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Abstract

The inverse method for aerodynamic design
using the Navier-Stokes equations is developed.
First intended for single airfoil design, it was
extended for solving more complicated inverse
problems, including two-dimensional ones for
multielement airfoil and three-dimensional
problems.

The method belongs to the class of residual
correction methods. Airfoils or 3D wing section
shapes corrections are defined from the
residuals between current and desired pressure
distributions.

The proposed algorithm provides fast
convergence and high accuracy of the results.
Examples of solving inverse problems of
different complexity are given.

1 Introduction

Inverse methods of aecrodynamics determine the
geometry of the aircraft elements for a given
pressure distribution and are a powerful tool of
aerodynamic design. They allow to improve
aerodynamics of the element: to eliminate or
reduce shocks, to improve flow behavior at the
specified location or to implement pressure
distribution favorable for the development of a
laminar or turbulent boundary layer. But the
inverse problem is incorrect in general case, so
not every given pressure distribution can be
realized physically. The solvability conditions
are precisely defined only for 2-D potential
flows [1-2]. Engineering approaches are to be
used for real viscous, transonic, and, in
particular, 3-D flows.

One of the most common approaches to the
construction of inverse methods is based on the
principle of residual correction. According to
this principle the deformation of the airfoil
surface is determined in some way through the
residual between the calculated and the target
(cp*) pressure distributions [3—12]. The problem
is solved iteratively by alternate calls of the
direct analysis method and the geometry
correction block (Fig.l1). The run time of the
geometry correction block is usually only a
small fraction of the direct calculation time. Due
to the iterative nature of the solution, the surface
deformation rule can be quite rough. But
evidently, the more accurately the geometry
correction is determined, the smaller is the total
number of required iterations.

Direct method
'E:!"J < 6(‘;}
Correction block \l/

Fig.1 Residual correction method.

The well-developed methods of direct flow
problems solution are used in the residual
correction procedures. Such procedures are not
associated with a particular direct method, but
use it as a “black box”. So the latter can easily
be replaced in further development by a more
perfect one. The development of direct methods
usually precedes the development of “pure”
inverse methods based on the solution of the
flow problem with boundary conditions of
cp=cp* type. So the residual correction principle
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allows solving the inverse problems for a wider
class of flows and configurations.

The inverse methods for aerodynamic
design using the Navier-Stokes equations
belonging to the class of residual correction
methods have been developed by the authors
and are presented in this article. The details of
the algorithm are described and some examples
of solving the inverse problems of different
complexity are given.

2 Algorithm description

The rapid development of computational
fluid dynamics has recently led to the
widespread implementation of direct RANS
methods, closed by some turbulence model [13-
17]. Currently these methods represent a
reasonable compromise between the complexity
of equations and the required computational and
time resources. Although the use of simpler
equations leads to a significant acceleration of
calculations, it is not of universal nature and
requires the careful justification because of the
risk to miss some important physical flow
property, which ultimately affects locally or
even globally the aerodynamics of the aircraft.

The inverse methods using the Navier-
Stokes equations, proposed in this paper, also
belong to the class of residual correction
methods. The principle of hierarchical levels is
used to create an effective algorithm. According
to this principle it is appropriate to apply the
inverse method of the lower level as a geometry
correction block. Here “level” means the
complexity of equations to be solved or of the
geometry forms to be considered. Typical
geometry levels in aerodynamics are airfoil,
wing, wing+tfuselage, and complete
configuration. Typical equation complexity
levels are the Laplace equation, the full
potential equation, Euler equations, and Navier-
Stokes equations. As a rule, the transition to the
next level increases the computational costs by
one to two orders of magnitude.

The principle of hierarchical levels allows
gradually increasing the complexity of inverse
problems with clear understanding of the
physics of the phenomena and rational
distribution of the calculations at different levels
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in order to minimize the total expenditure of
computer time. Applying this principle, it is
possible to create n-level systems for complex
inverse problems, using in fact only one simple
inverse method at the lowest level. For example,
the inverse method for a wing in transonic flow
developed in TsAGI, namely, TRAWDES [4],
consists of three levels (Fig. 2).

Direct method for
transonic wing

A I

Direct method for
airfoil in compressible
inviscid flow

T I |[maw

Direct/inverse method
for airfoil in
incompressible fluid

— _

Fig.2 Principle of hierarchical levels.

The inverse method for multielement
airfoil proposed in the present article consists of
two levels (Fig. 3). The upper level includes
direct RANS method for multielement airfoil by
ANSYS CFX software package use [18] and the
lower level is the direct/inverse panel method
for multielement airfoil in incompressible fluid.

Direct method
for multielement airfoil in
viscous flow
(ANSYS CFX)

o

Direct/inverse method for
multielement airfoil in
incompressible fluid

Fig.3 Inverse problem algorithm
for multielement airfoil
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By turn the single airfoil inverse method
consists of three levels (Fig. 4). The upper level
includes a direct RANS method for airfoil. On
the second level the direct calculation of the
compressible inviscid flow over airfoil by the
full-potential method is performed. The first
(lowest) level is a direct/inverse method for
airfoil in an incompressible fluid. The first and
the second levels together constitute the inverse
method for airfoil in inviscid compressible flow,
the TRAINV program [3].

ANSYS CFX

AT I

Direct method for
an airfoil in compressible
inviscid flow

T I |[maw

Direct/inverse method
for airfoil
in an incompressible fluid

- _/

Fig.4 Inverse problem algorithm for single airfoil

The wing inverse method connects four
levels (Fig. 5). The upper level is a direct RANS
method for wing. On the third level the
transonic inviscid flow over wing by means of
full-potential code BLWF [4] is calculated. The
second level is the direct calculation of
compressible inviscid flow over airfoil. The
direct/inverse =~ method  for  airfoil in
incompressible fluid is the lowest level. In this
algorithm three lower levels compose the
inverse method for a transonic wing, namely,
the TRAWDES program mentioned above.

Each of above mentioned inverse methods
is performed in the process of iterations. The
following steps are performed on each k-th
iteration:

e The structured mesh is built around the
geometry obtained on the previous
(k—1)-th iteration, the flow over it is
calculated by CFX, and the pressure
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distribution residual 8c,* is determined
as the difference between the current and
target pressure distributions.

e The inviscid flow around the same
geometry is calculated.

e The desired pressure distribution for
inviscid flow over current geometry is
formed by adding the difference r-SC,,k
(where » < 1) to the pressure distribution
from step 2.

e The inverse problem for the inviscid
flow is solved with the target pressure
distribution from step 3 and the k-th
airfoil (wing) geometry is obtained.

ANSYS CFX

- I

Direct method for a transonic wing
(blwf)

11 ]!

Direct method for airfoil
in compressible inviscid flow

17 ]

o

TRAWDES <

' TRAINV

Direct/inverse method for airfoil
in incompressible fluid

Fig.5 Inverse problem algorithm for a wing

For the obtained geometry it is necessary
to solve again the direct RANS problem, to find
the pressure distribution, etc. The pressure
residual of airfoil or of each wing section is as

follows:
1 N
— RN
€ = NZ(C”" cpf)

and is calculated at each iteration, which defines
the disagreement between calculated and target
pressure distributions. The process is repeated
several times until the convergence or the
achievement of the minimum residual. In

practice sufficient convergence corresponds to
the level of €., <0.01+0.02.




3 Calculation Examples

The geometry recovery tests are often
used to verify the inverse methods. In such tests
the target pressure distribution is taken from the
direct calculation of the existing geometry, and
the initial geometry is arbitrary. Such tests allow
monitoring the convergence of the method not
only on pressure distribution, but also on
geometry. Note that for the general inverse
problem the required geometry is unknown,
moreover, in general, there is no evidence of its
existence, i.e., the inverse problem is often
incorrect.

Figure 6 shows an example of the
geometry recovery test for the target pressure
distribution obtained by fully turbulent RANS
calculation of NACA 4412 airfoil at transonic
condition M = 0.67, a = 2°, Re = 4'106, where
the shock exists on the upper surface. Iterations
start from the NACA 0010 airfoil at the initial
angle of attack a = 1°. Twelve iterations were
required to solve the design problem (each
iteration includes one step of direct calculation
and one step of solving the inverse inviscid
problem). Since the corrector describes well the
physics of flow, the result is quite good even at
the first iteration. Fairly good agreement of the
pressure distribution was obtained on the
seventh iteration, but five additional iterations
are necessary to obtain a good geometric
convergence. The graph of the pressure residual
decrease and the angle of attack convergence
graph are also presented in the figure.

In the following example the target
pressure distribution was chosen arbitrarily on
the upper surface (Fig.7) to implement the
shock-free airfoil at M = 0.67. The pressure
distribution on the bottom surface was not
changed. As the initial approximation the
NACA 4412 airfoil was taken. The solution
with acceptable accuracy has been obtained
after ten iterations.

The third example is an inverse problem
solution for multielement airfoil (Fig. 8). The
target pressure distribution on flap was chosen
arbitrarily. The GA(W)-1 airfoil at M=0.2,
Re=2.1-10° with flap deflected at 8=20° was
used as initial approximation. The geometry of
flap was changed in the process of iterations and
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the geometry of main element was fixed. Four
iterations were required to get solution of the
design problem with quite good convergence on
pressure distribution. In the process of solving
the total lift coefficient increased from 3.34 to
3.4, which of almost 90% belongs to main
element. The residual reduction graph is also
shown.

The next two examples are the wing
geometry recovery tests: the first one is a test
for subsonic wing at M=0.2 and the second one
is a test for transonic wing at M=0.68. Reynolds
number in both cases is Re = 4-10°. The
geometry of base wing is determined by three
sections:  2y/span=0, 0.333 and 1.  Target
geometry corresponded to airfoil NACA 4415
with twist 3° at 2y/span=0, airfoil NACA 4412
with twist 0° at 2y/span=0.333 and airfoil
NACA 4410 with twist -3° at 2y/span=1. The
untwisted wing with airfoil NACA 0010 at each
base section was taken as initial geometry.

At the first example at M=0.2 the target
pressure  distribution was  obtained by
calculation of flow over target geometry wing at
angle of attack 0=5°, and the initial wing was
started from a=0°. Three iterations were needed
to obtain the solution. In figure 9 the pressure
distributions and geometry of base sections with
twist are shown. The obtained geometry, twist,
angle of attack and corresponding pressure
distributions are almost identical to the target
ones.

At the second 3-D example the similar
problem was solved, but M=0.68, and the target
angle of attack been reduced to o=2°were used.
Convergence has been obtained in three
iterations (see Fig. 10).

4 Conclusions

A new algorithm to use the RANS-codes for
inverse problem solutions have been developed.
The solution is performed iteratively in the
framework of the residual correction procedure.
The software package ANSYS CFX is used as a
direct analysis method. Different methods
previously developed at TsAGI for solving
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Fig. 6 Geometry recovery test for airfoil in transonic flow M,, = 0.67, o = 2°.
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Fig. 7 Inverse problem solution for airfoil, target pressure distribution is set arbitrary.
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Fig. 8 Inverse problem solution for multielement airfoil.
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Fig. 9 Geometry recovery test for a wing at M=0.2

the inverse problem in an inviscid flow—
TRAINV, TRAWDES-were used as a
corrector.

Examples of inverse problem solution for
single airfoil in transonic flow, multielement
airfoil in subsonic flow and a wing in subsonic
and transonic flow, that demonstrate the high
efficiency of the method, are presented. The
method can be further developed for more
complex inverse problems, including three-
dimensional problems for wing+fuselage and
even for complete aircraft configuration at
cruise and take-off-and-landing regimes.
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