IoAS 29" Congress of the International Council

\V of the Aeronautical Sciences

ITERATIVE LEARNING IDENTIFICATION AGAINST
NON-ZERO INITIAL STATES AND ESTIMATION OF
AERODYNAMIC DERIVATIVES

Atsushi FUJIMORI , Shinsuke OH-HARA
Department of Mechanical Engineering, University of Yamanashi
4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan
{afujimori, sohhara} @yamanashi.ac.jp

Keywords: system identification, continuous-time state-space, aerodynamic derivatives

Abstract

This paper presents two techniques in iterative
learning identification (ILI) when the zero initial
state condition is not achieved. One is to ob-
tain acceptable impulse responses. The other is
to measure the response error to the exclusion of
non-zero initial state factor. This paper proposes
an estimation technique using the least-squares
(LS) method for the former and introduces dis-
carded data in measurement of the response er-
ror for the latter. The ILI with the proposed
techniques is applied to estimation of the aero-
dynamic derivatives in a lateral linear model of
aircraft. The effectiveness of the proposed tech-
niques is demonstrated in numerical simulations.

1 Introduction

Recently, a system identification technique us-
ing iterative learning control, [1], [2] called it-
erative learning identification (ILI) in this pa-
per, has been developed for continuous-time sys-
tems. [3] - [8] Compared to system identification
techniques based on the least-squares (LS) ap-
proaches, [9], [10] an advantage of the ILI tech-
nique is that it is robust against insufficient ex-
citation because data used in parameter update
computation are newly obtained at each itera-
tion. Moreover, the measurement noise does not
directly influence the estimated parameters be-
cause the derivatives of command signal rather
than those of measured output are used in ILI.

The procedures of ILI are roughly given as fol-
lows. Step 1: construct an iterative learning con-
trol system (ILCS) for identification, step 2: ob-
tain the impulse responses in the ILCS, step 3:
perform tracking control of the ILCS and mea-
sure response error, and step 4: update parame-
ters to be identified. Step 3 and 4 are iteratively
repeated until convergence of the parameters is
accomplished. In ILI techniques which have been
developed so far, [3] - [8] it has been assumed in
step 2 and 3 that all initial state variables in the
ILCS are set to be zero. It is called as zero ini-
tial state condition in this paper. As a matter of
fact, the update law in step 4 does not guarantee
the convergence of the parameters if the impulse
responses and the response error are not obtained
accurately. The zero initial state condition has
therefore been required in ILI. It may be possible
to achieve the zero initial state condition when
the system to be identified is stable. In practice,
however, it is not easy to realize the zero initial
state condition in many cases such that distur-
bances and/or noises are included in the ILCS.
Especially, when the system to be identified is
unstable, the zero initial state condition cannot
be achieved because a stabilizing controller has
to be operated at the beginning of measuring the
impulse responses and the response error.

To overcome this problem, this paper
presents two techniques in ILI when the zero ini-
tial state condition is not achieved. One is to ob-
tain acceptable impulse responses in step 2. This



paper proposes a technique where the impulse re-
sponses are estimated by the LS method. [9] The
other is to measure the response error so as to ex-
clude factors due to non-zero initial state in step
3. A basic idea for this subject is that the re-
sponse error data are sampled after the factors
due to non-zero initial state are sufficiently re-
duced. To do this, discarded data are introduced
in measurement of the response error. The ILI
with the proposed techniques is applied to esti-
mation of the aerodynamic derivatives in a lat-
eral linear model of aircraft. The effectiveness of
the proposed techniques is discussed in numeri-
cal simulations.

2 ILI with Non-Zero Initial States

2.1 Identified system and parameters

The system to be identified in this paper is a
multi-input and multi-output SS linear time in-
variant (LTI) system

where x(t) € R ™ is the state, u(t) € R " the in-
put, y(t) € R™ the output and v(t) € R™ is the
noise included in y(t). Additionally,n € R%isa
g-dimensional vector that consists of state-space
(SS) parameters to be identified and is called the
SS parameter vector. The transfer function from
u(t) to y(t) is represented by

N11(p) Nin, (P)
P(p) £ Nipa 1 | . :
D(p) D(p)
Nny1(p) Nnyn, (P)
(2)

D(p) and Nij(p) are denominator and numerator
polynomials of P(p), respectively. pis the differ-
ential operator; that is,

plut) = = 3)

In ILI, a command signal vector, denoted as
h(t) € R, is needed to generate the reference
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Fig. 1 An iterative learning control system
(ILCS) for identification.

for the output and the controlled input. It is as-
sumed that the elements of h(t) are smooth and
are differentiable by ny times. Using h(t) and its
derivatives in an ILCS whose structure is given
by a tracking control system and will be shown
in the following subsection, responses are mea-
sured at a specified time interval. The SS param-
eter vector is updated so as to reduce the response
error. That is, ILI estimates the SS parameters by
performing the tracking control and updating the
SS parameter vector iteratively.

Hereafter for convenience, the iteration num-
ber is denoted as k. The signal vectors, estimated
parameters and polynomials of the transfer func-
tions at the k-th iteration are denoted as (-)®.
Their true values are denoted as (-)*.

2.2 Responseerror with initial state

Figure 1 shows an iterative learning control sys-
tem (ILCS) for identification. Here, K(p) is an
nu x ny feedback controller for stabilization. It
does not matter whether the structure of K(p)

is known or not. uék)(t) € R™ is the k-th it-

eration feedback input; ugck)(t) € R™ is the k-
th iteration feedforward input generated by feed-
ing the command h(t) into the k-th iteration esti-
mated denominator polynomial D (p); rk(t) e
R™ is the k-th iteration reference for y(¥(t) and
is generated by feeding the command h(t) into
the k-th iteration estimated numerator polyno-
mial N (p).

The response error, denoted as e (t) e R™,
is defined as the difference between y((t) and
r®(t). Letting x{(0) be the initial state of the
closed-loop at the k-th iteration, the response er-



ror at the k-th iteration is given by

A

() 2y ) ()

—Y(p)ut) - S(prMt)
+S(pv ) + T (X 0) (4
where

S(p) £ (In, + P(p)K(p)) %,
JAY

Y(p) = (In, +P(P)K(p)) *P(p).

fa (t) is an ny x (ny+nc) time-function matrix
which is constructed by the state transition ma-
trix of the closed-loop. The zero initial state con-

dition; that is, xgl‘)(O) = 0 is achieved when the
system to be identified is stable and no exter-
nal signal except h(t) is fed into the ILCS be-
fore performing tracking control but not when
disturbances and/or noises are always included
in the ILCS. Especially, when the system to be
identified is unstable, the zero initial state con-
dition cannot be achieved because a stabilizing
controller has to be operated at the beginning
of measuring the impulse responses and the re-

Sponse error.

2.3 Proceduresof ILI

The procedures of ILI are given as follows. [7],

[8]

Step 1. The SS parameter vector n to be iden-
tified is defined. Construct an ILCS as
shown in Fig. 1. If the system is unsta-
ble, provide a stabilizing controller K(p).
Otherwise, K(p) may be omitted.

Step 2: Obtain the impulse responses of S(p)
and Y (p), respectively. Set k= 1.

Step 3: Perform tracking control of the ILCS
and measure the response error e (t) for
t=0,Ts,---,NTs, where Ts is the sampling
time and N is the number of sampled data.

Step 4: Update the SS parameter vector n(K
by the following law

nkHD) 0y Hg®  (5)
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where

e (NTy)
HK 2 _y® {( AP T( A\}l(k))} (AP,

k& 00(m")
=S

-1

A2 [-Gelb Gy, ¥

o is a non-decreasing gain with respect

to the iteration number k. Gs and Gy are
block lower triangular matrices which con-
sist of impulse responses of S(p) and Y (p),
respectively. 6 is the TF parameter vector
which consists of coefficients of D(p) and
Nij(p). That is, ¥ is the gradients of 0
with respect to n®. T, and T, are con-
structed by h(t) and its derivatives. More
details are given in Refs. [7] and [8].

Step 5: Judge the convergence of the response
error and the SS parameters. If iteration
continues, set k+1 — k and go to step 3.
Otherwise, stop.

Since H® in Eq. (5) contains the impulse re-
sponses of S(p) and Y (p) obtained at step 2, they
should be obtained as precisely as possible. Oth-
erwise, the SS parameters are not estimated accu-
rately. One of methods for obtaining the impulse
response is to use a pseudo-impulse input which
will be described in the following section. In
this method, the zero initial state condition is re-
quired. Moreover, if the response error e (t) in-

cludes non-zero initial state xgl()(O) # 0, the con-
vergence of the SS parameter by the update law
Eq. (5) is not guaranteed. The rest of this pa-
per presents two techniques when the zero initial
state condition is not achieved. For the former
problem, section 3 will show a technique where
the impulse responses are estimated by the LS
method. For the latter, section 4 will show a tech-
nique where the response error is measured so as
to reduce the factors due to non-zero initial states.



3 Impulse Response Estimation by LS
Method

This section explains estimation of the impulse
response by the LS method in terms of the sam-
pled signals and impulse responses of an LTI sys-
tem.

3.1 Sampled signal and impulseresponse

For discretizing a stable LTI system by the O-th
order held with the sampling time T, its SS rep-
resentation is written as

X((i+1)Ts) = AX(iTs) + Bu(iTs)
y(iTs) = Cx(iTs) + Du(iTs)

XxceR™ uecR™ yeR"

When the input u(t) is given by the j-th pseudo-

impulse input sequence which is fired at the m-th
sampling

(6)

[0...0]T (i <m)
U(iTe) =4 (811 - 8in )T (i=m) (7)
[0---0]T (i > m)

where & is Kronecker’s d-function

A1l (k=)
5k,|—{0 (K£1). (8)

the state and the output for i > mare given by

X((i+1)Ts) = A+1x(0) + B; (=m
y(iTs) = CA'x(0) + D; 7
X((i+1)Ts) = A*1x(0) + A—MB; (i>m

y(iTs) = CA'x(0) + CA—"-1B;
(9)

where Bj and Dj are the j-th column vectors of
B and D, respectively. Expanding the above for
m=0,1,---,i, j=1,---,ny, the output y(iTs) for
an arbitrary input sequence

{U(O), U(TS)v T

is expressed as follows.

, U(iTs) } (10)

yY(iTy) = FTx(0) + Y g(mTa)u((i—mTy
m=0 (11)
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where
f(iTs) £ CAI,
—.n D (i=0)
9(iTs) = {CAi—lB (i >0)

g(iTs) is the impulse response matrix. If the zero
initial state condition x(0) = 0 is achieved, the
first term in the right hand side of Eq. (11) is
zero. The impulse response vector for the j-th in-
put channel, denoted as g;(iTs) € R™ can be then
obtained using the j-th pseudo-impulse input se-
quence of Eq. (7) where mis given by m= 0;
that is, y(iTs) = g;(iTs). Conversely, if the zero
initial state condition is not achieved, y(iTs) in-
cludes the first term. x(0) and/or f(iTs) are usu-
ally unknown. It is therefore impossible to obtain
the impulse response using the pseudo-impulse
input sequence when the zero initial state condi-
tion is not achieved.

3.2 LSestimation

To obtain acceptable finite impulse response even
if the zero initial state condition is not achieved,
this paper estimates the impulse response by the
LS method. For simplicity, consider a multi-
input and single-output system (ny > 1, ny = 1).
Let the number of the estimated impulse response
be M+ 1. Fori <M, y(iTs) is given by Eq. (11).
While fori > M, y(iTs) is approximated by finite
impulse response

M
Y(iTs) = f(iT)x(0) + 3 g(mTs)u((i —m)T)

m=0
(12)
where u(t) =0 (t < 0). Equation (12) includes
an error due to finite number of the impulse re-
sponse. Expressing the sampled data vectors for
i=0,1---,N by the boldface letters, the sampled
data vector of the output is given by

y =~ Ug+fx(0) (13)



where
Y(0) [ 1(0)
y=| i | f=] 0 | eRME
y(NTS) f(NTy)
g'(0) |
g2 | | eRnMHY
g"(MTs) |
[ uT(0) o ]
UE [UT(MTy) .. u' (0)
U (NTY) uT((N—M)Ty)|

cR (N+1)xny(M+1)

Since the system in Eq. (6) is stable, g(iTs) is
asymptotically reduced according to increase of
i. Therefore, the equation error due to finite num-
ber of the impulse response is decreased. f(iTs)
is also asymptotically reduced according to in-
crease of i; that is, fx(0) is reduced. Then, in this
paper, the impulse response is estimated by giv-
ing N and M sufficiently large numbers. Apply-
ing the LS method to Eq. (13), the estimated im-
pulse response vector g" € R w(M+1) is gbtained
as

g"=UuTu)tuTy. (14)

u(t) must be given so that U is the full column
rank. As one of candidates, u(t) is given by a ran-
dom signal. To extend the above for multi-output
systems, Eq. (14) is applied for each output chan-
nel.

4 Response Error Measurement with Dis
carded Data

As pointed out in section 2, the fourth term in the
right hand side of Eq. (4), fo (t)x(0) is added
in e (t) if the zero initial state condition is not
achieved. As a result, the parameters to be iden-
tified and the response error do not appropriately
converge. It is therefore desirable to reduce the
term due the non-zero initial state as small as pos-
sible. Since the closed-loop of the ILCS is stable,
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fa (t)xg‘)(O) is reduced according to increase of
time. Then, the response error sampling is modi-
fied by introducing discarded data.

Let | be the number of the discarded data.
Letting t = O be the start time at which tracking
control of the ILCS is performed, the response er-
ror is measured from t = I Ts. Then, the response
error is written in the form of the sampled data

vectors denoted by the boldface letters as follows.

(15)
where
G W)
A A
ek = ’ u(fk) A ,

gs(ITs) 0s(0) 0
G2 : :
9s((1+N)Ts) gs(NTs) gs(0)
av(ITs) av(0) 0
Gy 2 : L
oy ((1+N)Ts) av(NTy) av(0)
BEAGA
Fa 2 : (16)
fa(1+N)To)

where gs(t) and gy(t) are the impulse response
matrices of S(p) and Y(p), respectively. That is,
ul(t) and r®(t) are input to the ILCS during t €
0, (I +N)Tg, while e®(t) is measured during
te[lTs, (I+N)Tg.

Including the techniques which have been de-
scribed in sections 3 and 4 into the procedures of
ILI, step 2 and 3 shown in section 2.3 are modi-
fied as follows.

Step 2': Obtain the impulse responses of S(p)
and Y (p); that is, gs(t) and gy(t) fort =



0,Ts,---, (I + N)Ts and construct Gs and
Gy in Eq. (16). Set k= 1.

Step 3': Perform tracking control of the ILCS
and measure the response error e (t) for
t: |Ts,"' ,(I +N)TS

The larger | is, the more the factors due to
non-zero initial states are reduced but the longer
the measurement time becomes. An index for de-
signing | will be given in estimation of the aero-
dynamic derivatives in the following section. The
necessity of the feedback controller K(p) will be
also mentioned.

5 Estimation of Aerodynamic Derivativesin
Lateral Linear Model of Aircraft

The ILI with the proposed techniques is applied
to estimation of the aerodynamic derivatives in a
lateral linear model of aircraft in this section. The
SS representation of the lateral motion of aircraft
is given in the form of Eq. (1) where the state and
input vectors x and u are given by [11]

A A
X= u=

Bopr, u=@ &' @17
Here, x consists of the side slip angle 3, the roll
angle ¢, the roll rate p (not the differential op-
erator of the transfer function here) and the yaw
rate r. u consists of the aileron deflection angle
04 and the rudder deflection angle &;. These vari-
ables represent the deviation from the equilibria.
Ap and By are given as

-1 -1
where
Va 0 0 0o | [0 Y
0 1 0 0 0 0
Ep= , Gp=
0 0 1 _IXZ/IXX LSa Lsr
10 0 —lg/lz 1 Ns, Ns,
_YB gcos®y Yp Y —Va_
0 0 1 tan®q
Fp —
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V3 is the flight velocity and ©y is the pitch angle
at the equilibrium. Iy and Iz are the moments
of inertia in the x-axis and z-axis, respectively.
|xz is the product of inertia. Yg, Yp, etc., are the
aerodynamic derivatives to be identified.

The output y is defined by the following two
cases.

(O1) Two-outputs:

B o (19)

(O2) Four-outputs:
yEBoprT=x (20

The SS parameter vector | is constructed by
the aerodynamic derivatives that are assigned in
advance. In this paper, the following three cases
are examined.

Case 1: The output y is given by (O1). n is
constructed by

n=I[Lp Lp Ng]" €R3 (21

Case2: The output y is given by (O1). n is
constructed by

n=[N Ls, NsJT €R® (22

Case 3: The output y is given by (02). n is
constructed by

Ys, Ls, N5 ]" € RM™. (23)

r

The command signal h(t) € R 2 is given by

26
h(t) = ———=w(t 24
where the elements of w(t) € R? are given by
white noises. The measurement noise V(¥ (t) e
R 2 is given by the white noise whose noise signal
ratio (NSR) is 20%, where NSR is defined as

Nsr 2 VOOl (25)

Iy® )l
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Fig. 2 Impulse response of S(p) by ry(t).

Numerical data of aircraft considered in this
study are referred from Ref. [12]). The flight
conditions are given by the altitude H = 4,000
[m] and the flight velocity V4 = 100 [m/s]. Al-
though the aircraft model to be identified is sta-
ble, K(p) is given by an LQG controller whose
weighting matrices of the quadratic index are
given by Q = 0.1l4 and R = I, and covariance
matrices of disturbance and noise are given by
W = 10°BpBy and V = I,.

5.1 ILI using estimated impulse responses

This subsection presents results of estimation of
aerodynamic derivatives by ILI using estimated
impulse responses which were described in sec-
tion 3. Figures 2 and 3 show the impulse re-
sponses of S(p) by ry(t) and Y(p) by ug, (t), re-

Impulse response of Y(p) by uf1

\ i ’ .

,' I‘
~01 i i i true
6 == non-zero
- — —estimated

=
o

‘ 10
t [s]

Fig. 3 Impulse response of Y (p) by us, (t).
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Norm of response error
; ;

—true
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e

10 20 30 40 50
k

Fig. 4 Norm of response error using three kinds
of impulse responses in Case 1.

spectively where the output y(t) is given by (O1).
“true”, drawn by the solid-line, means the im-
pulse responses when the zero initial state condi-
tion is achieved. “non-zero”, drawn by the dash-
dotted-line, means the ones with a non-zero ini-
tial state xp(0) = [r/180 0 0 07 (side slip an-
gle B(0) =1 [deg]). “estimated”, drawn by the
dashed-line, means the ones estimated by the LS
method mentioned in section 3.2. The sampling
time was Ts = 0.01 [sec]. The number of sampled
data was N = 1,000. It can be seen that a lit-
tle non-zero initial state of side slip angle caused
large differences between “true” and “non-zero”.
The estimated impulse responses (“estimated”)
almost approximated the true responses (“true”).

As results of Case 1, Fig. 4 shows the norm
of the response error el for fifty iterations where
the impulse responses are “true”, “non-zero” and
“estimated”. Figures 5-7 show the estimated SS
parameters n; (i = 1,2,3), respectively. The ini-
tial SS parameter vector was given by (% =
[—~1 —1 —1]T. The response error and the SS pa-
rameters in the case of “estimated” were almost
similar to those in the case of “true”. On the other
hand, the SS parameters in the case of “non-zero”
did not converge to the true values within fifty it-
erations. Table 1 shows the estimated SS parame-
ters (aerodynamic derivatives) at iteration k = 50
using the estimated impulse response in Case 1.
Tables 2 and 3 show the results in Cases 2 and 3,
respectively.



Estimated SS parameters using true impulse response
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Fig. 5 Estimated SS parameters using “true” im-
pulse response in Case 1.

1 Estimated SS parameters including non-zero initial state

n1
05f—n,

i

0 10 20 30 40 50

Fig. 6 Estimated SS parameters including “non-
zero” impulse response in Case 1.

1 5Estimated SS parameters using estimated impulse response
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-
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Fig. 7 Estimated SS parameters using “esti-
mated” impulse response in Case 1.
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Table 1 Estimated SS parameters at fifty iteration
using estimated impulse response in Case 1.

50) 50) 50)

oo N N N
(true)  (non-zero) (estimated)

N1 -1.8741 -1.8408  -0.8080 -1.8417
n2 -0.9709 -0.9363 -1.6382 -0.9361
ns 10611 1.0550 0.5511 1.0562

Table 2 Estimated SS parameters at fifty iteration
using estimated impulse response in Case 2.

(50) (50) (50)

ni n n n n
(true)  (non-zero) (estimated)

n; -0.2111 -0.1836  -1.8372 -0.1833
nz 4.5397 45831 4.1466 4.5827
ns -0.7199 -0.7116 2.3956 -0.7113

Table 3 Estimated SS parameters at fifty iteration
using estimated impulse response in Case 3.

n n* E) NEY EU)
(true) (non-zero)  (estimated)

N1 -15.5655 -14.3246  18.8118 14.1995
N2,  0.8346 1.2218 1.0674 1.1553
ns -1.8741  -1.8937 -3.0481 -1.8938
ns -0.9709 -0.9318 -3.7421 -0.9325
ns  0.2640 0.3227 -7.6283 0.3214
ne  1.0611 1.0654 0.7729 1.0660
n; -0.0894  -0.0897 -0.3780 -0.0897
ns -0.2111 -0.2174 -1.0024 -0.2172
Ne  3.1394 2.3137  -34.8455 2.2710
N  4.5397 4.5004 5.1672 4.5013
nua  -0.7199  -0.7230 -0.7407 -0.7225




5.2 ILI using modified response error sam-
pling

This subsection presents results of the estima-
tion of the aerodynamic derivatives by ILI using
modified response error sampling which were de-
scribed in section 4. It is necessary that the num-
ber of discarded data | should be given so as to
reduce the influence of the initial state Xy (0). As
a technique for designing | from the viewpoints
of the damping characteristic of the constructed
ILCS, this paper refers the impulse responses of
the closed-loop transfer functions such as S(p)
and Y (p). Letting o4+ jBg be the dominant poles
of the closed-loop, the reduction ratio of the am-
plitude is roughly evaluated as
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Norm of response error
: :

8: 0.6 ‘\ f
05 \ V] £

v |
J VKN/\,/\/\./\«/\/J\\,\/V&

10

0
k

Fig. 8 Norm of response error using modified
response error sampling in Case 1.

Am = e%dt, (26) Table 4 Estimated SS parameters at fifty iteration
. ) . using modified response error sampling in Case
For a given Ap, | is then obtained by 1
lo
| = w. (27) n(®0)
_ ds o ni n
The_doml_nant poles of the closed-loop |n_th|s nu- =0 =254 |—442 |—845
merical aircraft model was —0.2725 4+ j1.0704.
For Am=1.0, 0.5, 0.3 and 0.1, | was calculated ni -18741 -0.4940 -1.7548 -1.8050 -1.8141
as| =0, 254, 442 and 845. n2 -0.9709 -0.8471 -0.9375 -0.9118 -0.9259
As results of Case 1, Fig. 8 shows the norm ns 10611 00841 11922 1.0429 1.0430

of the response error where | is given by | =
0, 254, 442 and 845. The ranges of the initial
state variables of Eq. (17) included in the re-
sponse error were given by

IB(0)| < 1[deg], [¢(0)| < 1[deg],

|P(0)] =0 [deg/s], |r(0)] < 2.5 [deg/s]. (28)
The non-zero initial state xgl‘)(O) was varied
within the above ranges at each iteration. It was
hard in the case of | = 0 to judge the convergence
of the response error because it was violently var-
ied (Fig. 8). Although the SS parameters with
| = 0 moved toward their true values, it was hard
to judge convergence of the estimates. When |
was increased, the convergence was improved.
Table 4 shows the estimated SS parameters (aero-
dynamic derivatives) at iteration k = 50 using the

modified response error sampling in Case 1.
The SS parameters estimated with | = 0 were
not greatly different from their true values as

shown in Table 4. However, it was hard to judge
the convergence of the SS parameters from the it-
eration histories because they were violently var-
ied. It was therefore effective to introduce dis-
carded data in measurement of the response error
in ILI. For the aircraft model considered in this
paper, Am = 0.1; that is, | = 845 was enough to
reduce the influence of the non-zero initial states.

Since the aircraft model was a stable system,
it was possible to perform ILI without a feedback
controller K(p). If K(p) was not used in ILCS,
the number of discarded data for Ay, = 0.1 was
| = 28441. This indicates that measurement time
of the response error becomes very long. It is
therefore desirable to use a feedback controller in
ILCS even if the system to be identified is stable.



6 Concluding Remarks

This paper has presented two techniques in ILI
when the zero initial state condition was not
achieved. One was to obtain acceptable impulse
responses. The other was to measure the response
error to the exclusion of non-zero initial state fac-
tor. This paper proposed an estimation technique
using the LS method for the former and intro-
duced discarded data in measurement of the re-
sponse error for the latter. The ILI with the pro-
posed techniques was applied to estimation of the
aerodynamic derivatives in a lateral linear model
of aircraft. The effectiveness of the proposed
techniques was demonstrated in numerical sim-
ulations.
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