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Abstract  

The inverse method for aerodynamic design 
using the Navier-Stokes equations is developed. 
First intended for single airfoil design, it was 
extended for solving more complicated inverse 
problems, including two-dimensional ones for 
multielement airfoil and three-dimensional 
problems. 

The method belongs to the class of residual 
correction methods. Airfoils or 3D wing section 
shapes corrections are defined from the 
residuals between current and desired pressure 
distributions. 

The proposed algorithm provides fast 
convergence and high accuracy of the results. 
Examples of solving inverse problems of 
different complexity are given.  

1  Introduction 

Inverse methods of aerodynamics determine the 
geometry of the aircraft elements for a given 
pressure distribution and are a powerful tool of 
aerodynamic design. They allow to improve 
aerodynamics of the element: to eliminate or 
reduce shocks, to improve flow behavior at the 
specified location or to implement pressure 
distribution favorable for the development of a 
laminar or turbulent boundary layer. But the 
inverse problem is incorrect in general case, so 
not every given pressure distribution can be 
realized physically. The solvability conditions 
are precisely defined only for 2-D potential 
flows [1–2]. Engineering approaches are to be 
used for real viscous, transonic, and, in 
particular, 3-D flows.  

One of the most common approaches to the 
construction of inverse methods is based on the 
principle of residual correction. According to 
this principle the deformation of the airfoil 
surface is determined in some way through the 
residual between the calculated and the target 
(ср

*) pressure distributions [3–12]. The problem 
is solved iteratively by alternate calls of the 
direct analysis method and the geometry 
correction block (Fig.1). The run time of the 
geometry correction block is usually only a 
small fraction of the direct calculation time. Due 
to the iterative nature of the solution, the surface 
deformation rule can be quite rough. But 
evidently, the more accurately the geometry 
correction is determined, the smaller is the total 
number of required iterations.  

 

 
Fig.1 Residual correction method. 

 
The well-developed methods of direct flow 

problems solution are used in the residual 
correction procedures. Such procedures are not 
associated with a particular direct method, but 
use it as a “black box”. So the latter can easily 
be replaced in further development by a more 
perfect one. The development of direct methods 
usually precedes the development of “pure” 
inverse methods based on the solution of the 
flow problem with boundary conditions of 
ср=ср

* type. So the residual correction principle 
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allows solving the inverse problems for a wider 
class of flows and configurations. 

 The inverse methods for aerodynamic 
design using the Navier-Stokes equations 
belonging to the class of residual correction 
methods have been developed by the authors 
and are presented in this article. The details of 
the algorithm are described and some examples 
of solving the inverse problems of different 
complexity are given.  

2 Algorithm description 

The rapid development of computational 
fluid dynamics has recently led to the 
widespread implementation of direct RANS 
methods, closed by some turbulence model [13-
17]. Currently these methods represent a 
reasonable compromise between the complexity 
of equations and the required computational and 
time resources. Although the use of simpler 
equations leads to a significant acceleration of 
calculations, it is not of universal nature and 
requires the careful justification because of the 
risk to miss some important physical flow 
property, which ultimately affects locally or 
even globally the aerodynamics of the aircraft.  

The inverse methods using the Navier-
Stokes equations, proposed in this paper, also 
belong to the class of residual correction 
methods. The principle of hierarchical levels is 
used to create an effective algorithm. According 
to this principle it is appropriate to apply the 
inverse method of the lower level as a geometry 
correction block. Here “level” means the 
complexity of equations to be solved or of the 
geometry forms to be considered. Typical 
geometry levels in aerodynamics are airfoil, 
wing, wing+fuselage, and complete 
configuration. Typical equation complexity 
levels are the Laplace equation, the full 
potential equation, Euler equations, and Navier-
Stokes equations. As a rule, the transition to the 
next level increases the computational costs by 
one to two orders of magnitude.  

The principle of hierarchical levels allows 
gradually increasing the complexity of inverse 
problems with clear understanding of the 
physics of the phenomena and rational 
distribution of the calculations at different levels 

in order to minimize the total expenditure of 
computer time. Applying this principle, it is 
possible to create n-level systems for complex 
inverse problems, using in fact only one simple 
inverse method at the lowest level. For example, 
the inverse method for a wing in transonic flow 
developed in TsAGI, namely, TRAWDES [4], 
consists of three levels (Fig. 2).  

 

 
Fig.2 Principle of hierarchical levels. 

 
The inverse method for multielement 

airfoil proposed in the present article consists of 
two levels (Fig. 3). The upper level includes 
direct RANS method for multielement airfoil by 
ANSYS CFX software package use [18] and the 
lower level is the direct/inverse panel method 
for multielement airfoil in incompressible fluid.  

 

 
Fig.3 Inverse problem algorithm  

for multielement airfoil 
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By turn the single airfoil inverse method 
consists of three levels (Fig. 4). The upper level 
includes a direct RANS method for airfoil. On 
the second level the direct calculation of the 
compressible inviscid flow over airfoil by the 
full-potential method is performed. The first 
(lowest) level is a direct/inverse method for 
airfoil in an incompressible fluid. The first and 
the second levels together constitute the inverse 
method for airfoil in inviscid compressible flow, 
the TRAINV program [3].  

 

 
Fig.4 Inverse problem algorithm for single airfoil 

 
The wing inverse method connects four 

levels (Fig. 5). The upper level is a direct RANS 
method for wing. On the third level the 
transonic inviscid flow over wing by means of 
full-potential code BLWF [4] is calculated. The 
second level is the direct calculation of 
compressible inviscid flow over airfoil. The 
direct/inverse method for airfoil in 
incompressible fluid is the lowest level. In this 
algorithm three lower levels compose the 
inverse method for a transonic wing, namely, 
the TRAWDES program mentioned above. 

Each of above mentioned inverse methods 
is performed in the process of iterations. The 
following steps are performed on each k-th 
iteration: 

 
 The structured mesh is built around the 

geometry obtained on the previous  
(k–1)-th iteration, the flow over it is 
calculated by CFX, and the pressure 

distribution residual δср
k is determined 

as the difference between the current and 
target pressure distributions. 

 The inviscid flow around the same 
geometry is calculated. 

 The desired pressure distribution for 
inviscid flow over current geometry is 
formed by adding the difference r·δср

k  
(where r ≤ 1) to the pressure distribution 
from step 2. 

 The inverse problem for the inviscid 
flow is solved with the target pressure 
distribution from step 3 and the k-th 
airfoil (wing) geometry is obtained. 

 
 

 
Fig.5 Inverse problem algorithm for a wing 

 
For the obtained geometry it is necessary 

to solve again the direct RANS problem, to find 
the pressure distribution, etc. The pressure 
residual of airfoil or of each wing section is as 
follows: 

εc р
=√1

N
∑

i

N

( c pi
− c pi

* )2

 

and is calculated at each iteration, which defines 
the disagreement between calculated and target 
pressure distributions. The process is repeated 
several times until the convergence or the 
achievement of the minimum residual. In 
practice sufficient convergence corresponds to 
the level of εcp ≤ 0.01÷0.02. 
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3 Calculation Examples 

The geometry recovery tests are often 
used to verify the inverse methods. In such tests 
the target pressure distribution is taken from the 
direct calculation of the existing geometry, and 
the initial geometry is arbitrary. Such tests allow 
monitoring the convergence of the method not 
only on pressure distribution, but also on 
geometry. Note that for the general inverse 
problem the required geometry is unknown, 
moreover, in general, there is no evidence of its 
existence, i.e., the inverse problem is often 
incorrect.  

Figure 6 shows an example of the 
geometry recovery test for the target pressure 
distribution obtained by fully turbulent RANS 
calculation of NACA 4412 airfoil at transonic 
condition M = 0.67, α = 2°, Re = 4·106, where 
the shock exists on the upper surface. Iterations 
start from the NACA 0010 airfoil at the initial 
angle of attack α = 1°. Twelve iterations were 
required to solve the design problem (each 
iteration includes one step of direct calculation 
and one step of solving the inverse inviscid 
problem). Since the corrector describes well the 
physics of flow, the result is quite good even at 
the first iteration. Fairly good agreement of the 
pressure distribution was obtained on the 
seventh iteration, but five additional iterations 
are necessary to obtain a good geometric 
convergence. The graph of the pressure residual 
decrease and the angle of attack convergence 
graph are also presented in the figure. 

In the following example the target 
pressure distribution was chosen arbitrarily on 
the upper surface (Fig. 7) to implement the 
shock-free airfoil at M = 0.67. The pressure 
distribution on the bottom surface was not 
changed. As the initial approximation the 
NACA 4412 airfoil was taken. The solution 
with acceptable accuracy has been obtained 
after ten iterations. 

The third example is an inverse problem 
solution for multielement airfoil (Fig. 8). The 
target pressure distribution on flap was chosen 
arbitrarily. The GA(W)-1 airfoil at M=0.2, 
Re=2.1·106 with flap deflected at δ=20° was 
used as initial approximation. The geometry of 
flap was changed in the process of iterations and 

the geometry of main element was fixed. Four 
iterations were required to get solution of the 
design problem with quite good convergence on 
pressure distribution. In the process of solving 
the total lift coefficient increased from 3.34 to 
3.4, which of almost 90% belongs to main 
element. The residual reduction graph is also 
shown. 

The next two examples are the wing 
geometry recovery tests: the first one is a test 
for subsonic wing at М=0.2 and the second one 
is a test for transonic wing at М=0.68. Reynolds 
number in both cases is Re = 4·106. The 
geometry of base wing is determined by three 
sections: 2y/span=0,  0.333  and  1. Target 
geometry corresponded to airfoil NACA 4415 
with twist 3° at 2y/span=0, airfoil NACA 4412 
with twist 0° at 2y/span=0.333 and airfoil 
NACA 4410 with twist -3° at 2y/span=1. The 
untwisted wing with airfoil NACA 0010 at each 
base section was taken as initial geometry. 

At the first example at М=0.2 the target 
pressure distribution was obtained by 
calculation of flow over target geometry wing at 
angle of attack α=5°, and the initial wing was 
started from α=0°. Three iterations were needed 
to obtain the solution. In figure 9 the pressure 
distributions and geometry of base sections with 
twist are shown. The obtained geometry, twist, 
angle of attack and corresponding pressure 
distributions are almost identical to the target 
ones.  

At the second 3-D example the similar 
problem was solved, but M=0.68, and the target 
angle of attack been reduced to α=2°were used. 
Convergence has been obtained in three 
iterations (see Fig. 10).  

4 Conclusions 

A new algorithm to use the RANS-codes for 
inverse problem solutions have been developed. 
The solution is performed iteratively in the 
framework of the residual correction procedure. 
The software package ANSYS CFX is used as a 
direct analysis method. Different methods 
previously developed at TsAGI for solving  
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Fig. 6 Geometry recovery test for airfoil in transonic flow M∞ = 0.67, α = 2°. 
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Fig. 7 Inverse problem solution for airfoil, target pressure distribution is set arbitrary. 
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Fig. 8 Inverse problem solution for multielement airfoil.
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Fig. 9 Geometry recovery test for a wing at M=0.2 

 

the inverse problem in an inviscid flow–
TRAINV, TRAWDES–were used as a 
corrector.  

Examples of inverse problem solution for 
single airfoil in transonic flow, multielement 
airfoil in subsonic flow and a wing in subsonic 
and transonic flow, that demonstrate the high 
efficiency of the method, are presented. The 
method can be further developed for more 
complex inverse problems, including three-
dimensional problems for wing+fuselage and 
even for complete aircraft configuration at 
cruise and take-off-and-landing regimes. 
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