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Abstract  

A high-order discontinuous Galerkin method 

(DGM) is applied to the solution of 3D 

stationary RANS equations completed by the 

EARSM turbulence model. The method is 

implemented on unstructured hexahedral grids. 

The test problems are stationary and include 

flat-plate boundary layer, three element high-lift 

airfoil, and ONERA M6 wing. Mesh 

convergence is studied, accuracy orders 

acquired are evaluated, and conclusions 

concerning the applicability of DGM with a 

modern turbulence model to complex problems 

are made. 

1  Introduction  

Discontinuous Galerkin method (DGM) [1, 2] is 

one of the most perspective approaches to 

construct numerical schemes for solving 

aerodynamics problems. It combines the best 

properties of finite-volume (FV) methods 

(shock capturing and the possibility of taking 

into account the direction of information 

transport when approximating the fluxes at cells 

faces) and finite-element methods (weak 

dependence on the quality of the mesh used). 

An important feature of DGM is the possibility 

of constructing schemes of arbitrary high 

convergence order on a compact stencil 

consisting of just current cell and its nearest 

neighbors. It is relevant for practical problems 

with complex geometries which are being 

computed on large multiprocessor systems. 

The problems of such scale often require 

adequate modeling of turbulence in different 

flow regions at the same time: in the vicinity of 

solid walls, in free shear regions, inside 

separation zones, and in transients between 

them. Up to now, the most commonly used 

approach to turbulence modeling is still solving 

Reynolds system of equations completed by a 

semi-empirical turbulence model. In practice, 

two-equation linear eddy-viscosity models are 

used such as k–ε [3] and SST [4]. Unfortunately, 

these models are often insufficiently general for 

consistent description of the effects appearing in 

computations. To some extent, these problems 

can be solved with the aid of turbulence models 

which do not rely on the Boussinesq hypothesis, 

particularly differential Reynolds stress models 

(DRSM) [5]. Such models offer advantages in 

many cases, but also possess significant 

drawbacks: high memory requirements and 

reduced computational stability. Due to these 

facts, DRSM models are still rarely used for 

solving the complex problems. In the last two 

decades, much effort is being made to develop 

compromise models requiring the solution of 

only two additional differential equations but 

employing more complex than Boussinesq 

formulas for Reynolds stresses [6, 7]. As 

compared to DRSM models, such models 

(which are called explicit algebraic Reynolds 

stress models – EARSM) use additional weak-

equilibrium hypothesis which restricts their 

applicability to flows with high gradients of 

mean-flow quantities. However, they retain the 

possibility of describing the effects of 

turbulence anisotropy, streamline curvature and 

typically improve the separation modeling [7]. 

Nowadays, EARSM turbulence models are 

considered as one of the promising ways of 

increasing the accuracy of industrial level 

computations.  

DGM applied to Reynolds system of 

equations is not still used in commercial CFD 
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programs as some issues related to stability, the 

need for limiters, mesh and polynomial 

adaptivity are yet unsolved. Such codes are 

being developed mainly by the academic 

community. Several turbulent solvers already 

exist which use linear eddy viscosity models [2] 

as well as EARSM [8]. In order to industrialize 

DGM, further investigation of its operation in 

conjunction with modern EARSM turbulence 

models is required. It is what the present paper 

is devoted to. In the paper, the numerical 

method is outlined for the complete 

compressible Reynolds system of equation 

closed with EARSM turbulence model based on 

[7], the features of its implementation based on 

the NUMECA Int. code Fine/OPEN™ [9] are 

described which is carried out within the 

European FP7 IDIHOM project 

(Industrialization of High-Order Methods, 

reference number 265780) as well as the results 

of the test computations. The test problems are 

stationary and include flat-plate boundary layer, 

three element high-lift airfoil, and ONERA M6 

wing. Mesh convergence is studied, observed 

accuracy orders are evaluated, and conclusions 

concerning the applicability of DGM with a 

modern turbulence model to complex problems 

are made. 

Among the features of the presented 

numerical method are: discontinuous Galerkin 

discretization in space with arbitrary shape 

functions order K (the tests were run with K up 

to 3) for all equations including those of 

turbulence model; first-order implicit scheme in 

time; adoption of hp multigrid strategy for the 

convergence acceleration to stationary solution; 

the use of BR2 method [10] to calculate the 

molecular and turbulent fluxes which depend on 

the gradients of the solution. To improve the 

computational stability, the equation for ω of 

the turbulence model [7] is rewritten in 

logarithmic form as recommended in [2], and 

for the turbulent kinetic energy k a limiter is 

introduced preventing it from taking negative 

values. An important element of the code is the 

use of soft relaxation which limits the increment 

of turbulent variables between the consequent 

time steps. Without these techniques, it would 

be impossible to obtain the results presented in 

the study. 

2  Equation system and numerical method  

The system of partial differential equations used 

in aerodynamics can be written in the following 

general form: 

Q
(Q, ) S(Q, ),

t


  


F G G
 

(1) 

where Q is vector of primitive variables, Γ is 

matrix of transformation from Q to vector of 

conservative variables U,  zyx G;G;GG  is 

vector of primitive variables gradients, S is 

vector of conservative variables source terms. 

Vectors Q, U, Gx, Gy and Gz have N = 7 

components. In our computations, Q = [ρ, u, v, 

w, p, k,  ], U = [ρ, ρu, ρv, ρw, ρE, ρk, ρ ], 

where ln  , E is total energy per unit mass. 

We use a near-wall version of EARSM 

turbulence model [7] without blending function 

and “cross-diffusion” because the considered 

flows are characterized by the dominance of 

near-wall turbulence. Production limiter in   

equation is also dropped in order to increase the 

stability of computations. 

A numerical solution of (1) in each cell of 

a computational grid is written as a linear 

combination of local polynomial shape 

functions ( )j x : 

1

Q( , ) q ( ) ( ),
fK

j j

j

t t 


x x  
(2) 

Coefficients q ( )j t  of expansion above are 

unknown values that have to be defined in 

DGM. 

Representation of numerical solution in the 

form of (2) may be thought of as polynomial 

reconstruction of the gas parameters distribution 

within the computational cell. Theoretically, the 

DGM based on polynomials of the degree K 

should provide a solution of (1) with the 

accuracy order (K+1). 

To determine the dependence of q j  upon 

time, (1) is multiplied by i  and integrated over 

the cell volume Ω: 
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Q
(Q, ) ( )

S(Q, ) ( ) .

i

i

d
t

d









 
    
 







F G x

G x

 
(3) 

Using the Gauss-Ostrogradsky formula, 

one can rewrite (3) as follows: 

Q
( ) F ( )

F S ( ) ,

i n i

i i

d d
t

d d

 



 

 


   


 

 

 

x x

x

 
(4) 

where Σ is the cell surface,  Fn  F n , n  is the 

outer unit normal to the surface element d , 

and  F ( )i i F x . 

Convective flux terms in (4) are 

approximated according to Roe’s approach [11]. 

Diffusive fluxes are computed using BR2 

method [10]. For source terms, unconditionally 

stable scheme is used. It is based on eigenvalue 

analysis for Jacoby matrix S/ Q  . If 

eigenvalue is negative, the point-implicit 

approximation is chosen for the corresponding 

part of source terms. Otherwise, this part is 

taken from the known time layer. 

An implicit numerical method of first
 

accuracy order in time is applied to obtain 

stationary solutions of (4). Let us introduce the 

increment operator for an arbitrary value b. This 

operator corresponds to transition from the time 

layer n to the time layer (n+1): 
n 1 nb b b   . 

The primitive variables nQ  at the time layer n 

are represented in the form of (2) with 

coefficients 
nq j , and the primitive variables at an 

arbitrary time t are represented as 
nQ( , ) Q Q( , )t t x x , where 

1

Q( , ) q ( ) ( ).
fK

j j

j

t t 


  x x  
 

A time linearization of (4) is made giving a 

system of linear algebraic equations for q j . 

For each cell c, let us denote the vector of 

unknowns 

     
      

1 2

1 2

q( ) q ; q ;...; q ;...;

q ; q ;...; q ,

f

f

K

K

c
  

  

    

  

 
 

where 
fK  is shape functions number, and the 

vector of residuals 

     
      

1 2

1 2

R( ) R ; R ;...; R ;...;

R ; R ;...; R .

f

f

K

K

c
  

  


 

 

With this notation, the system of equation 

reduces to the form 

 ( ) q( ) ( ) q ( ) R( ),s s

s

D c c H c c c c   
 

(5) 

where c is the current cell, ( )sc c  is the 

neighboring cell adjacent to the current cell c 

from the other side of the face s. ( )D c  and 

( )sH c  are square matrices of size 

   f fK N K N    calculated from the solution 

at the time layer n. 

The system (5) was solved by an iterative 

blockwise Jacoby method [12]. This method 

provides an acceptable convergence rate of 

iterations at low CPU and memory cost per 

iteration. The Gauss-Seidel method was also 

tested, but appeared to be unsuitable in 

conjunction with our implementation of DGM. 

3 Test problems  

3.1 Flat-plate boundary layer  

The first test problem that demonstrates the 

performance of DGM is flat-plate turbulent 

boundary layer. The following freestream 

parameters are used: 270V   m/s, 

101325p   Pa, 300T   K, 11k   m
2
/s

2
, 

410ω   Hz, which corresponds to 0.78M  , 

2Tu 2 / 3 100% 1%k V     , / 67t    . 
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The computations are conducted on 

unstructured mesh consisting of 5185 

quadrilateral cells. The plate is 1 m long. It is 

surrounded by computational domain with 

characteristic size 15 m in each direction. The 

height of the first cells above the plate is 
62 10yh    m, which corresponds to 

/ 1y y l
   . Note that near a wall, length 

scale is  

,w

w

du
l

dy
 

 
 

and velocity scale is 

,w

w

du
u

dy
  

 
 

where variables with subscripts w  are taken at 

the wall. The heights of the next cells above the 

wall are increased in geometric progression with 

geometric ratio 1.2 . On both edges of the plate,  

x-axis refinement of the mesh is made with 

minimal cell size in x direction 

43.7 10xh    m. 

The computations are run with maximal 

shape functions orders K = 0, 1, 2, 3. In each 

computation, variables distributions in 

0.747x   m section are obtained, which 

corresponds to length-based Reynolds number 
7Re 1.8 10x   . 

In Fig. 1, a, an overview of flat-plate 

boundary layer is presented. In Fig. 1, b, 

computed profiles ( ) /u y u u
    and 

2( )k y k u
    are shown. The van Driest 

transformation [13] was not used due to 

insignificant (within 0.15% ) velocity profile 

changes for the selected flow regime. The 

solutions obtained with 0K   almost coincide 

which indicates the polynomial convergence. In 

logarithmic region of the boundary layer 

( (ln ) /u y B   ), the following values of 

constants are determined from the 

computations: 0.40  , 4.4B  . They 

satisfactory match the empirical values 

exp 0.4  , exp 5B  . 

a)    b)  

Fig. 1. a) flat-plate boundary layer velocity field, 3K ; b) dimensionless velocity and turbulent kinetic energy profiles 

for mx 51.0  (corresponding to 6106.1Re x ). 

Table 1. Grid sizes and characteristic spacings for three-element airfoil. 

Grid ID 

# 

number of 

cells 

height of the 

first near-wall 

cell (m) 

increment of 

cell size 

growth 

max. 

nbr.  

layers 

1 2 836 8.9×10
-5 2.14 4 

2 7 432 3.7×10
-5 1.46 8 

3 20 854 1.7×10
-5 1.21 10 

4 102 108 1.0×10
-5 1.20 30 

5 168 677 5.0×10
-7 1.20 50 

6 308 966 5.0×10
-7 1.20 50 
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3.2 Subsonic flow around a three-element 

airfoil  

Implicit DGM solver for RANS equations has 

been applied to the computation of subsonic 

flow around a three-element airfoil L1T2
 
[14] at 

the Mach number 0.197M  , the angle of 

attack 20.18   , the chord-based Reynolds 

number 
6Re 3.52 10  . Turbulence parameters 

of the ambient flow are 0.68k   m
2
/s

2
 

( Tu 1.0%  ), 44.5 10    Hz (which gives 

t   ).  

Two sequences of unstructured purely 

hexahedral hanging node grids have been 

generated with the industrial grid generator 

HEXPRESS by NUMECA (see Table 1). The 

first one (#1, #2, and #3) is used for 

computations with a high-order DGM, while the 

performance of FV method was studied on finer 

#4, #5 and #6 grids. The Fig. 2 visualizes the 

fragments of the coarsest and the finest grids 

with 2 836 and 308 966 elements, respectively. 

While the refinement can be seen, it is also clear 

that these three grids do not constitute a nested 

hierarchy of grids. 

The outer boundary of the computational 

domain is placed at the distance of 10 chords 

from the airfoil, and boundary condition at this 

boundary is based on analysis of Riemann 

invariants. To take into account the velocity 

circulation, additional velocity field ( )V r  is 

superimposed at the boundary point r : 

( ) ,
2 c

V r
r r











 
 

where cr  is the central point of the airfoil,   is 

a) 

3,0

3,2

3,4

3,6

3,8

4,0

4,2

5000 50000 500000

CL

NDOF

DG K=2 FV Roe

DG K=1 DG K=3

Ref min Ref max

   b) 

0,040

0,080

0,120

0,160

0,200

5000 50000 500000

CD

NDOF

FV Roe DG K=1

DG K=2 DG K=3

Ref min Ref max

 

Fig. 3. a) LC  and b) DC  characteristics of L1T2 three-element airfoil for different numerical schemes vs. NDOF. 

a)      

b)       

Fig. 2. Unstructured coarse (a) and fine (b) grids: overall view of the airfoil (left) and details at the slat (right). 
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unit vector normal to cr r , and   is the 

prescribed circulation value. Solid surfaces are 

treated as adiabatic no-slip walls. 

In high-order DGM computations (K = 2 

and 3), the curvature of grid lines in the vicinity 

of solid surfaces has been taken into account, 

cell edges being considered as elements of 

parabolas. 

To achieve fully-2D computation, 2D 

shape functions have been used. Computations 

were performed with local time stepping. Each 

computation started from local Courant number 

CFL = 1. If a flow field computed in the current 

iteration was physical, the CFL was 

incremented 1.5 times. Otherwise, the numerical 

solution was returned to the state before the 

iteration, and the iteration was repeated with 2–

10 times smaller value of the CFL. In all 

computations, the maximal value of CFL was 

restricted by CFL=1000, except for the K = 3 

computation on the #3 grid, where the CFL was 

restricted as CFL=100. In all computations, 

deep convergence to stationary flow has been 

achieved (residual has decreased by 8–15 orders 

of magnitude from the initial level). 

Computations have been parallelized, up to 48 

processor cores were used. In Fig. 3, integral 

characteristics of considered three-element 

airfoil are shown for different numerical 

schemes (DGM K = 1, K = 2, and FV) versus 

number of degrees of freedom (NDOF). The FV 

method used is implemented in the industrial 

FINE/Open™ (NUMECA Int.) code. This is a 

second order Roe upwind scheme. The range of 

asymptotic reference values obtained by 

different numerical methods on a sequence of 

grids [15] is also depicted. The reference lift 

coefficient LC  varied from 3.98 to 4.05 and the 

drag coefficient DC varied from 0.0608 to 

0.0670. 

Note that the considered FV approach is 

obviously inferior to high-order DGM (K = 2, 3) 

and even K = 1. In case of DGM, monotonic 

variation of lift and drag coefficients with 

increasing the number of grid cells allowed us 

to calculate the asymptotic values by two 

approaches. In the first approach, assuming a 

theoretical order of accuracy we are able to 

estimate the asymptotic value of LC  and DC  

based on the computations on two grids. The 

second approach uses LC  and DC  values on 

three successive grids which allow us to 

evaluate not only the asymptotic value on the 

infinitely fine grid, but also the observed order 

of accuracy. The results of both approaches are 

presented in Tables 2 and 3. Note that the 

asymptotic values obtained in different schemes 

are quite close to each other, that reflects the 

high quality of the obtained solutions. However, 

evaluated accuracy orders of DGM are 

unrealistically high. This can be explained by 

the fact that employed grid sequence is not fully 

nested. Nevertheless, the good agreement 

Table 2. Extrapolation of asymptotic reference values for the lift coefficient *

LC . 

 using two grids using three grids 

K theoretical 

order 

asymptotic 

value 

observed  

order 

asymptotic 

value 

1 2 3.956 2.2 3.939 

2 3 4.000 6.7 3.995 

3 4 3.990 5.0 3.988 

 

Table 3. Extrapolation of asymptotic reference values for the drag coefficient *

DC . 

 using two grids using three grids 

K theoretical 

order 

asymptotic 

value 

observed  

order 

asymptotic 

value 

1 2 0.1185 3.4 0.1215 

2 3 0.0673 4.4 0.0678 

3 4 0.0638 6.5 0.0640 
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between results indicates that the grid sequence 

is well suited for this test case. 

The Fig. 4, a presents the DC  error on the 

logarithmic scale for schemes with different K 

versus NDOF. In accordance with the 

theoretical prediction, the slope of lines varies 

depending on the scheme order. Thus, in 

practice, the choice of the scheme order should 

be defined by the desired degree of accuracy. As 

can be seen in Fig. 4, b, the third-order method 

(DGM K = 2) is preferable for DC  with error 

less than 
310
. Unfortunately, the practical 

implementation of the fourth-order method 

(DGM K = 3) was too costly and slow compared 

with DGM K = 2. The quadrature formulas are 

probably to be revised. 

Efficiency of high-order computations 

compared to the conventional second-order FV 

scheme is also illustrated by Fig. 5, where 

results on different grids are presented versus 

normalized run-time. Here one can see that 

convergence to values of coefficient DC  to 

reference values is achieved much more quickly 

with K = 2, 3 compared to second-order DGM 

K = 1 and industrial FV FINE/Open™ code. 

3.2 Transonic flow around isolated wing  

Computations of transonic flow around the wing 

ONERA M6 have been performed for the 

following flow regime (TEST 2308 from [16]): 

the Mach number 0.8395M  , the angle of 

attack 3.06   , the mean aerodynamic chord-

based Reynolds number 6Re 11.72 10  , and 

the stagnation temperature 0 300T K . 

Turbulence parameters of the ambient flow are 

10k   m
2
/s

2
(Tu 1%  ) and 56.7 10    Hz 

(which gives t   ).  

Three subsequent unstructured hexahedral 

grids have been generated. Their characteristics 

are presented in Table 4. Fragments of grids on 

the wing surface are shown in Fig. 6. 

 

Table 4. Grid sizes and characteristic spacings 

 

Grid ID 

nbr. 

cells 

height of 

the first 

near-wall 

cell (m) 

incremen

t of cell 

size 

growth 

Max. 

nbr.  

layers 

1 (Coarse) 38219 43.0 10  4.0 5 

2 (Med.) 75987 41.5 10  3.5 7 

3 (Fine) 204062 57.5 10  2.0 10 

 

a)  b)  

Figure 4. 
DC  error for different schemes vs. a) NDOF and b) normalized run-time. 

 

0,000

0,040

0,080

0,120

0,160

1,E+01 1,E+02 1,E+03 1,E+04 1,E+05 1,E+06

CD

Workunits

DG K=3 FV Roe

DG K=1 DG K=2

Ref min Ref max

 

Fig. 5. Grid convergence as a function of normalized 

run-time. 
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In the vicinity of solid surfaces, curvature 

of grid lines has been taken into account in 

DGM K = 2 computations. We were unable to 

achieve convergence with a fourth-order 

numerical scheme, which is possibly due to the 

lack of a special shock capturing procedure. 

Wing pressure distributions pC  obtained 

on different grids in the middle section 

x/c = 0.65 is presented in Fig. 7. It can be seen 

from the figure that the solution converges to 

the experimental curve when the grid is refined. 

The convergence rate is approximately the same 

for both DGM 1K   and DGM 2K  . 

In Fig. 8, the plots of LC  and DC  versus 

NDOF are presented. It is seen that asymptotic 

values of DGM 1K   and DGM 2K   are 

different. Assuming a monotone grid 

convergence, an estimation based on three 

points gives the following asymptotic values: 

for DGM 1K  , * 0.2825LC  , * 0.0149DC  ; 

for DGM 2K  , * 0.2746LC  , * 0.0126DC  . 

Such a difference is probably explained by 

the presence of shock wave even on the coarsest 

grid. It is known that such singularities do not 

allow obtaining the approximate solution with 

an accuracy order higher than 1. Achieving 

good-quality solutions is only possible on grids 

with highly refined cells near shocks. 

Employment of high-order schemes in shock 

regions is not justified and requires artificial 

elimination of nonphysical solution oscillations. 

From the computational resource viewpoint, the 

use of high-order schemes can be efficient in 

smooth regions. That should be combined with 

grid refinement in the shock regions and 

applying the special monotonicity procedures 

[17]. 

a) 
0 0.2 0.4 0.6 0.8 1

x/cl

-0.5

0

0.5

1

1.5

-c
p

z/b = 0.65

Experiment

DG K=1, NDOF=1.5105 

DG K=1,  NDOF=3.0105

DG K=1,  NDOF=8.2105 

 

b) 
0 0.2 0.4 0.6 0.8 1

x/cl

-0.5

0

0.5

1

1.5

-c
p

z/b = 0.65

Experiment

DG K=2, NDOF=3.8105

DG K=2, NDOF=7.6105

DG K=2, NDOF=2.0106

 

Fig. 7. Pressure distributions for different grid densities: 

DGM a) K = 1 and b) K = 2. 

a)  

b)  

Fig. 8. a) LC  and b) DC  characteristics of ONERA M6 

wing vs. NDOF for DGM K = 1 and 2. 

a)    b)  

Fig. 6. Unstructured grids around ONERA M6 wing: a) coarse and b) fine. 
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In accordance with the theory, the slope of 

DC  error versus NDOF lines (Fig. 9, a) for 

DGM K = 2 is higher than for DGM K = 1, but 

individual choice of the scheme should be done 

with regard to run-time and required accuracy. 

Thus, as follows from Fig. 9, b, the advantage of 

using higher-order schemes will be apparent if 

one needs the precision of DC  better than 410 . 

4 Conclusions  

High-order discontinuous Galerkin method was 

implemented within the industrial second-order 

finite volume code FINE/Open™ developed by 

NUMECA Int. based on unstructured 

hexahedral grids generated by HEXPRESS™. 

The full system of RANS equations completed 

by an EARSM class turbulence model was 

approximated by high-order spatial 

discretization up to the order 4 and an implicit 

temporal smoother of first accuracy order in 

time was used for the solution. Subsonic and 

transonic problems of external aerodynamics 

were considered. 

The main expected advantage of using high-

order methods is the possibility to get the same 

quality of results on much coarser grids and at 

substantially lower computational cost. This 

advantage was demonstrated for subsonic high-

lift test cases. Profit is most evident in the case 

of determining the drag coefficient. Second-

order accuracy schemes demonstrated 

significantly slower grid convergence. 

In the case of problems with shock waves 

(transonic flow over the ONERA M6 wing), 

obvious profit was not obtained. Shock waves 

resolution requires local grid refinement and/or 

employment of special shock capturing 

procedures. The use of high accuracy order 

numerical schemes could be helpful if precise 

determination of the drag coefficient were 

required. 
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