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Abstract

We suggest the new optimality criteria for
designing of aircraft structures with natural
frequency limitations. These criteria were
developed with taking into account the
specificity of aircraft operation. We show that
our criteria allow to obtain effective projects.

1 Introduction

In structural design often arises a problem of
achievement of a given value of one or several
natural frequencies. For aviation structure, such
demands are linked with the aero elasticity
phenomena, which are considered as the
impermissible. The design problem in this case
is formulated as following.

To define such stiffness performances of
structural elements which without violation of
strength requirements supply a given value of
the lowest natural frequency of certain natural
mode, for example, the lowest torsional or the
lowest bending natural mode, and have a
minimum volume of structural material.

Problems of such type were solved by many
researchers, see in particular [1], however the
received optimization criteria possess difficultly
understandable physical meaning, does not
discover properties of optimum designs and
consequently is difficultly implanted in practical
design. The reason to that, in our opinion,
concludes in an excessive generality of the
statement of problem, which are not considering
the specificity of job of particular structures.

For aviation structures is typical, that the
airframe has on itself heavy passive masses,
namely: fuel, a power plant, a payload,
aggregates and systems. For wings of modern

airliners the part of mass of the load-bearing
elements responsible for making its structure
stiffness is 10...15 % from total wing mass, and
for fuselages this part is equal 18...22 % from
total fuselage mass. Therefore, at obtaining
optimality criteria it is possible not to take into
account the influence of redistribution of mass
of a structural material onto natural frequencies,
what allows to fill optimality criteria with
accurate physical meaning and to discover
properties of optimum designs. However, again
we will underscore, that it is possible only in the
presence of the large passive masses, which are
not participating in optimization.

2 Optimality Criteria

2.1 Wings with large and middle aspect ratio

In this case the mode of structures
deformation is defined enough exactly by the
beam theory. Therefore we use the theory of
thin-web beam and as object function for a
flexural vibration mode we used the function of
function from flexural stiffness B(z) along the
wingspan z:

F= j B(z) dz; 1)

We will determine natural frequency through a
ratio of the Lord J. Rayleigh [2].

fs(z) {dzf(z)} dz

dz? )

(0

jm(z) f%(z) dz

Here f(z) is form of natural oscillations, and f(z)
and B(z) do not depend from each other. Also,
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m(z) is fixed per unit length mass distribution, L
- length of a beam.
To minimize a functional

F :'L[B(z) dz = min, 3)

by isoperimetric condition

% = o, 4)
where o - given frequency of any bending form
of natural oscillations.

The extended functional with taking into
account conditions (4) looks like
L
®=[B(2) dz+4 (0 -af]) , (5)
0

Where A1 - Lagrange multiplier. A necessary
condition of functional (5) stationarity is the
equality to zero of its total variation: 6® = 0,
that gives:

L
80 = [ 5B(2) dz+
0

js[a(z) f(2)° ] dz

C (6)
jm(z) f2(z) dz
+ﬂ1 OL =0.

j B(z) f"(2)%dz |
~0 2~2jm(z)f(z)5f(z) dz

0

ﬁm(z) f2(2) dz}

After some transformations, we get:

5D :f Log @

L

0 jm(z) f2(z) dz

0B(z) dz +LLX
jm(z) f2(z) dz

) L
x{”: B(2) f"(2)) - m(z) f(z)] 5f(2)-B(2) f"(z) 5'(2)|-

0
L

—0. (7)
0

As the variations 6B(z) and of(z) are mutually
independent, following the basic lemma of a
calculus of variations we receive optimality
criterion

- [B@ (2] 5f@)
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: f"(2)° _ _1; ()
[m(2) £°(2) dz

4
and differential equation of bending natural
oscillations

(B2 f"(2)] ~o* mz) f()=0 (9)

with boundary conditions

L

B(z)f"(2) 6f'(z) | =0; (10)
L

[B@) f" ()] 6f(z) | =o0. (12)
0

It is impossible to get the solution of a system
(8)...(11) in the closed form, therefore we select
some properties, which allow create designing
algorithm for beam systems.

From a boundary problem (9)...(11) forms f(z)
are determined within a constant coefficient,
therefore by an appropriate normalization it is
possible to achieve, that

JL'm(z) f2(z)dz=1

at all variations B(z). Then the optimality
criterion (8) will accept aview:

f"(2)? =

Following [3] on the basis of criterion (8) it is
possible to receive a recursion formula for
assignment of new bending stiffness B(z),
ensuring fulfilment of the given requirement.
Let's multiply left and right member (8) on
B°(z) and after elementary conversions we

receive

B(2).. =k B(@), |f"(@) [, (14)
here ki - some constant coefficient, | — iteration
number, and s determines the size of a step.
The second derivative of beam sagging is a
curvature of a bending neutral axis. Therefore,
the new bending stiffness need to be assigned
proportionally to curvature of the form of
bending oscillations, and by made assumptions
the structure with stiffness distribution ensuring
constant curvature will be optimum.

(12)

= const. (13)
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Let's consider now torsional forms of natural
oscillations. The extended functional for the
taking into account the isoperimetric condition
(4) will be written as

) [c@) o) dz
CD:J'C(Z) dz+ 1,42

L

[i@) () dz
0

here C(z) - torsional stiffness, ¢(z) - form of

natural torsional vibrations, i(z) - per unit length

polar moment of inertia of structural weights

concerning centers of torsion. For thin-wall

beams, which are carrying torsional stresses on

Bredt [2], criterion function (15) determine

volume of a structure material.

Repeating the mathematical manipulation,

similar earlier conducted, allows to receive a

final kind of optimality criterion

_a2 !, (15)

9'(2)° = . const, (16)
2’2
And formula for assignment of torsional
stiffness
2/s

C(2)1.1 =k, C(2), | ?'(2) | , (A7)
Where ko - some constant coefficient, and s, as
well as in (14), determines the size of a step.
The equations (14) and (17) can be extended.
Really, according to the technical theory of a
beam [2] bending and torsion moments are
accordingly

d?y
M =B(z) —; 18
bend ( ) dZZ ( )
M, =C(2) _dH; (129)
dz

here y(z) - sag, and @ - angle of elastic twisting.
Comparing (14), (17) with (18), (19) we can
see, that new stiffness, bending or torsional, it
IS necessary to assign proportionally to
moment, bending or torsion, scaled on strained
state appropriate to this or that form of natural
oscillations.

A=k |[M@), [ (20)

here A(z) - bending or torsional stiffness of a
structure, M(z) - moment from deformation
under any form of natural oscillations.

2.2 Wings with small aspect ratio
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For the description of bending systems, such as
wing panels with small curvature, wings with
small aspect ratio, etc. the models based on
plate theory are most common. Therefore, we
deduce optimality criterion for isotropic and
orthotropic plates with assumption that the
deformation mode of a structure can be defined
by the theory of thin plates.

As a criterion function we shall accept the
functional

G= j j D(x, y) dx dy. (21)

Hereinafter: D(x,y) - bending stiffness; Q -
plane area of a plate.

The minimization of such criterion function in
general does not provide a minimum of a
structure  material volume, however for
sandwich plates with variable, but not varied
during optimization structural depth, and with
filler absolutely rigid for shift deformation, the
structural weight is determined by thickness of
carrying layers, so both the minimum of a
function (21) and volume of a material coincide.
Natural frequency w, expressed through the
ratio of the Lord J. Rayleigh, will be written as:

2 2, \? 2, A2 2, )2
o] ] -aa-u -2 2 o
, @ ox- oy oxs ady* |oxay

B ﬂ pW dx dy

Q

The frequency o depends on stiffness
distribution D(x,y) and on a vibration mode
w(x,y). Here p(x,y) - fixed mass distribution and
u - Poisonn ratio.

In the total, we have the following task of
optimum designing. To find such stiffness
distribution D(x,y), which one delivers a
minimum to a functional

G= ” D(x,y)dxdy = min (23)
Q

by isoperimetric limitation
wf —w* =0, (24)
here an — is required natural frequency.
Let's solve the task by the method of Lagrange

multiplier. Let's record the extended functional
as

L=”D(x, y) dx dy+ A (] —), (25)

here A - is Lagrange multiplier.



Necessary condition of a stationarity of the
functional (25) is the equality to zero its total
variation, that is
dL =0, (26)
that gives
SL=6 j j D(x, y) dx dy+1 (5w} - (27)
Q

H P dx dy

Q

After bulky but uncomplicated mathematical
manipulations, we get the optimality criteria:

oxt  oy? oxt oy* | oxoy A
physical sense of which is not prime.

In a differential geometry is the concept of
main surface curvatures defined as eigenvalues
of a matrix of curvatures in the Cartesian

coordinate system [4]:

oW A*w
2
K — OX oxoy | (29)
ow  O*w
Oxoy  Ay?

It is known, that the sum of main curvatures is
equal the spur of matrix, and their product is
equal matrix determinant (29). Having
substituted these ratios in the optimality
condition (28), we receive

K+ K2 +2uK K, = % =const, (30)

here K1 and K> - greatest and least (main)
curvatures of plate surface deformed in
according with the form w(x,y). The bending
moments M1 and M2 on a direction of main
curvatures are determined as

M, =-D (K, +uK,);

M, =-D (K, + uK)).
With taking into account (31) optimality
criterion (28) takes its final form:

M — _E = const. (32)

D A

Thus, with according to made assumptions, in a
structure having a minimum of bending
stiffness and having required value of any
natural frequency, the sum of products of

(31)

2 2,4\ N2 2 2 2
5[[o|| ZH+ T | (- p)| T2 M TW A gy
o ox= oy ox= oy ox oy

ow AwY ow dw (w1
+ 201-p)|——- =—=const,

ALEXANDER I. DANILIN

main curvatures of the appropriate form and
moments on direction of these curvatures
divided on bending stiffness, should be
constant in any point (x, y) of structure.
Following [3] on the basis of criterion (32) it is
possible to receive a recursion formula for
assignment of new stiffness D(x,y), ensuring
fulfilment of the given requirement. Let's
multiply left and right member (32) on D?(x,y)
and after elementary conversions we receive

Dv+1:r\/Dv|M1K1+M2K2|; (33)

here r - some constant coefficient, and v -
iteration number.

For real wing structures the formula (33)
does not give a capability to construct iterative
designing algorithm, because the actual wings
are structurally orthotropic plates having
different stiffness in a direction of spars and
ribs, but in (33) we control only alone stiffness
parameter. Therefore, criterion (32) has
practical value only for isotropic plates of
variable thickness and allows optimizing
structures such as sandwich-panels, blades of
turbines, sandwiching shells etc.

The orthotropic plate is featured both

stiffness parameters and angle of orientation of
orthotropy axes. We separate the task of
optimization for orthotropic plate onto two
independent tasks: 1) task of optimization
stiffness parameters at constant orientation
angle of orthotropy axes; 2) task of optimization
of orthotropy axes orientation angle at constant
distribution of a load-carrying material.
First task connected with material distribution
determination when wing skeleton is known.
The second task supposes the definition of
direction of spars and ribs.

At first we receive the optimality conditions
for the first of these tasks. For simplification of
a criterion making let’s direct the coordinates
axis Ox and Oy along orthotropy axes. As
design variables we shall accept bending
Du(x,y), D22(xy) and torsional Des(X,y)
stiffneses of an orthotropic plate [5]. For such
plate the square of a natural frequency is
determined by Lord J. Rayleigh ratio:
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200 \? A2 )2 2 2 2 2
_U Dn(a—\glj *Dz{LVZJ +2Dlza—\glﬁ—vg+4D66[ g ‘:Vj dxdy
, © X ay IxX° 2y XAy

@ _U W dx dy
Q

The Poisson's constants along orthotropy axes
express as
meoki o (35)
22
With taking into account (35) is possible to
eliminate stiffness D12 from (34). Then

2 2 2 2 2 2
wz:”{Du[ﬁw ﬁwjé W+D22[é’ W anﬁ w,
Q

_+ R
o Moyt I ax oy? P oxt ) oy?

2 2
+4D,, (a”igyj } dx d}’/_U,DW2 dx dy. (36)
Q

The criterion function should depend on a
structural mass and be invariant concerning a
direction of orthotropy axes. Therefore, we use
such linear combination of plate stiffnesses,
which one will be invariant relatively a rotation
of orthotropy axes. In this case it is possible to
optimize separately stiffness distribution and
direction angle of orthotropy axes.
There are known [5] two invariants of stiffness
of orthotropic plates:

l1 = D11+D22+2D12; 12 = D12- Des. (37)
Let's make from these invariants a function,
having eliminated stiffness Di.. In the total we
receive

| =11-2l2 =D11 + D22 + 2Des.  (38)
The invariant | depends only on design variables
D11, D22, Des and does not change by rotation of
orthotropy axes.

Let's formulate now following task of
optimization. Among functions  Dii(X,y),
D22(x,y), Des(X,y) to find such, which one
provides minimum for a functional

J = [[(D, +D,, +2Dy,) dx dy = min, (39)
Q

by isoperimetric limitation

a)g —w® =0; (40)
Here w is determined by Lord J. Rayleigh ratio
(36) for an orthotropic plate at earlier made
assumptions.
The extended functional after grouping terms
containing like stiffness, we write in the form:
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5ZW+ o'w )\ &*w ow Y
ox? Mﬁyz ox? OX3y

_U pwidxdy dxly +J;-! Des 114 H pw dxdy
Q Q

L:J’J‘Du 1-2 dxdy +
Q

ok o'w )\ o°

oy @)
+[[Dp{1-2 .
Q

We will operate the same, as for isotropic
plates, and receive the optimality criterion:

(azw azwj ow _[azw asz ow Z[azwjz 1

My )a ey laa) T
With usage equations
oW O*w)
MX :_Dll[é)XZ +ILL_|_ 5y2} ’
o'W ZAAR
My:_Dzz(a_yg"'ﬂZW] ' (43)
2
M, = —2Dy (ﬂ} :
oxXoy
we record the optimality criterion as:
0”2W 0”2W 0”2W
X Ay2 2 X
ox* _ "oy _ " oxdy :—lzconst- (44)
Dll D22 D66 ﬂ’

Thus, with taking into account the made
assumptions, in optimum by criterion (44)
structures having required value of any
natural frequency, the product of the
appropriate form curvature on a direction
orthotropy axes and moment on the same
direction divided on appropriate stiffness,
should be constant in any point (x,y) of
structure.

Based on optimality criterion (3.150) it is
possible to receive recursion formulas for
assignment of new stiffness:

v+ v 0’72W .
Dll ! =r \/Dll M X W )
v+l v azw .
D22 =Tr D22 M y é’_yz y (44)
v+l v azw .
D66 =r DGG M Xy ﬁx—é’y ’

here r - some constant coefficient, and v -
number of iteration.



The solution of task 2 based on
searching the direction of orthotropy axes,
which gives maximal natural frequency value
by given stiffness distribution. We receive that
in an optimum orthotropic structure a
direction of maximum stiffness and direction
of maximum curvature should coincide in any
point.

2.3 Designing algorithm for wings

With usage of obtained results is possible to
construct simple algorithm of searching of
distribution of a material ensuring given natural
frequencies.

1. Let there is an initial stiffness distribution DY

on structure elements (ii = 11, 22, 66).

2. We calculate frequencies and forms of natural
oscillations of structure.

3. We shall route axes of stringer sets along
lines of main curvatures of the surface,
deformed on a vibration mode of a design or
into direction, defined by the technological
requirements, if those are available.

4. For constrained frequencies on expressions

"1 (v - number

(44) we calculate new values Dy
of iteration, j - number of frequency).

5. We shall select maximum Dj i, from all
values assigned in the previous block:
v+l v+l
Dii,max - mJaX (Dii,j ) . (45)

6. If there is the strength limitation such as

D;\'>[D;, ]| then we select Dji' maximal

from D}, and [ D, |

ii,max
Di‘i/,Ji1 = max (D;/i;%ax’ [Dii,a] ) (46)
7. If there is the technological limitation such as

D;% 2[D;, | then we select D;™ maximal

from Dj}" and [ D, , |:

DiTﬂ = max ( Di‘i/f’ I:Dii,h] ) (47)
8. We go to point 2 with stiffness distribution
D

We are continuing evaluations in cycle 2 - 8
either until fulfilment of the frequencies
limitations, or until stabilization material
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distribution among elements. The second case
show that within the framework of optimality
criterion (44) it is impossible to find material
distribution ensuring given frequencies and it is
required to change a distribution law of passive
masses, or proportionally increase stiffness for
all load-bearing elements.

3 Theory application

Let's consider a hypothetical swept wing to
which the engine is attached on a pylon. The
computational model consists from wing, pylon
and an engine nacelle and is displayed on Fig. 1.

‘Wing model

Fig. 1. Wing model

The wing has a span 10m, aspect ratio A = 4.38,
wing taper ratio m = 2.24. The engine is
disposed on distance z=2490mm from an
airplane axis. Sweepback angle at the leading
edge is x = 28°, along front spar y = 25°. With
the unit load on a wing equal po = 450 dN/m?
aircraft all-up mass is mo=10280kg. With thrust-
to-weight ratio p= 0.31 the engine thrust is
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1600dN and its mass is meng = 320kg (the
specific mass of the engine is 0.2).

With such initial data the structural optimization
gives volume of full-strength design for half
Wing Vstrength = 0.0509m?2, that with the material
density p=2780kg/m® leads to a mass of a
structural material Mstrength=142kg. The volume
of a material of the pylon and the engine nacelle
are included in this volume and, accordingly, in
mass. Material distribution is shown on Fig. 2

Material distribution for full-strength design

Thickness [mm]

5.50e-01

9.06e-01

1.26e+00

1.97e¥00

2.33e+00

2.69e+00

3.04e+00

5.50e-01

9.06e-01

Lower skin

1.26e+00

1.97ev00

2.33e+00

2.69e+00

3.042400

Fig. 2. Wing skin thickness for full-strength
design

We take this material distribution as an initial
allocation and compute natural modes and
frequencies, which are presented in Table 1 and
on Fig. 3.

Table 1. Natural frequencies of the wing.

Number of | Value [1/s] Form
frequency
01 1.559 Bending
02 1.939 Torsional
®3 2.203 Bending-torsional
04 4.501 Bending-torsional
5 5.467 Bending-torsional
06 6.154 Bending-torsional
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Value of passive masses is 797 kg and includes
mass of non-structural elements of the wing,
mass of the pylon and the engine nacelle, and
also mass of the engine. Thus, the total mass of
model presented on fig. 2 is 939 kg; from this
mass the share of the structural material,
responsible for creation of rigidity is equal 15%.

Fig. 3. Modes of natural vibrations.

From vibration modes on fig. 3 is visible, that
natural vibrations represent combined moving
of system wing - engine and consequently the
lowest natural frequency is being determined by
the least stiff aggregate in system the engine -
pylon - wing. For example, if to increase
thickness of skin of pylon from 0.55mm in the
full-strength structure till 3mm then we get
relative increasing of structural material mass
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on 1.8 %, and by other things being equal, the
first natural frequency will be increased at 6.3 %
with the saving the kind of a vibration mode.
Let's conduct optimization of allocation of a
material with the simultaneous taking into
account the strength requirements and dynamic
stiffness.

As the limitations of natural frequencies
we will take the following values: wio = 2.027
1/s (magnification on 30%); w20 = 2.908 1/s
(magnification on 50%). We will vary thickness
of skin of a pylon and a wing, a spars and ribs
cap, and also walls of spars. New values of skin
thickness we will assign as maximum from the
bending and twisting moments in appropriate
section, caps of spars - only from bending, and
walls of spars - only from torsion moment. The
suggested algorithm has converged with an
exactitude of 5% after 5 iterations. The
repetitive process course is represented in Table
2. The discovered material distribution is
displayed on Fig. 4, and allocation of an
additional material over the necessary on
strength conditions on Fig. 5.

Table 2. Iterative process course.

Freq Initial 1 iter. 2 iter. 3 iter. 4 iter. 5 iter.
#

o1 1.559 2.118 1.906 2.041 1.865 2.039

2 1.939 3.202 2.510 3.009 2.461 2.924

®3 2.203 4.415 2.942 4.503 2.885 4.431

oy 4.501 6.791 5.976 6.258 5.997 6.294

s 5.457 8.051 7.159 7.013 7.641 7.272

s 6.154 10.883 8.950 10.158 8.835 10.113

V[ 0.0509 | 0.0956 | 0.0748 | 0.0867 | 0.0782 | 0.0821
[m?]

m% 15 25 20.7 23.2 21.4 22.2

It is visible, that the additional material
is necessary basically in places of connection of
aggregates and a direction change of a structural
elements and is placed in areas where it works
effectively: for simultaneous magnification of
the first natural frequency on 30% and second
natural frequency on 50%, relative mass of
structural material increased only on 7.2%.
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Material distribution in accordance only with
stiffness requirements

Thickness [mm]
5.50e-01
2.72e400

4.88e+00

9.21ev00

1.14e+01

1.35e+01

1.57e+01

Fig. 4. Material distribution.

Additional (above strength requirements) material
distribution

Additional
Thickness [mm]

0.00e+00
1.96e+00

3.93e+00

7.86e+00
9.82e+00
1.18e+01

1.37e+01

Fig. 5. Additional material distribution.
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