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Abstract

As is well known, the flutter speed of T-tail
depends strongly on the steady lift or dihedral
angle of the horizontal tail plane. The unsteady
rolling moment acting on the horizontal tail
plane oscillating in yaw and sideslip plays the
critical roll for this phenomenon. In this paper,
a numerical method based on the 3D Navier-
Stokes equations for computing the subsonic
and transonic flow for a wing oscillating in yaw
and sideslip is presented. By introducing a new
coordinate system oscillating in yaw and
sideslip, the existing 3D Navier-Stokes code is
easily modified to account for the in-plane
motions. The calculated rolling moments show a
good agreement with the existing experimental
data obtained for incompressible flow, and the
effect of compressibility, especially the effects of
the shock wave in transonic flow on the rolling
moment are clarified.

1 Introduction

It has been pointed out that flutter speed of T-
tail depends strongly on the angle of attack and
dihedral angle of the horizontal tail plane (HTP).
This phenomenon was first recognized in the
investigation processes of the accident of
Handley Page “Victor” in 1954 [1]. The
mechanism of the phenomenon can be
explained by the fact that the rolling moment
produced by the yawing and sideslip oscillation
of HTP, which is induced by the torsional and
bending oscillation of the vertical tail plane
(VTP), depends on the angle of attack and
dihedral angle of HTP. This mechanism has
been clearly shown in flutter analyses of the
several T-tail configurations by Wshizu et al.
[2] and Jennings and Berry [3] and van Zyl and

Mathews [4]. Washizu et al. [2] and Jennings
and Berry [3] used the quasi-steady strip
aerodynamic forces to evaluate the rolling
moments due to in-plane motions of HTP. Van
Zyl and Mathews [4] extended the conventional
Doublet Lattice Method to account for these
aerodynamic loads using the lifting-line concept
proposed by Queijo [5]. The exact lifting-
surface theory for a wing oscillating in yaw and
sideslip was developed by Isogai and Ichikawa
[6] in 1973. Isogai [7] also extended their theory
to T-tail configuration, which takes into account
the in-plane motion of HTP. Unfortunately
however, their theory can be applied only to
incompressible flow, though the effect of
compressibility, especially in transonic flow, on
the T-tail flutter is important. Ruhlin et al. [§]
conducted experimental studies of transonic T-
tail flutter of a wide-body cargo/transport
airplane. They found that the transonic anti-
symmetric flutter boundary for this T-tail
showed an unusual sharp dip between a Mach
number of 0.92 and 0.98.

Recently, the computational fluid dynamics
has been applied to transonic flutter of T-tail
configurations. Arizono et al. [9] presented the
numerical simulation of a T-tail configuration
using an Euler code. The flutter predicted was a
symmetrical flutter for which the effect of in-
plane motion of HTP is not important.
Therefore, the capability of the method for
predicting the effects of the in-plane motion of
HTP has not been clarified. Attorni, et al. [10]
have also conducted the T-tail flutter simulation
of P180 aircraft using an Euler code. However,
the accuracy of the method has not been
confirmed because no comparison with the
experimental data was made.



The purpose of the present study is to present
the numerical method for predicting the rolling
moment acting on a wing oscillating in yaw and
sideslip in subsonic and transonic flow as a first
step to T-tail configuration.

2 Numerical Method

In order to conduct the numerical simulation for
a wing oscillating in yaw and sideslip, we
introduce the new coordinate system which is

fixed on the wing oscillating in yaw and sideslip.

Figure 1 shows the definition of the coordinate
systems. The xyz coordinate system is fixed to
the free-stream and the x’y’z” coordinate system
is fixed on the wing oscillating in yaw and
sideslip. The relation between the two
coordinate systems can be given by

z=z'+H -¥Y(x'+a)
(1)

x=x+¥z' , y=y' |,

where % and H are the yawing and sideslip
displacements, respectively and a is the axis of
yaw (positive toward the leading edge). (Note
that length is made non-dimension by root semi-
chord length 5.) In Eq. (1), the higher order
terms of ¥ and H are neglected. The
conventional 3D Navier-Stokes (NS) code can
be modified easily by changing the metric terms
[11] such as &, &, &, etc. which transform the
3D NS equations in the xyz coordinate system
into the computational space (& 7, £), namely,

¢, =JO, P +2' ) =y (WX +2'))
&, =J(E,x',=x",2',)

¢ =JO, (Y2 +x' )=y, (Y2 +X',))
n,=J' (¥ 42 ) -y (' +2',))
n,=Jxz'.—x'.z',)

n.=J': (P2 +x' )=y (P2 +x, )

¢ =J0 (WX +2)) -y, (X +2',))
¢, =J(x', 2, =x'.2")

¢.=JO', (Y +x') -y (P2, +x'))

£ =—~(dY/dNz'E ~ ), &, —(dH | dt—d¥ | di(x'+a))E.
7, =—~d¥/dt)z'n, -y, 0, —(dH | dt —d¥ | de(x'+a)).
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Fig. 1. Definition of Coordinate Systems.

£ =—(d¥/dD)2' S~y &, —(dH | dt—ad¥ | di(x'+a)),

(2)
Where J is the Jacobian of the transformation
metrics and is given by

-1 _ ] [} (] ] ] 1 ' [
Jo=x Y, 2,y 2 X Y 2

1 1 1 1 1 1 1 1 1
XYz, =x, V2 =x' v, 2 (3)

Note that no special treatment in the
conventional NS code such as the far-field
boundary conditions and the surface boundary
conditions in the new x’y’z’ coordinate system
once we replace the conventional metrics with
those given by Egs. (2).

The 3D NS code used in the present study is a
Reynolds Averaged Navier-Stokes (RANS) code
originally developed by Isogai [12]. A body-
fitted C-H type grid is used. The number of grid
points used is 240 points (200 points on the
wing and 20 points on the upper and lower
surfaces of the wake region) in the chord-wise
direction, 58 points in the span-wise direction
(38 points on the full span wing and 20 points
on the off-wing region) and 51 points normal to
the wing surface. The code employs a total
variation diminishing (TVD) scheme [13] and
the Baldwin and Lomax [14] algebraic
turbulence model.

3 Results and Discussion
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3.1 Incompressible Flow

In order to validate the present method, the
numerical simulation of the flow for a wing
oscillating in yaw, for which the experimental
data [15] of rolling moment are available for
incompressible flow, has been conducted. The
first case is a rectangular wing of aspect-ratio 3.
The chord and span of the wing are 0.20 m and
0.60 m, respectively, and it has the wing section
of NACAOO012. The angle of attack (&) and the
dihedral angle (/) are 5.58 deg and 10 deg,
respectively. The amplitude of yawing
oscillation (%) is 6 deg and the axis of yaw (a)
is at the mid-chord. The yawing displacement is
given by

Y=Y sinwt or W= sinkt* 4)

where ¢ is time and o is circular frequency of
oscillation, k is the reduced frequency defined
by k=ba/U (U: free-stream velocity) and ¢* is
the dimensionless time defined by ¢*=tU/b. For
this wing the experimental [15] and theoretical
results obtained by the lifting-surface theory [6]
are available. The numerical simulation using
the present 3D NS code has been conducted at
M .. =0.30 for this incompressible flow case.
Figure 2 shows the variations of the amplitude
and phase angle of rolling moment, which are
obtained by the experiment [15], the lifting-
surface theory [6] and the present numerical
simulation. In the figure, the rolling moment
coefficient (C,) is defined by

C.=M, /(4pU°bI*Y,) (5)

where M, is the rolling moment (positive right
wing down), p is far-field air density and / is
semi-span. And ¢ is the phase advance angle
ahead of the yawing displacement. The results
obtained by the present numerical simulation
show a good agreement with those obtained by
the experiment and the lifting-surface theory. In
Fig. 3, the wvariations of rolling moment
computed by the present 3D NS code and the
yawing displacement during one cycle of
oscillation are shown for £=0.30 and 0.50.
Figure 4 shows the upper surface pressure
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Fig. 2. Variations of Magnitude and Phase
Angle of Rolling Moment with respect to
Reduce Frequency (Rectangular Wing,
0=5.58 deg and /=10 deg).
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Fig. 3. Variations of Rolling Moment and
Yawing Displacement for Rectangular Wing
(M.=0.30, o=5.58 deg, /=10 deg,
P=6°sinkt*).

distributions at the typical phases of the
oscillation at M _=0.30 and 4=0.50.

The second case is a sweptback wing of
aspect-ratio 3 oscillating in yaw. The taper-ratio
and swept angle are 1.0 and 30 deg, respectively.
The chord length and span are 0.20 m and 0.60
m, respectively. For this wing, the experimental

3
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Fig. 4. Upper Surface Pressure Distributions during One Cycle of Oscillation (Rectangular
Wing, M_=0.30, ~=0.50, o=5.58 deg, /=10 deg, ¥=6°sinkt*).



SUBSONIC AND TRANSONIC FLOW SIMULATION FOR A WING OSCILLATING IN YAW AND SIDE-

SLIP
i e } Experiment
= Ok 3] T
oi 0.3k : Lifting-surface theory
& @: 3D NS code
2
<+ 02F b
= 24 *
s < .
= oaf e
® o
| 1 | I | | 1
g e 920 08 04 05 06
80—
°
D
S~ 60 e ®
%0 ° L A A b
= 40k » A A
A A
20
| | | |

1
of mal 02 03 ] 05fine E

Fig. 5. Variations of Magnitude and Phase
Angle with respect to Reduced Frequency
(Sweptback Wing, o=5.2 deg and /=0 deg).

data [15] of the rolling moment together with
those obtained by the lifting-surface theory [6]
are also available. The angle of attack and the
dihedral angle are 5.2 deg and 0 deg,
respectively. Figure 5 shows the variations of
the amplitude and phase angle of the rolling
moment with respect to the reduced frequency
which are obtained by the experiment [15], the
lifting-surface theory [6] and the present
numerical simulation. The results of the present
numerical simulation show a satisfactory
agreement with those of the lifting-surface
theory and the experimental data. Figure 6
shows the variations of the rolling moment
computed by the present 3D NS code and the
yawing displacement during one cycle of
oscillation for £~=0.30 and 0.50.
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Fig. 6. Variations of Rolling Moment and
Yawing Displacement for Sweptback Wing

(M.=0.30, &=5.2 deg, I=0 deg, =6 sinkt*).

3.2 Effect of Compressibility

In order to see the effect of compressibility, the
rolling moment (magnitude and phase angle) for
M_=0.30~0.75 for the same rectangular wing
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Fig. 7. Effect of Mach Number on Magnitude
and Phase Angle of Rolling Moment for
Rectangular Wing Oscillating in  Yaw
(/=0.50, ¥#,=6 deg).
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Fig. 8. Effect of Mach Number on Magnitude
and Phase Angle of Rolling Moment for
Sweptback Wing Oscillating in Yaw (k=0.50,
¥,=6 deg).

(as used for the incompressible flow case) and
for M ..=0.30~0.80 for the same sweptback wing
at k=0.50 are computed by the present 3D NS
code, respectively. Results are shown in Fig. 7
for the rectangular wing and in Fig. 8 for the
sweptback wing, respectively.

Unfortunately however, no experimental data
to be compared with those numerical results is
available at this moment. As seen in Figs. 7 and
8, the effect of compressibility on the rolling
moment is very small up to M.=0.60. However,
some appreciable effect can be seen for Mach
number range from 0.70~0.80, where the shock
wave appears on the upper surface of the wing.
Figures 9 and 10 show the flow patterns (iso-
density contours around several span-wise
sections and the enlarged 2D flow patterns
around the 74% semi-span section of the right
wing) during half cycle of oscillation for the
rectangular wing at M..=0.75 and 4=0.50, and
those for the sweptback wing at M_=0.75 and
k=0.50, respectively. The flow patterns in Figs.
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9 and 10 clearly show the appearance of shock
wave and its forward movement accompanied
by the shock-induced flow separation during the
up-stream movement phases of the right wing,
respectively.

4 Concluding Remarks

1) A numerical simulation method for
computing subsonic and transonic flow
around a wing oscillating in yaw and
sideslip is presented.

2) It is demonstrated that the conventional 3D
NS code can be modified easily by
introducing the new coordinate system
fixed on the wing oscillating in yaw and
sideslip.

3) The computed rolling moments acting on
the rectangular and sweptback wings
oscillating in yaw show a good agreement
with  the  experimental data in
incompressible flow case.

4) The capability of the present method for
computing the unsteady transonic flow
including shock-induced flow separation is
demonstrated.

5) The present method can easily be extended
to T-tail configurations and might present a
powerful tool for predicting the effect of
compressibility on the flutter speed of T-
tail including the effect of the steady load
on the horizontal tail plane.
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Fig. 9. Flow Patterns (Iso-Density Contours) during Half Cycle of Oscillation (Rectangular Wing,
M.=0.75, k=0.50, o=5.58 deg, /=10 deg, ¥=6°sinkt*).
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Fig. 10. Flow Patterns (Iso-Density Contours) during Half Cycle of Oscillation (Sweptback
Wing, M_=0.75, k=0.50, o=5.2 deg, I=0 deg, ¥=6sinkt*).
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