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Abstract  

We suggest the new optimality criteria for 

designing of aircraft structures with natural 

frequency limitations. These criteria were 

developed with taking into account the 

specificity of aircraft operation. We show that 

our criteria allow to obtain effective projects. 

1  Introduction  

In structural design often arises a problem of 

achievement of a given value of one or several 

natural frequencies. For aviation structure, such 

demands are linked with the aero elasticity 

phenomena, which are considered as the 

impermissible. The design problem in this case 

is formulated as following. 

To define such stiffness performances of 

structural elements which without violation of 

strength requirements supply a given value of 

the lowest natural frequency of certain natural 

mode, for example, the lowest torsional or the 

lowest bending natural mode, and have a 

minimum volume of structural material. 

Problems of such type were solved by many 

researchers, see in particular [1], however the 

received optimization criteria possess difficultly 

understandable physical meaning, does not 

discover properties of optimum designs and 

consequently is difficultly implanted in practical 

design. The reason to that, in our opinion, 

concludes in an excessive generality of the 

statement of problem, which are not considering 

the specificity of job of particular structures. 

For aviation structures is typical, that the 

airframe has on itself heavy passive masses, 

namely: fuel, a power plant, a payload, 

aggregates and systems. For wings of modern 

airliners the part of mass of the load-bearing 

elements responsible for making its structure 

stiffness is 10…15 % from total wing mass, and 

for fuselages this part is equal 18…22 % from 

total fuselage mass. Therefore, at obtaining 

optimality criteria it is possible not to take into 

account the influence of redistribution of mass 

of a structural material onto natural frequencies, 

what allows to fill optimality criteria with 

accurate physical meaning and to discover 

properties of optimum designs. However, again 

we will underscore, that it is possible only in the 

presence of the large passive masses, which are 

not participating in optimization. 

2  Optimality Criteria  

2.1 Wings with large and middle aspect ratio  

In this case the mode of structures 

deformation is defined enough exactly by the 

beam theory. Therefore we use the theory of 

thin-web beam and as object function for a 

flexural vibration mode we used the function of 

function from flexural stiffness B(z) along the 

wingspan z: 

0

( ) dz

L

F B z  ;   (1) 

We will determine natural frequency through a 

ratio of the Lord J. Rayleigh [2]. 
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Here f(z) is form of natural oscillations, and f(z) 

and B(z) do not depend from each other. Also, 
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m(z) is fixed per unit length mass distribution, L 

- length of a beam. 

To minimize a functional 

0

( )   min,

L

F B z dz      (3) 

by isoperimetric condition 

 2 = 2
0,      (4) 

where 0 - given frequency of any bending form 

of natural oscillations. 

The extended functional with taking into 

account conditions (4) looks like 

  2 2

1 0

0

( )  ,

L

B z dz         (5) 

Where 1 - Lagrange multiplier. A necessary 

condition of functional (5) stationarity is the 

equality to zero of its total variation: Ф = 0, 

that gives: 
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After some transformations, we get: 
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As the variations B(z) and f(z) are mutually 

independent, following the basic lemma of a 

calculus of variations we receive optimality 

criterion 
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and differential equation of bending natural 

oscillations 

         2( ) ( )  ( ) ( ) = 0B z f z m z f z


      (9) 

with boundary conditions 

         ( ) ( ) ( )  = 0;

0

L

B z f z f z      (10) 

       [ ( ) ( )]  ( )  = 0.

0

L

B z f z f z      (11) 

It is impossible to get the solution of a system 

(8)...(11) in the closed form, therefore we select 

some properties, which allow create designing 

algorithm for beam systems. 

From a boundary problem (9)...(11) forms f(z) 

are determined within a constant coefficient, 

therefore by an appropriate normalization it is 

possible to achieve, that 

 
2
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( ) ( )  = 1

L

m z f z dz       (12) 

at all variations B(z). Then the optimality 

criterion (8) will accept a view: 
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Following [3] on the basis of criterion (8) it is 

possible to receive a recursion formula for 

assignment of new bending stiffness B(z), 

ensuring fulfilment of the given requirement. 

Let's multiply left and right member (8) on 

( )sB z  and after elementary conversions we 

receive 

 
2

l 1 1( )  ( )   ( ) ,
s

lB z k B z f z
     (14) 

here k1 - some constant coefficient, l – iteration 

number, and s determines the size of a step. 

The second derivative of beam sagging is a 

curvature of a bending neutral axis. Therefore, 

the new bending stiffness need to be assigned 

proportionally to curvature of the form of 

bending oscillations, and by made assumptions 

the structure with stiffness distribution ensuring 

constant curvature will be optimum. 
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Let's consider now torsional forms of natural 

oscillations. The extended functional for the 

taking into account the isoperimetric condition 

(4) will be written as 
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here C(z) - torsional stiffness, (z) - form of 

natural torsional vibrations, i(z) - per unit length 

polar moment of inertia of structural weights 

concerning centers of torsion. For thin-wall 

beams, which are carrying torsional stresses on 

Bredt [2], criterion function (15) determine 

volume of a structure material. 

Repeating the mathematical manipulation, 

similar earlier conducted, allows to receive a 

final kind of optimality criterion 

 2

2

1
( ) ,z const


       (16) 

And formula for assignment of torsional 

stiffness 

 , (z)  )(C )(
2

21l

s

lzkzC    (17) 

Where k2 - some constant coefficient, and s, as 

well as in (14), determines the size of a step. 

The equations (14) and (17) can be extended. 

Really, according to the technical theory of a 

beam [2] bending and torsion moments are 

accordingly 

 
2

2
( ) ;bend

d y
M B z

dz
     (18) 

 ( ) ;tors

d
M C z

dz


    (19) 

here y(z) - sag, and  - angle of elastic twisting. 

Comparing (14), (17) with (18), (19) we can 

see, that new stiffness, bending or torsional, it 

is necessary to assign proportionally to 

moment, bending or torsion, scaled on strained 

state appropriate to this or that form of natural 

oscillations. 

 
2

1 l( )    ( )  .
s

lA z k M z    (20) 

here A(z) - bending or torsional stiffness of a 

structure, M(z) - moment from deformation 

under any form of natural oscillations. 

2.2  Wings with small aspect ratio 

For the description of bending systems, such as 

wing panels with small curvature, wings with 

small aspect ratio, etc. the models based on 

plate theory are most common. Therefore, we 

deduce optimality criterion for isotropic and 

orthotropic plates with assumption that the 

deformation mode of a structure can be defined 

by the theory of thin plates. 

As a criterion function we shall accept the 

functional 

 ( , )  .G D x y dx dy


     (21) 

Hereinafter: D(x,y) - bending stiffness;  - 

plane area of a plate. 

The minimization of such criterion function in 

general does not provide a minimum of a 

structure material volume, however for 

sandwich plates with variable, but not varied 

during optimization structural depth, and with 

filler absolutely rigid for shift deformation, the 

structural weight is determined by thickness of 

carrying layers, so both the minimum of a 

function (21) and volume of a material coincide. 

Natural frequency ω, expressed through the 

ratio of the Lord J. Rayleigh, will be written as: 

 
2 2

2 2 2 2 2
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2 1   
 y

.
  

w w w w w
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     
                 





The frequency  depends on stiffness 

distribution D(x,y) and on a vibration mode 

w(x,y). Here (x,y) - fixed mass distribution and 

µ - Poisonn ratio.  

In the total, we have the following task of 

optimum designing. To find such stiffness 

distribution D(x,y), which one delivers a 

minimum to a functional 

 


 mindydx  ),( yxDG   (23) 

by isoperimetric limitation 

 ,022
0      (24) 

here 0 – is required natural frequency. 

Let's solve the task by the method of Lagrange 

multiplier. Let's record the extended functional 

as 

   2 2

0( , )  ,L D x y dx dy   


      (25) 

here  - is Lagrange multiplier. 
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Necessary condition of a stationarity of the 

functional (25) is the equality to zero its total 

variation, that is 

   dL = 0,             (26) 

that gives 

 2

0( , )  +L D x y dx dy   


              (27) 

 
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








After bulky but uncomplicated mathematical 

manipulations, we get the optimality criteria: 
2 2

2 2 2 2 2

2 2 2 2

1
2 (1 ) ,

w w w w w
const

x y x y x y

    


      

    
          
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physical sense of which is not prime. 

In a differential geometry is the concept of 

main surface curvatures defined as eigenvalues 

of a matrix of curvatures in the Cartesian 

coordinate system [4]: 
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 .
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K
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        (29) 

It is known, that the sum of main curvatures is 

equal the spur of matrix, and their product is 

equal matrix determinant (29). Having 

substituted these ratios in the optimality 

condition (28), we receive 

2 2

1 2 1 2

1
2K K K K const


    ,   (30) 

here K1 and K2 - greatest and least (main) 

curvatures of plate surface deformed in 

according with the form w(x,y). The bending 

moments M1 and M2 on a direction of main 

curvatures are determined as 

1 1 2

2 2 1

 (K );  

M  (K ).

M D K

D K





  

  
       (31) 

With taking into account (31) optimality 

criterion (28) takes its final form: 

 1 1 2 2 1
.

M K M K
const

D 


         (32) 

Thus, with according to made assumptions, in a 

structure having a minimum of bending 

stiffness and having required value of any 

natural frequency, the sum of products of 

main curvatures of the appropriate form and 

moments on direction of these curvatures 

divided on bending stiffness, should be 

constant in any point (x, y) of structure. 

Following [3] on the basis of criterion (32) it is 

possible to receive a recursion formula for 

assignment of new stiffness D(x,y), ensuring 

fulfilment of the given requirement. Let's 

multiply left and right member (32) on D2(x,y) 

and after elementary conversions we receive 

 ;  22111 KMKMDrD           (33) 

here r - some constant coefficient, and  - 

iteration number. 

For real wing structures the formula (33) 

does not give a capability to construct iterative 

designing algorithm, because the actual wings 

are structurally orthotropic plates having 

different stiffness in a direction of spars and 

ribs, but in (33) we control only alone stiffness 

parameter. Therefore, criterion (32) has 

practical value only for isotropic plates of 

variable thickness and allows optimizing 

structures such as sandwich-panels, blades of 

turbines, sandwiching shells etc. 

The orthotropic plate is featured both 

stiffness parameters and angle of orientation of 

orthotropy axes. We separate the task of 

optimization for orthotropic plate onto two 

independent tasks: 1) task of optimization 

stiffness parameters at constant orientation 

angle of orthotropy axes; 2) task of optimization 

of orthotropy axes orientation angle at constant 

distribution of a load-carrying material. 

First task connected with material distribution 

determination when wing skeleton is known. 

The second task supposes the definition of 

direction of spars and ribs. 

At first we receive the optimality conditions 

for the first of these tasks. For simplification of 

a criterion making let’s direct the coordinates 

axis Ox and Oy along orthotropy axes. As 

design variables we shall accept bending 

D11(x,y), D22(x,y) and torsional D66(x,y) 

stiffneses of an orthotropic plate [5]. For such 

plate the square of a natural frequency is 

determined by Lord J. Rayleigh ratio: 



 

5  

OPTIMALITY CRITERIA FOR STRUCTURAL DESIGN OF 

AIRFRAMES WITH DYNAMIC REQUIREMENTS  

2 2 2
2 2 2 2 2

11 22 12 662 2 2 2

2

2

2 4  

.
  

w w w w w
D D D D dxdy

x y x y x y

w dx dy

    

     








      
        

       





The Poisson's constants along orthotropy axes 

express as 
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1 2

11 22

;        .
D D

D D
          (35) 

With taking into account (35) is possible to 

eliminate stiffness D12 from (34). Then 
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     (36) 

The criterion function should depend on a 

structural mass and be invariant concerning a 

direction of orthotropy axes. Therefore, we use 

such linear combination of plate stiffnesses, 

which one will be invariant relatively a rotation 

of orthotropy axes. In this case it is possible to 

optimize separately stiffness distribution and 

direction angle of orthotropy axes. 

There are known [5] two invariants of stiffness 

of orthotropic plates: 

      I1 = D11+D22+2D12;  I2 = D12 - D66.  (37) 

Let's make from these invariants a function, 

having eliminated stiffness D12. In the total we 

receive 

I = I1 - 2I2 = D11 + D22 + 2D66.   (38) 

The invariant I depends only on design variables 

D11, D22, D66 and does not change by rotation of 

orthotropy axes. 

Let's formulate now following task of 

optimization. Among functions D11(x,y), 

D22(x,y), D66(x,y) to find such, which one 

provides minimum for a functional 

    11 22 662   min,J D D D dx dy


      (39) 

by isoperimetric limitation 

  ; 022
0            (40) 

Here  is determined by Lord J. Rayleigh ratio 

(36) for an orthotropic plate at earlier made 

assumptions. 

The extended functional after grouping terms 

containing like stiffness, we write in the form: 
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We will operate the same, as for isotropic 

plates, and receive the optimality criterion: 
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With usage equations 
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we record the optimality criterion as: 
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Thus, with taking into account the made 

assumptions, in optimum by criterion (44) 

structures having required value of any 

natural frequency, the product of the 

appropriate form curvature on a direction 

orthotropy axes and moment on the same 

direction divided on appropriate stiffness, 

should be constant in any point (x,y) of 

structure. 
Based on optimality criterion (3.150) it is 

possible to receive recursion formulas for 

assignment of new stiffness: 
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     ;

w
D r D M

x

w
D r D M

y

w
D r D M

x y

 

 

 











 








 







 



       (44) 

here r - some constant coefficient, and ν - 

number of iteration. 
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The solution of task 2 based on 

searching the direction of orthotropy axes, 

which gives maximal natural frequency value 

by given stiffness distribution. We receive that 

in an optimum orthotropic structure a 

direction of maximum stiffness and direction 

of maximum curvature should coincide in any 

point. 

2.3 Designing algorithm for wings 

With usage of obtained results is possible to 

construct simple algorithm of searching of 

distribution of a material ensuring given natural 

frequencies. 

1. Let there is an initial stiffness distribution 0
iiD  

on structure elements (ii = 11, 22, 66). 

2. We calculate frequencies and forms of natural 

oscillations of structure. 

3. We shall route axes of stringer sets along 

lines of main curvatures of the surface, 

deformed on a vibration mode of a design or 

into direction, defined by the technological 

requirements, if those are available. 

4. For constrained frequencies on expressions 

(44) we calculate new values 1
,

jiiD  ( - number 

of iteration, j - number of frequency). 

5. We shall select maximum 1
max,


iiD  from all 

values assigned in the previous block: 
1 1

,max ,max  ( )ii ii j
j

D D   .           (45) 

6. If there is the strength limitation such as 
1

, ,ii j iiD D



      then we select 1
1,


iiD  maximal 

from 1
max,


iiD  and ,iiD    : 

     ,D  max ,
1+
maxii,

1
1, 


iiii DD  .          (46) 

7. If there is the technological limitation such as 
1

, ,ii j ii hD D       then we select 1
iiD  maximal 

from 1
1,


iiD  and ,ii hD   : 

  1 1

,1 ,max   ,   ii ii ii hD D D       .        (47) 

8. We go to point 2 with stiffness distribution 
1

iiD . 

 

We are continuing evaluations in cycle 2 - 8 

either until fulfilment of the frequencies 

limitations, or until stabilization material 

distribution among elements. The second case 

show that within the framework of optimality 

criterion (44) it is impossible to find material 

distribution ensuring given frequencies and it is 

required to change a distribution law of passive 

masses, or proportionally increase stiffness for 

all load-bearing elements. 

3 Theory application  

Let's consider a hypothetical swept wing to 

which the engine is attached on a pylon. The 

computational model consists from wing, pylon 

and an engine nacelle and is displayed on Fig. 1. 

 
Fig. 1. Wing model 

 

The wing has a span 10m, aspect ratio λ = 4.38, 

wing taper ratio η = 2.24. The engine is 

disposed on distance z=2490мм from an 

airplane axis. Sweepback angle at the leading 

edge is χ = 280, along front spar χ = 250. With 

the unit load on a wing equal p0 = 450 dN/m2 

aircraft all-up mass is m0=10280kg. With thrust-

to-weight ratio p = 0.31 the engine thrust is 
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1600dN and its mass is meng = 320kg (the 

specific mass of the engine is 0.2).  
With such initial data the structural optimization 

gives volume of full-strength design for half 

wing Vstrength = 0.0509m3, that with the material 

density ρ=2780kg/m3 leads to a mass of a 

structural material mstrength=142kg. The volume 

of a material of the pylon and the engine nacelle 

are included in this volume and, accordingly, in 

mass. Material distribution is shown on Fig. 2 

 
Fig. 2. Wing skin thickness for full-strength 

design 

 

We take this material distribution as an initial 

allocation and compute natural modes and 

frequencies, which are presented in Table 1 and 

on Fig. 3. 

Table 1. Natural frequencies of the wing. 

Number of 

frequency 

Value [1/s] Form 

ω1 1.559 Bending 

ω2 1.939 Torsional 

ω3 2.203 Bending-torsional 

ω4 4.501 Bending-torsional 

ω5 5.467 Bending-torsional 

ω6 6.154 Bending-torsional 

Value of passive masses is 797 kg and includes 

mass of non-structural elements of the wing, 

mass of the pylon and the engine nacelle, and 

also mass of the engine. Thus, the total mass of 

model presented on fig. 2 is 939 kg; from this 

mass the share of the structural material, 

responsible for creation of rigidity is equal 15%. 

 
Fig. 3. Modes of natural vibrations. 

 

From vibration modes on fig. 3 is visible, that 

natural vibrations represent combined moving 

of system wing - engine and consequently the 

lowest natural frequency is being determined by 

the least stiff aggregate in system the engine - 

pylon - wing. For example, if to increase 

thickness of  skin of pylon from 0.55mm in the 

full-strength structure till 3mm then we get 

relative increasing of structural material mass 
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on 1.8 %, and by other things being equal, the 

first natural frequency will be increased at 6.3 % 

with the saving the kind of a vibration mode. 

Let's conduct optimization of allocation of a 

material with the simultaneous taking into 

account the strength requirements and dynamic 

stiffness. 

As the limitations of natural frequencies 

we will take the following values: ω10 = 2.027 

1/s (magnification on 30%); ω20 = 2.908 1/s 

(magnification on 50%). We will vary thickness 

of skin of a pylon and a wing, a spars and ribs 

cap, and also walls of spars. New values of skin 

thickness we will assign as maximum from the 

bending and twisting moments in appropriate 

section, caps of spars - only from bending, and 

walls of spars - only from torsion moment. The 

suggested algorithm has converged with an 

exactitude of 5% after 5 iterations. The 

repetitive process course is represented in Table 

2. The discovered material distribution is 

displayed on Fig. 4, and allocation of an 

additional material over the necessary on 

strength conditions on Fig. 5.  

 

Table 2. Iterative process course. 
Freq

# 

Initial 1 iter. 2 iter. 3 iter. 4 iter. 5 iter. 

ω1 1.559 2.118 1.906 2.041 1.865 2.039 

ω2 1.939 3.202 2.510 3.009 2.461 2.924 

ω3 2.203 4.415 2.942 4.503 2.885 4.431 

ω4 4.501 6.791 5.976 6.258 5.997 6.294 

ω5 5.457 8.051 7.159 7.013 7.641 7.272 

ω6 6.154 10.883 8.950 10.158 8.835 10.113 

V 

[m3] 

0.0509 0.0956 0.0748 0.0867 0.0782 0.0821 

m% 15 25 20.7 23.2 21.4 22.2 

 

It is visible, that the additional material 

is necessary basically in places of connection of 

aggregates and a direction change of a structural 

elements and is placed in areas where it works 

effectively: for simultaneous magnification of 

the first natural frequency on 30% and second 

natural frequency on 50%, relative mass of 

structural material increased only on 7.2%. 

 
Fig. 4. Material distribution. 

 
Fig. 5. Additional material distribution. 
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