (= 0.5paV2), Va, andde.

Most of model-based flight control algo-
rithms use a linear state-space model. The lin-
ear model is derived by linearizing the nonlin-
ear model of (1) to (8) at a certain steady state
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[4]. The linear state-space model for longitudinal a linear time-series model was determined as
movements is expressed by Nag

Aak) = _Z{aqaiAa(k —i)+agqAq(k—i)}

o — — Ne
XEAXERY © + 3 babdl-05(i-1) (12
whereX =[u ag 64 Q]', (10) =
Y = [&thd Bed]" (11) il - ,
[ ed Agk) = Z{aqaiAa(k— i)+ agqAq(k—i)}
i=
Ne
and where the componentsfandY are devia- + Zlbinée(k— 05(i—1) (13)
tions from the steady-state valuesdf a 6 QJ" i=
and[&n &', respectivelyA andB are matrices where axyi = TxyiPe” (0.01Vy)M (14)
of constant values. byi = fyeip2(0.01Vy)Me (15)

The above linear model is valid only for small
perturbations from a steady state. This suggests

that, in order to control the flights of large ma- | gt eqns. (12, 13) be named as themodel
neuvers, it is desirable to use a different model zpq theq model, respectively.k denotes time
which covers such flights. When MBPC is em- sampling interval of 0.2 s.fxi, Gxzi and hyi
ployed, a time-series model with an appropriate (z:—y ore) are parameters to be identified with
sampling interval is required. the data of flight simulations or actual flights.

Nonlinear identification is necessary as the model

is nonlinear in parameters,yq andne (> 1) are

model orders. Smaller model orders are prefer-
3 Linear time-series model for longitudinal able as far as the model accuracy is satisfactory.

attitude movements

X, y:=0a orqg, (16)

7.0

—om7omys
The aerodynamic forces and moments acting on | i
the aircraft depend on altitude (or air density) _— /| —omzson:
and velocityVs, making it necessary to express 2" B e S s
the coefficients of a linear model to be functions 3 T -

= 10000m,250m/s

of these variables. These functions are desirable
to be simple, having as small parameters as pos-
sible. Yo is 20 s

Fig. 1 and 2 shows the step responsesi of time [s]
andq for various values of altitude (quy) and
Va. It shows that dynamics and steady-state gains
change withp, andV, nonlinearly. From the step
responses, the sampling intervalooindq were
set at 0.2 s. On the other hand, that of the ma-
nipulated variablée was set at 0.1 s so that the
controller could act quickly against abrupt distur-
bances.

Preliminary identification experiments were The data for identification should include a wide
done to examine the accuracy of various differ- range of flights. The following three groups of
ent models. The results show that models with data (Data-C, Data-S and Data-P) were obtained
variablesAa, Ag andAde are better than models  from flight simulations by using the 6 DOF non-
with a, gandde in accuracy improvement. Thus, linear model. The aircraft was chosen to be F-

1.0

Fig. 1 Step responses ofy (deviation ofa);
O¢ deviation:—1 degat =1s

4 Parameter identification

4.1 Flight simulation for identification
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10.0

os Om.70m/z Target and Actual
——0m153m/s Trajectory .-
a0 / —0mn,201m/s I~ !
7.0 / \ —0m,250m/s
w50 .
£ ——6000m,70mys
¥ 5o / /-F-\ ——5000m, 153m/s
Eu' 4.0 / / = = = 10000m 153\.1-1'
i — 2 Vs
w L L | =
— ——10000m,250m/s
2.0 ~ .'.',.-' - ‘“_’tlgﬁ o
0o B
10 15 20 25 20 25 490
time [s]

Fig. 2 Step responses qf
O deviation:—1 deg at =1 s

16 fighter, considering high maneuverability and Fig. 3 Flight simulation for Data-C

availability of aerodynamic data [4].

Data-C : two controlled-flight simulations along - ) R
the same target trajectory starting at 0 mand AY —am 152
at 6000 m above sea level. The simulation = :° 7 X e
starting at 0 m is shown by Fig. 3. ltincludes 3’ T\ S P
level, pull-up, vertical upward and downward, 0s Q%\ T ——sooomasanys
and downward spiral flight with wind distur- 00 IS ;3\\5\; S e
bance. Y —soooomasoms
Remark: Large non-symmetric (lateral and/or time [s]

directional) movements are irrelevant and

removed from Data-C, whereas small to
medium non-symmetric movements are in-
cluded so that the identified model of longi-

Fig. 4 Triangular pulse responses of (devia-
tion of a);
Oe deviation: 0 (1 s)}» —2deg (15s)— 0(2s)

tudinal movements can be applied to various
non-symmetric maneuvers.

Data-S: step response simulations against a
change of elevator deflectidn at various al-
titudes and velocities, as shown by Figs. 1 and
2.

Data-P: triangular-pulse response simulations
against a change of elevator deflectiyat
various altitudes and velocities, as shown by
Figs. 4 and 5.

The number of data for identification is 751.
Each data includes more than ten time-series val-
ues of each variabla, g, de, pa andVs.

w0, 100 m/s

— O, 153mys

— i, 250 M5

In the above data, physical values change in the
following ranges:

5000, 100m/s

m—E000m,153m/s

=5000m,250m/=

q[deg/s]

=10000m,100m/s

Altitude above sea leveld ~ 10000 [m]
(air densitypa: 0.41~ 1.23 [kg/n))

Velocity Va: 35~ 250 [m/s]

Angle of attacka: —5.8 ~ 51.7 [deq]

Pitch rateq: —15.1 ~ 33.4 [deg/s]

Elevator deflectio®e: —16.9 ~ 24.9 [deg]

=10000m,153m/s

10000m,250my's

ti meﬂ [s]

Fig. 5 Triangular pulse responsesagf
Oe deviation: 0 (1 s)}» —2deg (15s)— 0(2 )
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4.2 Identification procedure

In MBPC in general, the controller calculates op-
timal values of manipulated variables which min-
imize a cost function of future control errors ob-
tained from the predicted values of controlled
variables over the so-called prediction horizon.
The identification procedure is desirable to min-
imize the same cost function. Here, from Fig. 1,
the prediction errors around 0.8-s1.0 s ahead
were considered appropriate to minimize. Let
X(klk —m) denote the value of a variablgk)
predictedm steps earlier by using (12). The cost
functionFy for the identification of thex model
has been chosen to be

N 1

Foo = n;wnj;{éwkn—j,kn—swkn—a

—Da(kn— j,kn—5)}? (17)
whereN is the number of data, 751, ang, de-
notes the weight for the-th data.wy is set larger
for Data-S and Data-P, becauseor g in these
data have far smaller changes than in Daté{C.
denotes the latest time of time-series values of the
n-th data. Aa(k, — j, ko —5) denotes the differ-
ence ofa from the time(k, —5) to (k,— j) and
Aa(kn — j,kn — 5|kn — 5) denotes the value pre-
dicted at the timéek, —5).

In the calculation oha andAq, the controller
uses time-series values @fandq up to the time
(kn — 5), those ofde up to the time(k, — j) and
those ofp, andV; at the time(k, —5). The cost
function F¢q for the g model identification has
been determined similar to eqn. (17). The values
of model parameters$y;i, gxzi andhyzj were ob-
tained with nonlinear optimization by using Mi-
crosoft Excel Solver.

5 Results of identification

The model ordersi,q andne were chosen to be
3 and 4, respectively, through identification ex-
periments with various values. This results in the
total number of parameters in egn. (12) or (13)
each to be X 3x 2+ 3 x4 =30. To reduce the
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value.

[Oxai; Oxqi] (different values for = 1,2,3),

[hxai, hxqi] (different values for = 1,2, 3),

[gxai; I = 273]1 [hxori; I = 273]

[gxei; I = 17 2]’ [gxei; I = 37 4]

[hxei; 1=1,2], [hyei; | = 3,4
wherex stands fora or g. Thus, the total num-
ber of parameters to be identified in theand the
g model each was reduced to 18. The reduction
caused only a little and ignorable effect on model
accuracy.

Table 1 shows identified parameter values.
When more than one parameter have the same
value, the table shows the symbol of the first pa-
rameter.

Table 1 Values of identified parameters in egns.
(12, 13)

faa1 | 0.9930 || fuq2 | 0.0058 || fuqs | -0.0867
faqr | 0.1742 || fagz | -0.0447]| fuga | -0.0070
fuer | -0.0181]| fuez | -0.0865]| fue3 | -0.0306
fues | -0.0038|| gaar | -0.2963]| gaaz | -1.3728
haat | -0.2821] haez | -1.1653] Qaer | 1.1495
Gaes | 0.7803 || hyer | 0.8994 || hyes | 2.9502
faur | 0.0897 || a2 | -0.5881[ foqa | 0.3425
faq | 0.7593 || faz | -0.0010]| foee | 0.0507
faer | -0.1231[ oy | -0.4824]| foes | -0.6328
faes | -0.2425] Qga1 | -0.2220] gz | 0.6798
hgor | -0.1851| hgaz | 1.6025 || Qg | 0.8662
g | 0.8793 || hger | 2.1106 || hges | 1.5349

Next, Table 2 shows the standard devia-
tion o{-} of 5-steps-ahead (one-second-ahead)
prediction errorsexy (X ;= aorqg) and that
of variations obtained with the 6 DOF model
in the same period. Here, the value of
[o{enx}/0{AX}] represents model accuracy. The
value is between 0.081 (=0.1150/1.4181) and
0.225 (=1.2887/5.7226). The data group of the
highest accuracy is Data-P, and that of the lowest
is Data-C.

Figs. 6 to 11 show the scatter plots of
Ax(k,k — 5/k — 5) versusAx(k,k — 5), wherex

number of identified parameters, the parameters stands fora or q and each dot represents the
in each bracket [] below were set to have the same above values of each data. If prediction errors
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Table 2 Standard deviations of prediction erroead, enq) and variationsfa, Aq)

Data-C| Data-S| Data-P
o{enqa(k,k—5/k—5)} [deg] | 0.4943| 0.1488| 0.1150
o{Aa(k,k—5)} [deq] 3.6541 | 0.9984| 1.4181
o{enq(k,k—5/k—5)} [deg/s]| 1.2887 | 0.4741| 0.3187
o{Aq(k,k—5)} [deg/s] 5.7226 | 2.3626| 3.5044

are all close to zero, the plots would be on the
line of 45 degrees upward.
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Fig. 6 Prediction accuracy adka for controlled
flights
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Fig. 7 Prediction accuracy dfa for step responses
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Fig. 8 Prediction accuracy oha for triangular
pulse responses

6 Conclusion

A linear time-series model fax andq has been
obtained. The model is linear in variablesand

g, and the model dynamics nonlinearly depends
on air density and aircraft velocity. The model
has good accuracy for a wide range of flight con-
ditions. The MBPC using this model is now be-
ing developed. A similar model representing lat-
eral and directional movements could be obtained
in the same way.

The author would like to express his thankful-
ness to some graduates of Teikyo University who
contributed to developing the simulation soft-
ware.
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