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Abstract

A high-order discontinuous Galerkin method
(DGM) is applied to the solution of 3D
stationary RANS equations completed by the
EARSM turbulence model. The method is
implemented on unstructured hexahedral grids.
The test problems are stationary and include
flat-plate boundary layer, three element high-lift
airfoil, and ONERA M6 wing. Mesh
convergence is studied, accuracy orders
acquired are evaluated, and conclusions
concerning the applicability of DGM with a
modern turbulence model to complex problems
are made.

1 Introduction

Discontinuous Galerkin method (DGM) [1, 2] is
one of the most perspective approaches to
construct numerical schemes for solving
aerodynamics problems. It combines the best
properties of finite-volume (FV) methods
(shock capturing and the possibility of taking
into account the direction of information
transport when approximating the fluxes at cells
faces) and finite-element methods (weak
dependence on the quality of the mesh used).
An important feature of DGM is the possibility
of constructing schemes of arbitrary high
convergence order on a compact stencil
consisting of just current cell and its nearest
neighbors. It is relevant for practical problems
with complex geometries which are being
computed on large multiprocessor systems.

The problems of such scale often require
adequate modeling of turbulence in different
flow regions at the same time: in the vicinity of
solid walls, in free shear regions, inside

separation zones, and in transients between
them. Up to now, the most commonly used
approach to turbulence modeling is still solving
Reynolds system of equations completed by a
semi-empirical turbulence model. In practice,
two-equation linear eddy-viscosity models are
used such as k— [3] and SST [4]. Unfortunately,
these models are often insufficiently general for
consistent description of the effects appearing in
computations. To some extent, these problems
can be solved with the aid of turbulence models
which do not rely on the Boussinesq hypothesis,
particularly differential Reynolds stress models
(DRSM) [5]. Such models offer advantages in
many cases, but also possess significant
drawbacks: high memory requirements and
reduced computational stability. Due to these
facts, DRSM models are still rarely used for
solving the complex problems. In the last two
decades, much effort is being made to develop
compromise models requiring the solution of
only two additional differential equations but
employing more complex than Boussinesq
formulas for Reynolds stresses [6,7]. As
compared to DRSM models, such models
(which are called explicit algebraic Reynolds
stress models — EARSM) use additional weak-
equilibrium hypothesis which restricts their
applicability to flows with high gradients of
mean-flow quantities. However, they retain the
possibility of describing the effects of
turbulence anisotropy, streamline curvature and
typically improve the separation modeling [7].
Nowadays, EARSM turbulence models are
considered as one of the promising ways of
increasing the accuracy of industrial level
computations.

DGM applied to Reynolds system of
equations is not still used in commercial CFD
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programs as some issues related to stability, the
need for limiters, mesh and polynomial
adaptivity are yet unsolved. Such codes are
being developed mainly by the academic
community. Several turbulent solvers already
exist which use linear eddy viscosity models [2]
as well as EARSM [8]. In order to industrialize
DGM, further investigation of its operation in
conjunction with modern EARSM turbulence
models is required. It is what the present paper
is devoted to. In the paper, the numerical
method is outlined for the complete
compressible Reynolds system of equation
closed with EARSM turbulence model based on
[7], the features of its implementation based on
the NUMECA Int. code Fine/OPEN™ [9] are
described which is carried out within the
European FP7 IDIHOM project
(Industrialization of High-Order Methods,
reference number 265780) as well as the results
of the test computations. The test problems are
stationary and include flat-plate boundary layer,
three element high-lift airfoil, and ONERA M6
wing. Mesh convergence is studied, observed
accuracy orders are evaluated, and conclusions
concerning the applicability of DGM with a
modern turbulence model to complex problems
are made.

Among the features of the presented
numerical method are: discontinuous Galerkin
discretization in space with arbitrary shape
functions order K (the tests were run with K up
to 3) for all equations including those of
turbulence model; first-order implicit scheme in
time; adoption of hp multigrid strategy for the
convergence acceleration to stationary solution;
the use of BR2 method [10] to calculate the
molecular and turbulent fluxes which depend on
the gradients of the solution. To improve the
computational stability, the equation for » of
the turbulence model [7] is rewritten in
logarithmic form as recommended in [2], and
for the turbulent kinetic energy k a limiter is
introduced preventing it from taking negative
values. An important element of the code is the
use of soft relaxation which limits the increment
of turbulent variables between the consequent
time steps. Without these techniques, it would
be impossible to obtain the results presented in
the study.
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2 Equation system and numerical method

The system of partial differential equations used
in aerodynamics can be written in the following
general form:

F%+V-F(Q,G)=S(Q,G), (1)

where Q is vector of primitive variables, T" is
matrix of transformation from Q to vector of

conservative variables U, Gz[ X;Gy;GZ] is

vector of primitive variables gradients, S is
vector of conservative variables source terms.
Vectors Q, U, Gy, Gy and G, have N=7
components. In our computations, Q = [p, u, v,
w, p, k, @], U=Ip, pu, pv, pw, pE, pk, p@],
where @=Inw, E is total energy per unit mass.
We use a near-wall version of EARSM
turbulence model [7] without blending function
and “cross-diffusion” because the considered
flows are characterized by the dominance of
near-wall turbulence. Production limiter in @
equation is also dropped in order to increase the
stability of computations.

A numerical solution of (1) in each cell of
a computational grid is written as a linear
combination of local polynomial shape
functions ¢, (x)

Q)= 3.0, (0,09, @)

Coefficients g, (t) of expansion above are

unknown values that have to be defined in
DGM.

Representation of numerical solution in the
form of (2) may be thought of as polynomial
reconstruction of the gas parameters distribution
within the computational cell. Theoretically, the
DGM based on polynomials of the degree K
should provide a solution of (1) with the
accuracy order (K+1).

To determine the dependence of q; upon

time, (1) is multiplied by ¢, and integrated over
the cell volume Q:
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j(r%w.F(Q,G)}q (x)dQ =

Q

©)
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Q
Using the Gauss-Ostrogradsky formula,
one can rewrite (3) as follows:

£F%_?‘”‘ (x)dQ+g§Fn @ (X)d= =

4
[Fda+[s g (9de, “

where X is the cell surface, F, =(F-n), n is the

outer unit normal to the surface element dx
and F =(F-Va (x)).

Convective flux terms in (4) are
approximated according to Roe’s approach [11].
Diffusive fluxes are computed using BR2
method [10]. For source terms, unconditionally
stable scheme is used. It is based on eigenvalue
analysis for Jacoby matrix 0S/0Q. If
eigenvalue is negative, the point-implicit
approximation is chosen for the corresponding
part of source terms. Otherwise, this part is
taken from the known time layer.

An implicit numerical method of first
accuracy order in time is applied to obtain
stationary solutions of (4). Let us introduce the
increment operator for an arbitrary value b. This
operator corresponds to transition from the time
layer n to the time layer (n+1): Ab=b""—b".
The primitive variables Q" at the time layer n
are represented in the form of (2) with
coefficients g7, and the primitive variables at an

arbitrary time 't are represented as
Q(x,t) =Q" +AQ(x, t) , where

AQUX, 1) =Y Ag, (09, (X).

A time linearization of (4) is made giving a
system of linear algebraic equations for Aq;.

For each cell c, let us denote the vector of
unknowns
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Fq(c)z((Aql)p;(qu) (A, ) i

(Ag,) 5(Ad,) ?---;(Aqu )w)

where K, is shape functions number, and the
vector of residuals

ﬁ(c) E((Rl)p;(RZ)p;'“;(RKf )p L
(Ra), (Ra), (R ), )

With this notation, the system of equation
reduces to the form

D(c)Ad(c) + Y H,(€)Ad(c,()) =R(), (5)

where ¢ is the current cell, c,(c) is the
neighboring cell adjacent to the current cell ¢
from the other side of the face s. D(c) and

H,(c) are square matrices of size
(K, -N)x(K, -N) calculated from the solution

at the time layer n.

The system (5) was solved by an iterative
blockwise Jacoby method [12]. This method
provides an acceptable convergence rate of
iterations at low CPU and memory cost per
iteration. The Gauss-Seidel method was also
tested, but appeared to be unsuitable in
conjunction with our implementation of DGM.

3 Test problems

3.1 Flat-plate boundary layer

The first test problem that demonstrates the
performance of DGM is flat-plate turbulent
boundary layer. The following freestream
parameters are used: V_ =270 m/s,

p, =101325 Pa, T, =300 K, k=11 m%s?
o, =10" Hz, which corresponds to M_ ~0.78,

Tu, =2k, /3V2 x100% ~1%, u, | 1, ~67.
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Fig. 1. a) flat-plate boundary layer velocity field, K =3; b) dimensionless velocity and turbulent kinetic energy profiles
for x=0.51m (corresponding to Re, ~1.6x10°).

The computations are conducted on
unstructured mesh  consisting of 5185
quadrilateral cells. The plate is 1 m long. It is
surrounded by computational domain with
characteristic size 15 m in each direction. The
height of the first cells above the plate is

h,=2x10° m,  which  corresponds  to
y"=y/l ~1. Note that near a wall, length

scale is
/du
I = V) —
dy

and velocity scale is

du
u = /vw-— ,
dy|,

where variables with subscripts w are taken at
the wall. The heights of the next cells above the
wall are increased in geometric progression with
geometric ratio 1.2. On both edges of the plate,
x-axis refinement of the mesh is made with
minimal  cell size in  x  direction

H
w

Table 1. Grid sizes and characteristic

h ~3.7x10™ m.

The computations are run with maximal
shape functions orders K=0,1, 2,3. In each
computation,  variables  distributions  in
x=0.747 m section are obtained, which
corresponds to length-based Reynolds number
Re, =1.8x10’.

In Fig.1,a, an overview of flat-plate
boundary layer is presented. In Fig.1,Db,
computed  profiles u'(y)=ulu and

k*(y")=k/u> are shown. The van Driest

transformation [13] was not used due to
insignificant (within 0.15%) velocity profile
changes for the selected flow regime. The
solutions obtained with K >0 almost coincide
which indicates the polynomial convergence. In
logarithmic region of the boundary layer
(u"=(ny")/ x+B), the following values of
constants  are  determined  from  the
computations: k=040, B=4.4. They
satisfactory match the empirical values
Koo =04, B, =5.

spacings for three-element airfoil.

Grid ID | number of | height of the | increment of max.
# cells first near-wall cell size nbr.
cell (m) growth layers
1 2 836 8.9x10° 2.14 4
2 7 432 3.7%107 1.46 8
3 20 854 1.7x10 1.21 10
4 102 108 1.0x107 1.20 30
5 168 677 5.0x10" 1.20 50
6 308 966 5.0x10" 1.20 50
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b)

Fig. 2. Unstructured coarse (a) and fine (b) grids: overall view of the airfoil (left) and details at the slat (right).

3.2 Subsonic flow around a three-element
airfoil
Implicit DGM solver for RANS equations has

been applied to the computation of subsonic
flow around a three-element airfoil L1T2 [14] at

the Mach number M_ =0.197, the angle of
attack « =20.18°, the chord-based Reynolds

number Re=3.52x10°. Turbulence parameters
of the ambient flow are k_=0.68 m%s?

(Tu, =1.0%), @, =4.5x10* Hz (which gives

Hoo = M)

Two sequences of unstructured purely
hexahedral hanging node grids have been
generated with the industrial grid generator
HEXPRESS by NUMECA (see Table 1). The
first one (#1, #2, and #3) is used for
computations with a high-order DGM, while the
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performance of FV method was studied on finer
#4, #5 and #6 grids. The Fig. 2 visualizes the
fragments of the coarsest and the finest grids
with 2 836 and 308 966 elements, respectively.
While the refinement can be seen, it is also clear
that these three grids do not constitute a nested
hierarchy of grids.

The outer boundary of the computational
domain is placed at the distance of 10 chords
from the airfoil, and boundary condition at this
boundary is based on analysis of Riemann
invariants. To take into account the velocity

circulation, additional velocity field V.(r) is
superimposed at the boundary point T :

- Iz
Vr (r) = —
27 |F -
where T, is the central point of the airfoil, 7 is
Co —8—FV Roe ——DG K=1
0,200 ~—DG K=2 —#—DG K=3
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0,160 AN N N
"\
\\\____\
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.\\
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Fig. 3.a) C, and b) C, characteristics of L1T2 three-element airfoil for different numerical schemes vs. NDOF.
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Table 2. Extrapolation of asymptotic reference values for the lift coefficient C; .

using two grids using three grids
K theoretical | asymptotic observed asymptotic
order value order value
1 2 3.956 2.2 3.939
2 3 4.000 6.7 3.995
3 4 3.990 5.0 3.988

Table 3. Extrapolation of asymptotic reference values for the drag coefficient C_ .

using two grids using three grids
K theoretical | asymptotic observed asymptotic
order value order value
1 2 0.1185 3.4 0.1215
2 3 0.0673 4.4 0.0678
3 4 0.0638 6.5 0.0640

unit vector normal to r—r, and I' is the

prescribed circulation value. Solid surfaces are
treated as adiabatic no-slip walls.

In high-order DGM computations (K =2
and 3), the curvature of grid lines in the vicinity
of solid surfaces has been taken into account,
cell edges being considered as elements of
parabolas.

To achieve fully-2D computation, 2D
shape functions have been used. Computations
were performed with local time stepping. Each
computation started from local Courant number
CFL = 1. If a flow field computed in the current
iteration was physical, the CFL was
incremented 1.5 times. Otherwise, the numerical
solution was returned to the state before the
iteration, and the iteration was repeated with 2—
10 times smaller value of the CFL. In all
computations, the maximal value of CFL was
restricted by CFL=1000, except for the K=3
computation on the #3 grid, where the CFL was
restricted as CFL=100. In all computations,
deep convergence to stationary flow has been
achieved (residual has decreased by 8-15 orders
of magnitude from the initial level).
Computations have been parallelized, up to 48
processor cores were used. In Fig. 3, integral
characteristics of considered three-element
airfoil are shown for different numerical
schemes (DGM K =1, K=2, and FV) versus
number of degrees of freedom (NDOF). The FV
method used is implemented in the industrial

FINE/Open™ (NUMECA Int.) code. This is a
second order Roe upwind scheme. The range of
asymptotic reference values obtained by
different numerical methods on a sequence of
grids [15] is also depicted. The reference lift
coefficient c_ varied from 3.98 to 4.05 and the
drag coefficient C_varied from 0.0608 to
0.0670.

Note that the considered FV approach is
obviously inferior to high-order DGM (K = 2, 3)
and even K=1. In case of DGM, monotonic
variation of lift and drag coefficients with
increasing the number of grid cells allowed us
to calculate the asymptotic values by two
approaches. In the first approach, assuming a
theoretical order of accuracy we are able to
estimate the asymptotic value of C, and C,

based on the computations on two grids. The
second approach uses C, and C, values on

three successive grids which allow us to
evaluate not only the asymptotic value on the
infinitely fine grid, but also the observed order
of accuracy. The results of both approaches are
presented in Tables2 and 3. Note that the
asymptotic values obtained in different schemes
are quite close to each other, that reflects the
high quality of the obtained solutions. However,
evaluated accuracy orders of DGM are
unrealistically high. This can be explained by
the fact that employed grid sequence is not fully
nested. Nevertheless, the good agreement
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Figure 4. C error for different schemes vs. a) NDOF and b) normalized run-time.

between results indicates that the grid sequence
is well suited for this test case.

The Fig. 4, a presents the C, error on the

logarithmic scale for schemes with different K
versus NDOF. In accordance with the
theoretical prediction, the slope of lines varies
depending on the scheme order. Thus, in
practice, the choice of the scheme order should
be defined by the desired degree of accuracy. As
can be seen in Fig. 4, b, the third-order method
(DGM K =2) is preferable for C, with error

less than 107°. Unfortunately, the practical
implementation of the fourth-order method
(DGM K = 3) was too costly and slow compared
with DGM K = 2. The quadrature formulas are
probably to be revised.

Efficiency of high-order computations
compared to the conventional second-order FV
scheme is also illustrated by Fig.5, where
results on different grids are presented versus
normalized run-time. Here one can see that

Table 4. Grid sizes and characteristic spacings

nbr. |height of [incremen| Max.
Grid ID cells | the first | tof cell | nbr.
near-wall| size |layers
cell (m) | growth
1 (Coarse)| 38219 |3.0x10™*| 4.0 5
2 (Med.) | 75987 |15%x10™ 3.5 7
3 (Fine) |204062|75%x10°| 20 10

convergence to values of coefficient C, to

reference values is achieved much more quickly
with K =2, 3 compared to second-order DGM
K =1 and industrial FV FINE/Open™ code.

3.2 Transonic flow around isolated wing

Computations of transonic flow around the wing
ONERA M6 have been performed for the
following flow regime (TEST 2308 from [16]):
the Mach number M_ =0.8395, the angle of
attack « =3.06°, the mean aerodynamic chord-
based Reynolds number Re=11.72x10°, and
the  stagnation temperature T,=300K.
Turbulence parameters of the ambient flow are
k, =10 m%/s?(Tu, ~1%) and @, =6.7x10° Hz
(which gives &, =~ u,).

Three subsequent unstructured hexahedral
grids have been generated. Their characteristics

are presented in Table 4. Fragments of grids on
the wing surface are shown in Fig. 6.

DG K=3 FV Roe

Co \
0,160

——DG K=1 —=—DG K=2

\‘\ — = Refmin — — Ref max
» |
\I-

0,120

0,080

Tl = o L == = |

0,040

Workunits

0,000
1,E+01

1,E+02 1,E+03 1,E+04 1,E+05 1,E+06

Fig. 5. Grid convergence as a function of normalized
run-time.



Fig. 6. Unstructured grids around ONE

In the vicinity of solid surfaces, curvature
of grid lines has been taken into account in
DGM K =2 computations. We were unable to
achieve convergence with a fourth-order
numerical scheme, which is possibly due to the
lack of a special shock capturing procedure.

Wing pressure distributions C obtained

on different grids in the middle section
x/c = 0.65 is presented in Fig. 7. It can be seen
from the figure that the solution converges to
the experimental curve when the grid is refined.
The convergence rate is approximately the same
for both DGM K =1 and DGM K =2.

In Fig. 8, the plots of C, and C_ versus

NDOF are presented. It is seen that asymptotic
values of DGM K =1 and DGM K =2 are

15 2Ib = 0.65
® © @ cxperiment

DG K=1, NDOF=1.5x10°%

DG K=1, NDOF=3.0x10°

DG K=1, NDOF=8.2x10°

0.8 1
a)
15
z/b = 0.65
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DG K=2, NDOF=7.6x10°%
DG K=2, NDOF=2.0x10°®
05
o
?
— ~~"
0 S
-05
0 0.2 0.4 0.6 0.8 1
b) x/c,

Fig. 7. Pressure distributions for different grid densities:
DGMa)K=1andb) K=2.

~ b) \ \ ‘ I
RA M6 wing: a) coarse and b) fine.
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different.  Assuming a monotone  grid
convergence, an estimation based on three
points gives the following asymptotic values:

for DGM K =1, C =0.2825, C,=0.0149;
for DGM K =2, C[ =0.2746, C, =0.0126.

Such a difference is probably explained by
the presence of shock wave even on the coarsest
grid. It is known that such singularities do not
allow obtaining the approximate solution with
an accuracy order higher than 1. Achieving
good-quality solutions is only possible on grids
with  highly refined cells near shocks.
Employment of high-order schemes in shock
regions is not justified and requires artificial
elimination of nonphysical solution oscillations.
From the computational resource viewpoint, the
use of high-order schemes can be efficient in
smooth regions. That should be combined with
grid refinement in the shock regions and
applying the special monotonicity procedures
[17].

0,30 4

]

0,25 4

=K1
K2
0,20
a) 1,E+05 1,E+06 NDOF
0,030
Co &K1
0,025 K
0,020 \.\'
0,015
0,010
b) 1,E+05 1,E+06 NDOF

Fig. 8.a) C, and b) C, characteristics of ONERA M6
wing vs. NDOF for DGM K = 1 and 2.
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Fig. 9. C, error for different schemes vs. a) NDOF and b) normalized run-time.

In accordance with the theory, the slope of
C, error versus NDOF lines (Fig.9,a) for

DGM K =2 is higher than for DGM K =1, but
individual choice of the scheme should be done
with regard to run-time and required accuracy.
Thus, as follows from Fig. 9, b, the advantage of
using higher-order schemes will be apparent if
one needs the precision of C, better than 10™*.

4 Conclusions

High-order discontinuous Galerkin method was
implemented within the industrial second-order
finite volume code FINE/Open™ developed by
NUMECA Int. based on unstructured
hexahedral grids generated by HEXPRESS™.
The full system of RANS equations completed
by an EARSM class turbulence model was
approximated by high-order spatial
discretization up to the order 4 and an implicit
temporal smoother of first accuracy order in
time was used for the solution. Subsonic and
transonic problems of external aerodynamics
were considered.

The main expected advantage of using high-
order methods is the possibility to get the same
quality of results on much coarser grids and at
substantially lower computational cost. This
advantage was demonstrated for subsonic high-
lift test cases. Profit is most evident in the case
of determining the drag coefficient. Second-
order  accuracy  schemes  demonstrated
significantly slower grid convergence.

In the case of problems with shock waves
(transonic flow over the ONERA M6 wing),

obvious profit was not obtained. Shock waves
resolution requires local grid refinement and/or
employment of special shock capturing
procedures. The use of high accuracy order
numerical schemes could be helpful if precise
determination of the drag coefficient were
required.
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