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Abstract

Presented is a novel numerical approach for
modelling and propagating model epistemic un-
certainty in simulation workflows composed
of [black-box] deterministic models. This is
achieved through the introduction of a Randomi-
sation Treatment. Specifically, the design pa-
rameters computed by particular deterministic
simulation models are numerically perturbed ac-
cording to statistical criteria determined on the
grounds of prior design experience and/or other
considerations. Established uncertainty propaga-
tion methods can thus be deployed to estimate
the resulting statistical behaviour of the simula-
tion outputs. The proposed approach is demon-
strated via an example of industrial relevance
based on an aircraft power-plant integration case
study. The latter provides a wider context where
a reduction of epistemic uncertainty is achieved
due to the closer design collaboration between
the airframe and engine manufacturers, and in
particular, due to the faster introduction of up-
to-date and more comprehensive design informa-
tion. It is demonstrated that the proposed ap-
proach, combined with appropriate collaboration
processes leads to more robust solutions.

1 Introduction

Early design studies of complex products such
as aircraft are generally aimed at rapid definition
(synthesis) and evaluation (analysis) of highly
idealized concepts rather than accurate and de-
tailed representations of the artefact. These stud-
ies, however, are performed with significant lev-
els of inherent uncertainty in the modelling and
simulation tools/models involved at this stage.
Uncertainty itself is undesired as it diminishes the
confidence on the computed results, which can be
compensated either by overdesign or by invest-
ment in further design iterations.

There are different types of uncertainty and
a common practice in the engineering and other
fields has been to distinguish between two ma-
jor classes: aleatory and epistemic uncertainty
[4][10]. The former is representative of the phys-
ical variability that is inherent in the (design) pa-
rameters describing the system of concern or its
environment. Epistemic uncertainty on the other
hand is related to the lack of knowledge or in-
formation. In modelling and simulation it gen-
erally arises from the mathematical simplifica-
tions/assumptions underlying the development of
simulation models, the inclusion of incomplete
experimental data, or the incorporation of sub-
jective design judgement and experience. Unlike
aleatory uncertainty, it is possible to reduce epis-
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temic uncertainty through the addition of further
knowledge if/when this is available, for exam-
ple, under the form of calibration coefficients or
higher-fidelity simulation models.

A methodological perspective and an exten-
sive (epistemic) uncertainty classification can be
found in Padulo and Guenov [8]. In this work
we concentrate on a particular subset of epistemic
uncertainty, namely the one associated with com-
putational models describing a physical system
such as aircraft at early design stages. The objec-
tive is to develop an approach for modelling and
propagating such uncertainty through the compu-
tational systems so that it can be taken into ac-
count for (design) decision making.

The rest of the paper is organised as fol-
lows. Essential background information, defi-
nitions and formulations related to uncertainty
management are presented in the next section.
The methodology for model epistemic uncer-
tainty management under the restrictions outlined
above is presented in section 3. The application
of the proposed method in the context of an in-
dustrial case study concerning power-plant inte-
gration is described in section 4. Finally conclu-
sions are drawn and future work is outlined in
section 5.

2 Uncertainty Management

Uncertainty management includes modelling,
propagating and assessing the impact of un-
certainty sources embedded in the simulation
models [9]. A typical uncertainty management
schema is divided into three steps [5][6]: 1) un-
certainty quantification, in which the sources of
uncertainty are formally identified, qualified and
quantified; 2) uncertainty propagation, where
an estimation of the statistical behaviour of the
simulation outputs is computed through an ad-
equate propagation of the modelled uncertain-
ties in simulation workflows; 3) robust assess-
ment, which allows to assess the robustness of
the simulation results with respect to any consid-
ered uncertainty. A typical uncertainty manage-
ment schema is depicted in Fig. 1, whereas an
overview of each step is presented in the follow-
ing sub-sections.
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Fig. 1 Example of a typical uncertainty manage-
ment schema.

2.1 Uncertainty Quantification

Notwithstanding previous research efforts, the
quantification of epistemic uncertainty is still an
on-going issue in both academia and industry
[4][7]. Its characterisation by probabilistic ap-
proaches in general is not straightforward be-
cause of the difficulty in inferring any statistical
information due to the intrinsic lack of knowl-
edge. Prior proposed methods generally require
polynomial approximations of the model output
[7], which in practice might be inconceivable for
large multidisciplinary models, or would allow
to consider only a limited number of modelling
techniques (e.g., symmetric or uniform distribu-
tions) [9][10]. The approach proposed in section
3 resorts to a numerical perturbation of requested
simulation outputs on the basis of statistical crite-
ria defined by the designer according to prior ex-
perience and/or assumptions. Conceptually simi-
lar to modelling aleatory uncertainty, it enables to
represent such type of epistemic uncertainty via
any desirable probability density function (PDF),
which can thus be propagated in computational
workflows via established algorithms.

2.2 Uncertainty Propagation

Once the uncertainty affecting simulation param-
eters and/or models has been adequately quanti-
fied, it needs to be propagated through the con-
sidered computational workflow in order to es-
timate the statistical behaviour of the simulation
outputs. Suitable algorithms need to be selected

2



Black-Box Model Epistemic Uncertainty at Early Design stage.
An Aircraft Power-Plant Integration Case Study

to achieve this while guaranteeing the satisfaction
of a number of simulation requirements (e.g., re-
quested numerical accuracy, computational time,
simulation solvers, etc.). In this context, in-
teroperability becomes an important considera-
tion, especially in collaborative enterprise simu-
lations, where models implemented in different
environments need to be integrated together to
conduct multidisciplinary and multi-fidelity stud-
ies. To this end, and accounting also for the im-
portance of intellectual property protection, we
utilise the concept of a black-box model. Such
a model can be, for example, a compiled code
with known inputs, outputs and functional per-
formance, but whose internal implementation is
not necessarily accessible. Among other suitable
algorithms (e.g., Monte Carlo Simulation, Mo-
ment Method, Polynomial Chaos, Stochastic Ex-
pansion, etc.), the Univariate Reduced Quadra-
ture (URQ) method [11][12] has been adopted.
The URQ method is inspired on the sigma-point
techniques and provides an estimate of the simu-
lation outputs mean and variance to a higher ac-
curacy when contrasted with alternative methods
of comparable cost. Among its other qualities, it
is able to handle several probability density func-
tions (symmetric and non-symmetric distribu-
tions) which allows to model diverse types of un-
certainty. Moreover, the URQ method relies on a
deterministic approximation of the statistical be-
haviour of the simulation outputs, which makes it
compatible with well-known algorithms for con-
ducting different simulation activities (e.g., de-
sign optimisation, design of experiments, sensi-
tivity analysis, etc.). A more detailed description
of the URQ method is presented in section 3.

2.3 Robust Assessment

The third step of uncertainty management in
modelling and simulation activities is aimed at
exploiting uncertainty quantification and uncer-
tainty propagation for assessing the robustness of
the simulation results. To achieve this, the prob-
lem to be investigated needs to be formally stated
in such a way that it is representative of and con-
sistent with the considered design requirements,
assumptions, sought scope, and deployed numer-

ical methods. Considered in this paper is the
application of uncertainty management schemas
for conducting optimisation studies under uncer-
tainty, which can be generically formulated as
follows:

min
µx∈ℜn

F[ f j(x,p)],

subject to: P(gi(x,p)≤ 0)≥ Pgi,
with: P(xlbk ≤ µxk ≤ xubk)≥ Pxk .

(1)

where:
• j = 1,2, ...,J, i = 1,2, ..., I, k = 1,2, ...,n;
• p is a vector of design parameters;
• x is the vector of n design variables with

mean µx and affected by uncertainty;
• F are suitable functions that express the de-

pendence of the probability density func-
tion of the J objectives f j on the input mul-
tivariate distribution;
• Pgi and Pxk are the desired probabilities of

satisfying the ith constraint gi and the vari-
able bounds defined for the kth design vari-
able xk, respectively.

The approach adopted here is to express the
functions F via a weighted sum function [12],
which leads to the reformulation of Equation (1)
as follows:

min
µx∈ℜn

Fj = µ f j + k f jσ f j ,

subject to: G j = µgi + kgiσgi ≤ 0,
with: xlb +kxσx < µx < xub−kxσx.

(2)

where Fj and Gi are utility (loss) functions that
account simultaneously for the mean and vari-
ance of the objective f j and gi constraint func-
tions, which need to be estimated by propagat-
ing adequately the uncertainty affecting particu-
lar design parameters or simulation models. Pa-
rameters kx depend on the n desired probabili-
ties Pxk and the statistical properties assumed for
modelling the uncertainty affecting the design pa-
rameters. The coefficients k f j and kgi can be es-
tablished on the basis of the desired probabilities
Pf j and Pgi , along with the adopted robust de-
sign criterion among the two possible choices of
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Table 1 Applicability of the proposed approach.
Source of epistemic Randomisation Randomisation Treatment not

uncertainty Treatment Applicable applicable
Requirements Insufficient elicitation Incomplete elicitation

definition (e.g., constraint boundary (e.g., missing requirement)
set arbitrary)

Design assumptions Calibration/correction of Reduction in number
parametric equations, of relevant

refinement of operating simulation variables
scenarios/environments

Phenomenon Limited scope of the Limited
parameterisation mathematical model (e.g., Understanding/Misinterpretation

limited number of of the phenomenon
operating conditions)

Computational Known/estimated Unknown or unquantifiable
accuracy accuracy of the selected computational errors

algorithm/solver

quantile and tail conditional expectation (TCE)
metrics. Further details and a practical explana-
tion of the two criteria can be found in Padulo
and Guenov [12].

3 Modelling and Propagation of Epistemic
Uncertainty

Described in this section is the proposed ap-
proach for handling the model epistemic un-
certainty affecting specific design parameters
of simulations conducted at preliminary design
stage. The key concept is based on modelling
such type of uncertainty via a numerical per-
turbation with statistical properties defined ac-
cording to design experience and/or assumptions.
This is achieved through a numerical method that
is described in the next sub-section and will be
hereafter referred in this paper as Randomisa-
tion Treatment. The integration of the proposed
treatment with the URQ uncertainty propagation
method is described in sub-section 3.2.

3.1 Randomisation treatment

Low-fidelity models are deployed at early design
stage to rapidly generate a high-level product de-
scription and to compare different design alterna-
tives by conducting various fast simulation stud-
ies. In turn, it is necessary to adequately ac-

knowledge and manage the epistemic uncertainty
stemming from the lack of knowledge inherent in
early design, which can be attributed to a number
of different sources, such as:

• Requirements definition. An incorrect or
incomplete elicitation and documentation
of design requirements could preclude the
adequate development of simulation mod-
els to support the design of a product which
fully satisfies relevant customer needs and
expectations.

• Design assumptions. Different assump-
tions are normally taken into consideration
throughout the development of the models
to simplify the physics behind the phenom-
ena to be simulated. Examples of com-
mon practice are the reduction of the num-
ber of relevant simulation variables, the
calibration/correction of parametric equa-
tions with experimental data, generalisa-
tion of operating scenarios and environ-
ments (e.g., initial conditions, boundary
conditions, etc.).

• Phenomenon parameterisation. A limited
understanding or misinterpretation of the
simulated phenomenon can prevent devel-
oping a mathematical model that appropri-
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ately captures its behaviour for each oper-
ating scenario under investigation.

• Computational accuracy. The selection of
particular algorithms in the implementa-
tion of models impacts on the accuracy of
simulation results. The latter in general
is also dependant on the choice of solvers
along with their corresponding setup pa-
rameters for executing the individual mod-
els and simulation workflows.

It has to be emphasised at this stage that the
proposed approach can handle only subsets of the
above epistemic uncertainties. Presented in Table
1 are example scenarios for which the proposed
approach can and cannot be applied, respectively.

The Randomisation Treatment mentioned
above is a numerical perturbation used during
the uncertainty quantification stage. Thus out-
puts deterministically computed through simula-
tion models affected by epistemic uncertainty are
stochastically parameterised via Random Vari-
ables with predefined statistical properties. More
precisely, each Random Variable (RV) associated
with a particular model output will have a unit
mean, together with minimum and maximum
variations defined according to prior design expe-
rience and/or assumptions. In this way, the defi-
nition of each Random Variable can be formally
stated via adequate probability density functions
(PDFs). This process is conceptualised in Equa-
tion (3) and Fig. 2 by considering a generic out-
put y and its corresponding RVy,

ystochastic = RVy · ydeterministic(xy) (3)

where xy is the vector of design variables on
which y is dependent.

It is important to note that the application
of the Randomisation Treatment allows to model
and encapsulate in its output the epistemic uncer-
tainty associated with specific simulation models.
In other words, it will transform specific deter-
ministic simulation outputs onto stochastic vari-
ables with precise statistical properties depending
on the probability density functions of their cor-
responding Random Variables. Such uncertainty

  

Simulation Model 

  

  
  

  

yx

Randomisation 

Treatment 

  

yy  ,

  

  

  

RVy  

ystochastic = 

y 

Fig. 2 Randomisation Treatment deployment on
a simulation model.

can thus be propagated through simulation work-
flows via conventional numerical methods. De-
picted in Fig. 3 is an example of a Randomisa-
tion Treatment application on an illustrative sim-
ulation workflow.

Described in the next sub-section is the inte-
gration of the proposed approach with the Uni-
variate Reduced Quadrature (URQ) method for
uncertainty propagation [12].

3.2 Epistemic Uncertainty Propagation via
the URQ method

A number of numerical methods can be consid-
ered for propagating model epistemic uncertainty
and handled via the aforementioned Randomisa-
tion Treatment. As mentioned in Section 2, the
Univariate Reduced Quadrature (URQ) method
[12] has been chosen for uncertainty propaga-
tion. It allows to estimate the statistical proper-
ties (mean µ and standard deviation σ) of selected
simulation outputs. This is generically illustrated
in Fig. 3, where the stochastic behaviours at-
tributed to y1 and y2 through the Randomisation
Treatment need to be propagated downstream in
the workflow to approximate the resulting mean
and variance of yout . Such an approach can
be generalised to manage the epistemic uncer-
tainty affecting r simulation parameters through
the definition of an equivalent number of Random
Variables. An accurate estimation of the statisti-
cal behaviour of the simulation outputs can thus
be computed with the URQ method via a sam-
pling stencil of 2r + 1 workflow evaluations. It
is important to note that the computational ef-
fort grows linearly with r. This is particularly
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Fig. 3 Conceptual example of the Randomisa-
tion Treatment deployment in a generic simula-
tion workflow.

efficient compared to other strategies that require
thousands of evaluations, such as the traditional
Monte Carlo Simulation method, as conceptually
illustrated in Fig. 4.

Illustrated in Fig. 4 is also the ability of the
URQ method to handle a number of different
symmetric and non-symmetric PDFs (e.g., Gaus-
sian, Triangular, Gamma, Beta, etc.). For exam-
ple, consider two models that allow the compu-
tation of the simulation parameters y1 and y2, as
depicted in Fig. 3. The epistemic uncertainty af-
fecting such models is modelled through the for-
mulation of the corresponding Random Variables
RV1 and RV2. The first is formulated as a non-
symmetrical triangular distribution with a given
minimum and maximum variation from a nomi-
nal value, denoted by a and b respectively. The
second is formulated as a Gaussian distribution
with a precise standard deviation. The propaga-
tion of uncertainty via the URQ method would
thus require five evaluations of the workflow to
compute an estimation of the mean and stan-
dard deviation of the simulation output yout cor-
responding to any evaluated design point x. The
exact location of the evaluation stencil points is
defined according to the scalar distances h±1 and

a  1 b
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Fig. 4 Conceptual comparison of the sampling
evaluations required by MCS and URQ on a
generic random variable space RV1 RV2.

h±2 , which are functions of the first four statistical
moments of the random variables. A complete
description of the URQ method, is presented in
Padulo et al. [11].

4 Application Example: an Aircraft Power-
Plant Integration Case Study

The proposed model epistemic uncertainty man-
agement method is demonstrated in this sec-
tion via an application of industrial relevance.
It is based on an aircraft power-plant integra-
tion scenario in which scheduled design itera-
tions are progressively conducted as up-to-date
design information becomes available from the
engine manufacturer. In particular, the introduc-
tion of surrogate models in simulation studies
is adopted in robust design optimisation (RDO)
studies aimed at managing the convergence of en-
gine requirements.

4.1 Case study description

The case study is based on the “Prelimi-
nary Multi-Disciplinary Power-Plant Design”
test case defined in the EU FP7 CRESCENDO
project [1][2]. It sets the scope for robust multi-
disciplinary optimisation studies for the prelimi-
nary design of aircraft power-plant. A particular
attention was given to the interaction between air-
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Table 2 Relevant case study nomenclature.
FNslst Sea-level engine thrust [N]
Awing Wing area [m2]

ar Wing aspect ratio
BPR By-pass ratio
s f c Specific fuel consumption [lb/lbd/hr]
LoD Lift over drag coefficient

MWE Maximum weight empty [kg]
to f l Take-off field length [m]
vapp Approach speed [kt]
T TC Time to climb [min]
OEI One engine inoperative

MTOW Maximum Take-off Weight [kg]
Fuel Total fuel for mission [kg]

frame and engine manufacturers. This involved
finding the best compromise between the bene-
fits (e.g., thrust and power) and drawbacks (e.g.,
weight, fuel consumption, etc.) associated with
different engine concepts. The relevant nomen-
clature and the design optimisation formulation
are given in Table 2 and Table 3, respectively.

The evaluation of alternative design solutions
conducted throughout the optimisation process
was computed by a set of simple models dedi-
cated to aircraft conceptual design named SIM-
CAD, which was provided by one of the in-
dustrial partners. SIMCAD allows to evalu-
ate conventional aircraft configurations accord-
ing to arbitrary Top Level Aircraft Requirements
(TLARs) by running a nested mass-mission loop,
required to achieve the convergence of MTOW
and Fuel.

The addressed scenario focuses on the de-
sign iterations triggered by the progressive re-
lease of more detailed design information by the
engine manufacturer. From a business perspec-
tive, a secure exchange of design data and mod-
els between airframe and engine manufacturers
is therefore necessary while at the same time
guaranteeing the protection of their correspond-
ing intellectual property (IP). One of the solu-
tions investigated to achieve this is through the
use of surrogate and black-box simulation mod-
els. Specifically, the models in the abovemen-
tioned aircraft sizing code SIMCAD were han-
dled as black-boxes, whereas a more accurate

Table 3 Aircraft design optimisation formulation.
Objective

minimise MTOW
Constraints

to f l-standard ≤ 1700 m
to f l-hot&high ≤ 3200 m

vapp ≤ 137 kt
Climb Ceiling ≥ 33000 ft
Cruise Ceiling ≥ 35000 ft

Buffeting Ceiling ≥ 37000 ft
OEI Ceiling ≥ 16000 ft

T TC ≤ 25 min
Design Variables

FNslst = [70000, 160000] N
Awing = [100,200] m2

ar =[7, 12]
BPR = [6, 10]

model of the engine was provided as a kriging
surrogate model [3]. The investigation of the con-
vergence of engine requirements was thus carried
out by considering two design iterations. The
first iteration was conducted by means of a sim-
ulation architecture entirely based on SIMCAD.
The second iteration included the incorporation
of the engine surrogate model which replaced
specific simulation models within SIMCAD, thus
acting as a means for reducing the epistemic un-
certainty affecting the computation of particular
simulation parameters. The considered set of un-
certain parameters and their associated Random
Variables is presented in Table 4, where each un-
certainty is represented as a percentage variation
from a nominal value (i.e., the value computed
for its corresponding parameter). Such variation
is assumed on the grounds of prior experience
and is reduced from the first to the second itera-
tion due to the refinement of simulation accuracy
introduced by the engine surrogate model.

4.2 Robust design optimisation

A weighted sum strategy based on Equation (2)
along with the proposed approach for the man-
agement of epistemic uncertainty were adopted
to tackle the optimisation problem presented in
Table 3. All the uncertainties affecting the sim-
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Table 4 Set of simulation parameters computed by models affected by epistemic uncertainty. Note that
in the second design iteration the parameters EngineWeight, s f c and FanDiameter are assumed not to
be affected by uncertainty.

Simulation Uncertainty of Uncertainty of Corresponding
parameters parameter parameter Random

computation in computation in Variable
Design Iteration 1 Design Iteration 2

MaxTrustT/O [-10% , +10%] [-5%, +5%] RVKmto
MaxT hrustClimb [-10% , +10%] [-5%, +5%] RVKmcl
MaxT hrustCruise [-10% , +10%] [-5%, +5%] RVKmcr

EngineWeight [-5% , +5%] - RVMpwp
s f c [-5% , +5%] - RVs f c

FanDiameter [-1% , +1%] - RVdnac
LoD [-1% , +0.5%] [-0.5%, +0.5%] RVLoD

MWE [-2% , +2%] [-1%, +1%] RVMWE

ulation parameters in Table 4 were modelled via
Gaussian distributions, except for LoD in the first
design iteration, for which a triangular distribu-
tion was considered. This is because the latter re-
flects better the designer’s assumption for asym-
metric LoD variation from the nominal value. A
summary of the uncertainty modelling via Ran-
dom Variables adopted for the two design itera-
tions presented in this paper is provided in Table
5.

The statistical properties of the objective and
constraints were estimated through the quantile
metric [12], without considering any particular
assumption on their respective distribution, and
requesting a 75% satisfaction probability.

The execution of the aforementioned optimi-
sation problem represents a clear example of sim-
ulation studies requiring a hierarchical applica-
tion of relevant numerical treatments on a sim-
ulation workflow assembled from a given set of
computational models. This has been addressed
via specific functionalities provided in the inno-
vative model-based design tool AirCADia [13],
which enables an interactive formulation and ex-
ecution of black-box simulation studies without
the need for a laborious and specialised lower
level programming. Illustrated in Fig. 5 is a
schematic representation of the considered sim-
ulation architecture. It is possible to note how
the optimisation treatment (loop) encapsulates
the uncertainty propagation treatment, which in

turn is applied onto the simulation workflow after
achieving the convergence of MTOW and Fuel.
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Fig. 5 Illustration of the considered simulation
architecture. Identified with an asterisk are the
three Random Variables assumed not to be af-
fected by uncertainty in the second design iter-
ation.

The results obtained in AirCADia via the
URQ method coupled with an embedded evo-
lutionary algorithm are presented in tabular and
graphical form in Table 6, Table 7 and Fig. 6,
respectively.

The power-plant robust design optimisation
problem described above represents an example
of simulation studies, based on the integration of
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Table 5 Set of Random Variables modelled as epistemic uncertainty.
Random Uncertainty Modelling in Uncertainty Modelling in
Variable Design Iteration 1 Design Iteration 2
RVKmto Gaussian with: µ = 1;σ = 0.1/3 Gaussian with: µ = 1;σ = 0.05/3
RVKmcl Gaussian with: µ = 1;σ = 0.1/3 Gaussian with: µ = 1;σ = 0.05/3
RVKmcr Gaussian with: µ = 1;σ = 0.1/3 Gaussian with: µ = 1;σ = 0.05/3
RVMpwp Gaussian with: µ = 1;σ = 0.05/3 - -
RVs f c Gaussian with: µ = 1;σ = 0.05/3 - -
RVdnac Gaussian with: µ = 1;σ = 0.01/3 - -
RVLoD Triangular with: a=0.99, µ = 1,b = 1.005 Gaussian with: µ = 1;σ = 0.005/3
RVMWE Gaussian with: µ = 1;σ = 0.02/3 Gaussian with: µ = 1;σ = 0.01/3

Table 7 Objective and constraint values of the optimal points obtained for the robust design optimisation
formulation in Table 3.

Design Iteration 1 Design Iteration 2
Performance Mean Standard Mean Standard

Deviation Deviation
MTOW [kg] 90136.5341 675.4364 87289.473 204.964

MaxT hrustT/O [lb f ] 28482.5293 949.4176 26980.308 449.671
@M 0.25; ISA+15; 0ft.
MaxT hrustClimb [lb f ] 7358.9591 245.2986 6970.834 116.180
@ M 0.76; ISA; 35kft.
MaxT hrustCruise [lb f ] 6847.9203 228.264 6486.748 108.112
@ M 0.76; ISA; 35kft.

MWE [kg] 45214.7322 394.7925 44201.022 170.056

Table 6 Design variable values of the optimal
points obtained for the robust design optimisation
formulation in Table 3.

Design Design
Iteration 1 Iteration 2

ar 11.786 11.252
Awing[m2] 164.7776 161.8699

BPR 9.5432 6.4771
FNslst[N] 154440.7238 146295.2379

mixed-fidelity models. The results show reduc-
tion of the uncertainty associated with simulation
outputs due to the incorporation of more accurate
higher-fidelity models such as the engine surro-
gate model introduced in the second design iter-
ation. It is important to note that the reduction
of the uncertainty and the improvement of the so-
lution were possible not least because of the re-
sults computed in the first design iteration. More

specifically, the latter allowed to identify the re-
gion in the design space which contained the de-
sired set of optimal solutions. Thus the higher-
fidelity (surrogate) engine model was developed
from a dataset obtained from more accurate en-
gine simulations conducted around such optimal
design points. The insight and knowledge gained
from the first design iteration were exploited to
limit the epistemic uncertainty affecting the en-
gine simulation model deployed in the second de-
sign iteration. The convergence to a more certain
set of engine requirements was hence achieved
by conducting a second robust design optimisa-
tion study based on the refined engine model.

5 Summary and Conclusions

Presented in this paper is a novel numerical ap-
proach for management of black-box model epis-
temic uncertainty. The proposed approach is seen
as most beneficial to the early stages of com-
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Fig. 6 Convergence of model epistemic uncertainty associated with engine requirements by means of
box plots. The horizontal line in the middle of each box represents the mean value of each engine
parameter per iteration, whereas the top and bottom lines of each box identify the range corresponding
to a variation of such value within one standard deviation. A variation of three standard deviations is
also depicted via the horizontal lines at the extremes of the vertical lines extending above and below each
box.

plex systems design, when preliminary simula-
tion studies are based on low-fidelity models and
conducted on the grounds of various assumptions
and incomplete knowledge. A Randomisation
Treatment has been proposed to quantify and for-
mally state a class of epistemic uncertainty af-
fecting the computation of simulation parame-
ters. This is numerically obtained through the
definition of associated Random Variables with
precise statistical properties. In the proposed ap-
proach the uncertainty propagation is enabled via
the integration of the URQ method, which allows
the efficient estimation of the simulation output
robustness in terms of mean and standard devia-
tion. The application of the proposed approach
for the reduction of epistemic uncertainty in an
example of industrial relevance demonstrated its
value in the process of maturing and converging

(engine and airframe) design requirements in a
collaborative design environment which respects
partners’ intellectual property. Future work will
concentrate on enabling the modelling of depen-
dencies among random variables, as well as on
the extension of the proposed methods to other
classes of epistemic uncertainty.
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