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Abstract

This paper presents a dynamic time-series model
representing the longitudinal attitude movement
of aircraft for a wide range of altitude and ve-
locity. The model consists of a linear time-series
equation of angle of attack and that of pitch rate,
with coefficients depending on air density and
aircraft velocity. It has been developed based
on the results of various flight simulations over
a wide range of altitude, velocity, and maneuver-
ing movement, using the 6-DOF (six-degrees-of-
freedom) nonlinear model of the aircraft. The
model is nonlinear in parameters, which have
been identified with nonlinear optimization to
minimize the same cost function as that used in
predictive control. Thus, the model is suitable to
predictive control of longitudinal movement. The
model accuracy with the 6-DOF model as the ref-
erence is considered satisfactory.

Nomenclature

m : aircraft mass
g : gravity acceleration
ρa : atmosphere (air) density (dependent on al-

titude)
Va : aircraft velocity
Fx, Fy, Fz : aerodynamic force components in

the body frame
Th : engine thrust
L̄, M, N : aerodynamic moment components in

the body frame
U , V, W : velocity components in the body

frame
P, p; Q, q; R, r : roll rate; pitch rate; yaw rate

φ, θ, ψ : Eiler angles (roll, pitch, yaw)
α, β : angle of attack, side-slip angle
Ix, Iy, Iz, Jxz : moment of inertia and product of

inertia of the aircraft in the body frame
δth, δe : engine thrust command, elevator deflec-

tion
h : altitude (height)
{·}T : transposed vector or matrix
tk : time in sampling interval (0.2 s)
∆x(k,k− i) : difference value of a variablex

between two sampling instants oftk = k and
tk = k− i, wherek, i = 1,2, · · · andk≥ i.

∆x(k) : the same as∆x(k,k−1) for x :̸= δe, or
∆x(k,k−0.5) for x := δe

σ{x} : standard deviation of a variablex

1 Introduction

To achieve high performances in flight control of
an aircraft, it is desirable to apply some model-
based control scheme. Model-based predictive
control (MBPC), also known as receding-horizon
control (RHC), is widely applied because it can
incorporate various constraints and its parameters
can be tuned fairly easily in an intuitive way.

The aircraft motion is described most ac-
curately by the six degrees-of-freedom (6DOF)
nonlinear dynamic model [4], as far as aerody-
namic coefficients and other parameters are accu-
rately determined. In some studies on MBPC ap-
plications, this nonlinear model is computed on-
line to obtain optimal control inputs [2, 5]. How-
ever, online computation of the nonlinear model
was reported to suffer heavy computational bur-
den [2, 3]. Moreover, it sometimes involves nu-
merical problems [3]. In addition, it is difficult
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to apply linear control techniques to systems de-
scribed by nonlinear models.

Because of these disadvantages, many stud-
ies on MBPC applications use a linear state-space
model for online computation [1, 6]. In most of
the studies, a linear model is obtained by lineariz-
ing the nonlinear model at a certain trim point,
i.e., at a certain flight condition. When the model
is applied to different flight conditions, it be-
comes necessary to have multiple linear models,
each trimmed at each flight condition.

The above linear model, or a set of multiple
linear models, has its drawbacks. Firstly, the lin-
ear model represents small perturbations from a
trimmed flight, steady-state flight with constant
velocity. Large maneuvering movements are out
of scope of the model.

Secondly, in order to cover a wide range of
flight conditions, a large number of linear mod-
els, i.e., a large number of sets of model param-
eters, are required. Letn denote the number of
model parameters at each trimmed point, andm
denote the number of trimmed points, then the
total number of parameters becomesn×m. This
number could be quite large, making it rather dif-
ficult to tune or modify parameter values by using
actual data. On the other hand, Keviczky, et al.
[3] reported that using multiple models in online
computation may result in a significant computa-
tional overhead coming from the need for inter-
polation over different linear models.

To overcome the drawbacks of both nonlin-
ear and linear models, this paper presents a new
linear time-series model representing longitudi-
nal attitude movements of an aircraft. The model
is linear in variables: angle of attack (α), pitch
rate (q) and elevator deflection (δe). The coeffi-
cient of each time-series term is expressed by a
nonlinear continuous equation of air density (ρa)
and aircraft velocity (Va) with parameters to be
identified. The model is nonlinear in these pa-
rameters.

The features and advantages of the model are
described below:

A1 One can design various linear control sys-
tems such as MBPC, robust control, etc., by
using this model, because the model is lin-

ear in variables and because the coefficients
can be set constant at each control instant by
setting all theρa andVa values at the current
value.

A2 The model can be applied to a wide range of
flight conditions and to large maneuvers, be-
cause the model has been identified by using
simulation results of these flights.

A3 The model is most suitable to MBPC, be-
cause the model identification is designed to
minimize the same cost function as that used
in MBPC.

The author previously proposed a control of
flight trajectory for a fixed-wing aircraft [7]. The
control mainly employs PID (Proportional, Inte-
gral, and Differential) control scheme. In order
to achieve better control performances, however,
replacing the PID control with MBPC has been
considered desirable. The model presented here
will be used in the MBPC in the proposed con-
trol.

2 The 6DoF nonlinear dynamic model and
linearized model

Considering the relative motion of the body
frame of fixed-wing aircraft against the inertial
frame, the 6DoF nonlinear dynamic model is ex-
pressed as [4]:

Fx = m(U̇ +QW−RV+gsinθ)−Th (1)

Fy = m(V̇ +RU−PW−gcosθsinφ) (2)

Fz = m(Ẇ+PV−QU−gcosθcosφ) (3)

L̄ = ṖIx− ṘJxz+QR(Iz− Iy)−PQJxz (4)

M = Q̇Iy+PR(Ix− Iz)+(P2−R2)Jxz (5)

N = ṘIz− ṖJxz+PQ(Iy− Ix)+QRJxz (6)

φ̇ = P+Qsinφ tanθ+Rcosφ tanθ (7)

θ̇ = Qcosφ−Rsinφ (8)

The aerodynamic forces and moment of longitu-
dinal movements (Fx, Fz, M) largely depend on
dynamic pressure ¯q (= 0.5ρaV2

a ), Va, andδe.
Most of model-based flight control algo-

rithms use a linear state-space model. The lin-
ear model is derived by linearizing the nonlin-
ear model of (1) to (8) at a certain steady state
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[4]. The linear state-space model for longitudinal
movements is expressed by

˙⃗X = AX⃗+ B⃗Y (9)

whereX⃗ = [u αd θd q]T , (10)

Y⃗ = [δthd δed]
T (11)

and where the components ofX⃗ andY⃗ are devia-
tions from the steady-state values of[U α θ Q]T

and[δth δe]
T , respectively;A andB are matrices

of constant values.
The above linear model is valid only for small

perturbations from a steady state. This suggests
that, in order to control the flights of large ma-
neuvers, it is desirable to use a different model
which covers such flights. When MBPC is em-
ployed, a time-series model with an appropriate
sampling interval is required.

3 Linear time-series model for longitudinal
attitude movements

The aerodynamic forces and moments acting on
the aircraft depend on altitude (or air densityρa)
and velocityVa, making it necessary to express
the coefficients of a linear model to be functions
of these variables. These functions are desirable
to be simple, having as small parameters as pos-
sible.

Fig. 1 and 2 shows the step responses ofα
andq for various values of altitude (orρa) and
Va. It shows that dynamics and steady-state gains
change withρa andVa nonlinearly. From the step
responses, the sampling interval ofα andq were
set at 0.2 s. On the other hand, that of the ma-
nipulated variableδe was set at 0.1 s so that the
controller could act quickly against abrupt distur-
bances.

Preliminary identification experiments were
done to examine the accuracy of various differ-
ent models. The results show that models with
variables∆α, ∆q and∆δe are better than models
with α, q andδe in accuracy improvement. Thus,

a linear time-series model was determined as

∆α(k) =
nαq

∑
i=1

{aααi∆α(k− i)+aαqi∆q(k− i)}

+
ne

∑
i=1

bαi∆δe(k−0.5(i−1)) (12)

∆q(k) =
nαq

∑
i=1

{aqαi∆α(k− i)+aqqi∆q(k− i)}

+
ne

∑
i=1

bqi∆δe(k−0.5(i −1)) (13)

where axyi = fxyiρ
gxyi
a (0.01Va)

hxyi (14)

bxi = fxeiρgxei
a (0.01Va)

hxei (15)

x, y := α or q, (16)

Let eqns. (12, 13) be named as theα model
and theq model, respectively.k denotes time
in sampling interval of 0.2 s.fxzi, gxzi and hxzi

(z := y or e) are parameters to be identified with
the data of flight simulations or actual flights.
Nonlinear identification is necessary as the model
is nonlinear in parameters.nαq andne (≥ 1) are
model orders. Smaller model orders are prefer-
able as far as the model accuracy is satisfactory.

Fig. 1 Step responses ofαd (deviation ofα);
δe deviation:−1 deg att =1 s

4 Parameter identification

4.1 Flight simulation for identification

The data for identification should include a wide
range of flights. The following three groups of
data (Data-C, Data-S and Data-P) were obtained
from flight simulations by using the 6 DOF non-
linear model. The aircraft was chosen to be F-
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Fig. 2 Step responses ofq;
δe deviation:−1 deg att =1 s

16 fighter, considering high maneuverability and
availability of aerodynamic data [4].

Data-C : two controlled-flight simulations along
the same target trajectory starting at 0 m and
at 6000 m above sea level. The simulation
starting at 0 m is shown by Fig. 3. It includes
level, pull-up, vertical upward and downward,
and downward spiral flight with wind distur-
bance.
Remark: Large non-symmetric (lateral and/or
directional) movements are irrelevant and
removed from Data-C, whereas small to
medium non-symmetric movements are in-
cluded so that the identified model of longi-
tudinal movements can be applied to various
non-symmetric maneuvers.

Data-S : step response simulations against a
change of elevator deflectionδe at various al-
titudes and velocities, as shown by Figs. 1 and
2.

Data-P : triangular-pulse response simulations
against a change of elevator deflectionδe at
various altitudes and velocities, as shown by
Figs. 4 and 5.

In the above data, physical values change in the
following ranges:

Altitude above sea level:0∼ 10000 [m]
(air densityρa: 0.41∼ 1.23 [kg/m3])

Velocity Va: 35∼ 250 [m/s]
Angle of attackα: −5.8∼ 51.7 [deg]
Pitch rateq: −15.1∼ 33.4 [deg/s]
Elevator deflectionδe: −16.9∼ 24.9 [deg]

Fig. 3 Flight simulation for Data-C

Fig. 4 Triangular pulse responses ofαd (devia-
tion of α);
δe deviation: 0 (1 s)→−2 deg (1.5 s)→ 0 (2 s)

The number of data for identification is 751.
Each data includes more than ten time-series val-
ues of each variable:α, q, δe, ρa andVa.

Fig. 5 Triangular pulse responses ofq;
δe deviation: 0 (1 s)→−2 deg (1.5 s)→ 0 (2 s)
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4.2 Identification procedure

In MBPC in general, the controller calculates op-
timal values of manipulated variables which min-
imize a cost function of future control errors ob-
tained from the predicted values of controlled
variables over the so-called prediction horizon.
The identification procedure is desirable to min-
imize the same cost function. Here, from Fig. 1,
the prediction errors around 0.8 s∼ 1.0 s ahead
were considered appropriate to minimize. Let
x̂(k|k− m) denote the value of a variablex(k)
predictedm steps earlier by using (12). The cost
functionFcα for the identification of theα model
has been chosen to be

Fcα =
N

∑
n=1

wn

1

∑
j=0

{∆̂α(kn− j,kn−5|kn−5)

−∆α(kn− j,kn−5)}2 (17)

whereN is the number of data, 751, andwn de-
notes the weight for then-th data.wn is set larger
for Data-S and Data-P, becauseα or q in these
data have far smaller changes than in Data-C.kn

denotes the latest time of time-series values of the
n-th data. ∆α(kn− j,kn− 5) denotes the differ-
ence ofα from the time(kn−5) to (kn− j) and
∆̂α(kn − j,kn − 5|kn− 5) denotes the value pre-
dicted at the time(kn−5).

In the calculation of∆α and∆q, the controller
uses time-series values ofα andq up to the time
(kn−5), those ofδe up to the time(kn− j) and
those ofρa andVa at the time(kn−5). The cost
function Fcq for the q model identification has
been determined similar to eqn. (17). The values
of model parametersfxzi, gxzi andhxzi were ob-
tained with nonlinear optimization by using Mi-
crosoft Excel Solver.

5 Results of identification

The model ordersnαq andne were chosen to be
3 and 4, respectively, through identification ex-
periments with various values. This results in the
total number of parameters in eqn. (12) or (13)
each to be 3×3×2+3×4= 30. To reduce the
number of identified parameters, the parameters
in each bracket [] below were set to have the same

value.
[gxαi ,gxqi] (different values fori = 1,2,3),
[hxαi ,hxqi] (different values fori = 1,2,3),
[gxαi ; i = 2,3], [hxαi ; i = 2,3]
[gxei; i = 1,2], [gxei; i = 3,4]
[hxei; i = 1,2], [hxei; i = 3,4]

wherex stands forα or q. Thus, the total num-
ber of parameters to be identified in theα and the
q model each was reduced to 18. The reduction
caused only a little and ignorable effect on model
accuracy.

Table 1 shows identified parameter values.
When more than one parameter have the same
value, the table shows the symbol of the first pa-
rameter.

Table 1 Values of identified parameters in eqns.
(12, 13)

fαα1 0.9930 fαα2 0.0058 fαα3 -0.0867
fαq1 0.1742 fαq2 -0.0447 fαq3 -0.0070
fαe1 -0.0181 fαe2 -0.0865 fαe3 -0.0306
fαe4 -0.0038 gαα1 -0.2963 gαα2 -1.3728
hαα1 -0.2821 hαα2 -1.1653 gαe1 1.1495
gαe3 0.7803 hαe1 0.8994 hαe3 2.9502

fqα1 0.0897 fqα2 -0.5881 fqα3 0.3425
fqq1 0.7593 fqq2 -0.0010 fqq3 0.0507
fqe1 -0.1231 fqe2 -0.4824 fqe3 -0.6328
fqe4 -0.2425 gqα1 -0.2220 gqα2 0.6798
hqα1 -0.1851 hqα2 1.6025 gqe1 0.8662
gqe3 0.8793 hqe1 2.1106 hqe3 1.5349

Next, Table 2 shows the standard devia-
tion σ{·} of 5-steps-ahead (one-second-ahead)
prediction errorse∆x (x := α or q) and that
of variations obtained with the 6 DOF model
in the same period. Here, the value of
[σ{e∆x}/σ{∆x}] represents model accuracy. The
value is between 0.081 (=0.1150/1.4181) and
0.225 (=1.2887/5.7226). The data group of the
highest accuracy is Data-P, and that of the lowest
is Data-C.

Figs. 6 to 11 show the scatter plots of
∆̂x(k,k− 5/k− 5) versus∆x(k,k− 5), wherex
stands forα or q and each dot represents the
above values of each data. If prediction errors
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Table 2Standard deviations of prediction errors (e∆α, e∆q) and variations (∆α, ∆q)

Data-C Data-S Data-P
σ{e∆α(k,k−5/k−5)} [deg] 0.4943 0.1488 0.1150
σ{∆α(k,k−5)} [deg] 3.6541 0.9984 1.4181

σ{e∆q(k,k−5/k−5)} [deg/s] 1.2887 0.4741 0.3187
σ{∆q(k,k−5)} [deg/s] 5.7226 2.3626 3.5044

are all close to zero, the plots would be on the
line of 45 degrees upward.

Fig. 6 Prediction accuracy of∆α for controlled
flights

Fig. 7 Prediction accuracy of∆α for step responses

From these tables and figures, the accuracy of
both theα model and theq model is considered
satisfactory to MBPC.

Fig. 8 Prediction accuracy of∆α for triangular
pulse responses

6 Conclusion

A linear time-series model forα andq has been
obtained. The model is linear in variablesα and
q, and the model dynamics nonlinearly depends
on air density and aircraft velocity. The model
has good accuracy for a wide range of flight con-
ditions. The MBPC using this model is now be-
ing developed. A similar model representing lat-
eral and directional movements could be obtained
in the same way.

The author would like to express his thankful-
ness to some graduates of Teikyo University who
contributed to developing the simulation soft-
ware.
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