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Abstract. The objective of this paper is to propose an
autopilot Command-Generator Tracker (CGT) design
by the Linear Exponential Quadratic Gaussian and
Loop Transfer Recovery (LEQG/LTR) methodology.
Since not only the optimal feedback but also the
feedforward gains of the resulting controllers can
take the covariances of both system and measurement
noises into consideration, whereas the traditional
LQG method cannot, the proposed method is more
robust. This paper also derives the algorithms which
can take all the time domain, frequency domain, and
robustness design techniques into a unified method.
An example of F-16 lateral autopilot design is given,
which shows that the proposed method is more robust
to disturbance, sensor noise, and parameter variations.

In addition, the time domain responses are also better.

I . Introduction. In general, the performance of an
aircraft is determined by the lateral mode of

maneuvering command responses. The autopilot is

always used to control the lateral modes and provide
better response to the command inputs. The optimal
Command-Generator Tracker (CGT)"™>, consisting of
both adaptive feedforward and robust feedback
controllers, is a powerful design technique that can
not only produce better time-domain performance but

guarantee a zero steady-state error in response to a

large class of command inputs. Recently, a lot of
attention has been focused on the Linear Quadratic
Gaussian with Loop Transfer Recovery (LQG/LTR)
techniques“"g), which is characterized by integrating
time domain optimization (LQG) with frequency
domain approaches (LTR). The LQG/LTR method
with state-feedback technique can provide some
important guaranteed robustness properties, €.g., at
least 60° of Phase Margin (P.M.) and -6dB of Gain
Margin (G.M.) for each channel. In addition, the
adoption of LTR process can preserve robustness of
the system with state observer”. On the other hand,
some reports(w) concluded that the optimal control
systems obtained by the
Quadratic Gaussian (LEQG) and Loop Transfer
Recovery (LEQG/LTR) methods were insensitive to
the load disturbances and sensor noises. The reason
is that the optimal feedback controller obtained by the

proposed method can take the covariances of both

Linear Exponential

system and measurement noises into consideration,
whereas those controllers obtained by the LQG/LTR
method cannot. However, the attention is only
focused on the feedback control system design. In
addition, the applications for an F-16 lateral autopilot
“? designed by the above methods suffer from the
problem of high gain. This motivate us to develop the
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Fig. 1. LEQG/LTR compensator structure.

feedforward and feedback controllers by the proposed
method. Therefore, the main contributions in this
paper are that both adaptive feedforward and robust
state-feedback controllers designed by LEQG and
LEQG/LTR methods are originally derived in detail,
and comparisons with the traditional LQG and
LQG/LTR ones are also made.

By the derivation of this paper in Section II, we
would demonstrate that the proposed method can take
all the time domain, frequency domain, and
robustness design techniques into a unified process.
In addition, not only feedforward but feedback
controllers obtained by the LEQG/LTR method can
take account of the covariances of both system and
measurement noises. Therefore, the proposed method
would be more robust to disturbance, sensor noise,
and parameter variations. In addition, the time
domain responses would be also better. In Section III,
the proposed method is applied for an F-16 lateral
autopilot design(m, and comparisons with those
results obtained by the traditional LQG/LTR method
are also made. Finally, brief conclusions are drawn in
Section IV.

II. Problem and Methodlogy Formulation. Let the

dynamic equations of a controllable and observable

multivariable system shown in Fig. 1 be

x(1)=AWMx()+B,(Du()+B,r.(1)+ITw(r) (1)
and

y()y=C()x(t)+v(t) (2)
where x(¢) i1s an n-dimensional state vector, u(t) is
an m-dimensional control vector, }‘(t) is' an m-
y(1)
dimensional measurement vector, A(t),B,(t).B, (¢),

dimensional deterministic inputs, is a g-
I', and C(r) are respectively nxn, nxm, nxm,
nxp, and g xn matrices, w(¢) and v(t) are p- and
g-dimensional uncorrelated Gaussian white noise
processes with zero-mean and covariances to be as

E{w(t)yw" ()} =W (t)S(t~1)

E{pv(tyv ()} =V ()6t -1)
and

E(v(Hhw ()} =0 4)

respectively, where E{-} is an expectation function

3

operator.

Let the command tracking error e(t) be
e(t)=y(t)-r. (1) (5)
and then the optimal command-generator tracker can
be obtained by minimizing the following LEQG

performance index
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J= oE{explge'(i, )Q,e(t,>+-‘2f

[7ermowmew)+u r@mu@an ©)
where exp{-} is an exponential function operator, Q ,
is an mxm positive semi-definite weighting matrix
for the terminal states, Q(¢) is an mxm positive
semi-definite state weighting matrix, R(¢) is an
mx m positive definite control weighting matrix, and

o is a positive number which is also a weighting
factor of the LEQG method.

A. LEQG Problem Formulation with Perfect
Measurement. In this section, the optimal control
system design based on the LEQG method would be
derived by applying the minimum principle of
Pontryagin(‘m’. By taking the covariance of only
system noise into consideration, the performance
index defined by Eq.(6) can be rewritten in the form

of noncooperative differential game™'®

as follows

J= "(,I)nMax{ e’ (t,)Q,e(t,)+

lf"[ef(t)g(:)e(:)wf(:)R(;)u(z)_
awi (W (t)yw(t)]dt} @)

thus the Hamilton function can be obtained as (for
the

parameters are neglected hereafter)

sake of easy presentation, the augment

H= %(err, 217 QCx +x"CTQCx +u" Ru -
o'wW'w)+PT(Ax +Bu+B,r, +Tw) (8)
where P is the costate (or Lagrange multiplier). Then

the optimal control »* can be obtained by satisfying
the Euler-Lagrange equations as

X" =——=Ax"+Bu" +Br, +I'w )]
P = —-‘gc’—= CTOr —CTOCx" ~ A™P" (10)
0=—§—=Ru'+B:P' (1)

0= =—0'W'w+I"P" (12)

and with the transversality condition at terminal time
Pr(t,)=0,x"(1,) (13)

Thus, the relationships among the optimal costate P-,

optimal control u°, and system noise W can be

obtained as
u"=-R'BIP"
and
w=oWITP" (15)

and a set of 2n linear homogeneous differential

(14)

equations can be obtained in matrix form as

N

where the Hamiltonian matrix H, of dimensions

(16)

2nx2n is defined as

- -1 npT T
H":[ /r; B,R"B’ J;orwr ] (an
-cTQC -4
Let the solution of the costate P be as
P =Px"+g (18)

where P, andg are some differentiable matrices to be

determined as follows. Substituting Eq.(18) into (16),

and after some manipulations, one has

[P.+PA+A"P.~P (B, R'B] —oTWIT)P, +
CTOC)x" +g+[A" - P (B,R'BI —olWT")]g+
(P.B,-C"Q)r, =0 (19)

Since Eq.(19) is true for any x*and r, , it can be
deduced that P, is defined as
~P, =P, A+A"P,-P.(B,R"B] -
croc
and g is an adaptive feedforward term defined as
~g=[A"-P(B,R'Bl —oTWI'T)lg+
(P.B,-C"Q)r,

oI WIT)P +
(20)

21
Therefore, the optimal control input, consisting of
both robust state-feedback and adaptive feedforward
controllers, is obtained as

u" =-R'B/Px"-R"'Blg (22)

From practical point of view, we use suboptimal
control strategy. The P, is then defined by the
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following Controller Algebraic Riccati Equation

(CARE)
PA+A™P. - P (B,R*B’ —olWIT)P, +C"QC
=0 (23)
and g admits a steady-state solution to be as
g=-[A"-P,(BR'B] -l WI")]"
(P.B,~C'Q)r, (24)

Therefore, the optimal controller can be obtained as

u'=-Kx"+K,r, (25)
where K| is the optimal feedback gain matrix defined
K. =R"B/P, (26)

and X, is the feedforward gain matrix defined as
K, =R"BT[A" - P, (B,R"BI - oTWT™)]"

(P.B,-C"Q) 27

From above derivations, we have demonstrated that
the optimal control gain obtained by the LEQG
method can take the covariance of system noise into

account.

B. Formulation of LEQG with LTR Procedure. By
applying the separation theorem, a Kalman filter can
be used to provide the estimated state %(t), which is
defined by the following state estimation equation

%= A%+Bu+Br, +K,(y-C3) (28)
where X is the Kalman filter gain matrix defined as

K,=pPCV (29)
and where P, is the covariance of x~% propagated

forward in time, defined as

P, = E[(x-$)(x-%)"] (30)
which can be obtained by the following Filter
Algebraic Riccati Equation (FARE)

P, =P, A" +AP +TWI"-PCV'CP,  (3])
with the boundary condition P, (t,) = P,,. Therefore,
by specifying the non-frequency-sensitive and/or
frequency-sensitive weighting parameters W andV,
the Kalman filter would be chosen to obtain suitable
step response of the target feedback loop. In addition,
the principal gains (singular values) of the return
ratio G, (s), sensitivity function S, (s), and

complementary sensitivity function 7, (s) at the plant

output would meet the frequency-domain
requirements, where

G, (s)=C(sI-A)"K, (32)

Sy (8)=[1+G ()] (33)
and

T, () =[1+G, ()] G, (s) (34)

Since the Kalman filter is an unbiased estimator, the
statistics of the innovation term K (y-Cx) in

Eq.(28) can be obtained respectively as
E[K,(y-C%)]=0

and
Cov[K,(y-Cx)1=K VK]

(3%

(36)
Therefore, by taking the covariances of both system
and measurement noises into consideration, the
original optimal control problem can be solved by
replacing the performance index to be
J = Min A:{gx{%é’(t, )0,é(t, )%'[;’ [6706+
u"Ru-o (y-C)'V'(y-Cx)}dt} (37)
where ¢ is the estimated tracking errors defined as
(38)
Therefore, the optimal control input, consisting of
both robust state feedback and adaptive feedforward
controllers, can be derived by the same procedure
from Eqs.(9) to (22), and the result is
u' =-R"BTP& -R*B'g
where P, is defined as _
-B =PA+A"P,-P,(B,R"Bf ~oK VKT)P, +
croc (40)
and g is the adaptive feedforward term defined as
-§=[A"-P(B,R"B] -oK VK [)lg+
(P.B,-C™Q)r, @1)
For suboptimal control strategy, the P, is defined by

e=Cx-r,

(39)

the following Controller Algebraic Riccati Equation
(CARE)
PA+A"P, P (B,R"BT -oK VKT)P,+CTQC
=0 (42)
and g admits a steady-state solution to be as
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g=-{4"-P.(B,R"B] - oK VK])]"
(P.B,-C™Q)r,
therefore, the optimal controller can be derived as
uw=-Kx +K,r,

43)

(44)
where K is the optimal feedback gain matrix defined
in Eq.(25) and X, is the feedforward gain matrix
defined as
K, =R'B][A" -P,(B,R"B] - oK VK ©)]"
(F.B,-C'Q) (45)
Therefore, the closed-loop system can be obtained as

x° _ A -BK, x*
#17\k,ca-Bk -k,cl3|

BK,+B, T o™ 46
BK,+B, 0K, |"” (46)
14
and
- rc
X .
y=[C o]{“]qp[o 017]lw 47)
X

v

From above derivations, we have also demonstrated
that the gains of feedforward and feedback
controllers obtained by the LEQG/LTR method can
take the covariences of both system and measurement

noises into consideration.

Since the stability and robustness of compensated
system are not influenced by the feedforward
controller, therefore, our focus is aimed on the state
feedback control law of the linear exponential
quadratic regulator. Let the transfer function of the
observer-based compensator be as

K(s)=K, (sI-A+B,K,+K,C)"K, (48)
then the return ratio, sensitivity function, and
complementary sensitive function at the output of the
plant would be as

Gox(s)=C(sI-A)" B,K,(s] - A+B,K, +

K,0)'K, (49)

S, (8)=[1+G_ (9}
and

T, (5)=[I+Gy ()" Gy (5) 1
By specifying the weighting matrices Q andR, the

(50)

dynamic compensator would recover the guaranteed
robustness properties. In addition, the weighting
factor o can be manipulated to get better
performance, which provides another degree-of-
freedom for the designer. It should be noted that for
either of the proposed method to design the return
ratio at the input or output of the plant, in addition to
the parameter o can be tuned, all the weighting
parameters W, VV, Q, andR can also be modified to

get better performance.

C. Guaranteed Robustness Properties. From those

derived in Section H, it can be seen that if >0 and
(A, Q%) is observable, both optimal feedforward
and feedback gains obtained by the proposed method
is more robust. The reason is that there is an
additional positive weighting term oK VK7 which
takes the covariances of both system and
measurement noises . into éonsideration, and is
different from those controllers obtained by the LQG
method.
In addition, if o, is the upper limit of o to -

make the effective control weighting matrix R, to be
positive-definite, where R, and o, are defined as

B,R}B! =BR"Bf ~oK VK

(52)
and
R, >0foro<o,,

(53)
After some manipulations with Eq.(42), the return

difference identity can be obtained as
[(7+H! (NIR,1+H,(s)]

=R, +BI (~s[-AT)'CTQC(sI-4)" B, (54)
where H, is the open-loop transfer function, i.e.,
H, (s)=-K,(sI-A4)"B, (55)

Since the state weighting matrix Q is positive

semidefinite, one has

1925



[I+H,,'(s)]Rqr [/+H,(s)]zR, (56)
Therefore, it can be concluded that if ¢>0 and
(4, Q%) is observable, the compensated system
obtained by the proposed method as shown in Fig.1 is
always stable, i.e., the gain margin and phase margin
are -6 dBtoodBand 0° to +60°, respectively. The
reason is that there is an additional positive weighting
term of, K VK 7P, in R, which takes the covariances
of both system and measurement noises into
consideration; therefore, the performance robustness
of CGT design based on the LEQG/LTR method
would be better than those obtained by the LQG/LTR
method, which will also be shown later by computer

simulation.

III. Numerical Example and Simulation Results.

Considering an F-16 lateral autopilot’™, the ill-
conditioned system is augmented by a pre-
compensator to balance the principal gains at zero
frequency. The specification of the time domain
requirement is to provide coordinated turns by
causing the bank angle ¢(t) to follow a desired
command while maintaining the sideslip angle g(¢) at

zero. The dynamic equations are as follows
i=Ax+Bu
and
y=Cx
where
x=[ﬂ pprd, o, e, &‘,]r
T
u =[u, u,]
and
y=[¢ 8]
The numerical data for the system are also given in
Ref. 1-2. The principal gains of return ratio
C(jwl —A)™* B, for the nominal model is shown in

Fig. 2. It can be seen that the principal gain plots of
F-16 model
precompensator are balanced at zero frequency and
where the slope is —20dB/decade, so the steady-state

including the integrators and

error of the closed-loop system would be zero. The
proposed method can be applied as follows:

A. Kalman Filter Design for Target Feedback Loop.

Let T, W, and V' be assigned as"”

r=J (67

W = diag[0.01 0.01 0.01 0.010 0 11] (58)
and

V=pl (59

Suppose that the disturbances would couple into the
system through directly on the states rather than the
inputs, thus I' is chosen by Eq.(57) instead of being
as input matrix. In order to obtain time domain

responses as well as good robustness properties, one
can let p, be as

p =1 (60)
Thus the Kalman filter gain matrix can be obtained
and the result is the same as Ref. 1-2. Therefore, the
unit-step responses of target feedback loop are shown
in Fig. 3. In addition, the principal gain plots of
return ratio, sensitivity function, and complementary
sensitivity function for the target feedback loop are
shown in Figs. 4 and 5. It can be secn that they can
the

requirements.

meet time-domain and frequency-domain

B. LEQG Optimal Controller Design. Specifying the

state and control weighting matrices as follows
O=1

and
R=p,1 (62)

onc then manipulates oandp, to meet the time-

(61)

domain requirement and recover the principal gains
of the return ratio G, (s) at the plant output. In
general, the smaller p,, the better the loop transfer
recovery. Therefore, one can let that

p,=10" (63)
and

6=0.3 64
Thus, the optimal feedback and feedforward control

gain matrices can be obtained as
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K = -3.6336 2.0844 0.3036 1.0446 -0.0109 -0.0012 0.0000 0.0000 10°
¢ 0.5443 0.3480 ~0.0022 —0.1048 0.0006 0.0002 0.0000 0.0001 *

and

7=

(66)

3.7600 6.7274] .
0.5951 1.0307 |

By the adoption of feedforward controller, the

problem of high gain can be well improved for both
methods.

The principal gain plots of the return ratio G, (s),
the sensitivity function S, (s), and complementary
sensitivity function 7 (s) at the output of the
compensated system are shown in Figs. 6 and 7. The
unit-step responses of the bank angle ¢(¢) as well as
the actuator inputs while maintaining the sideslip
angle B(t) at zero are shown in Figs. 8 and 9. For
comparison purpose, the results obtained by the
traditional LQG/LTR method (by letting o=0) are
also shown in Figs. 6 to 9. It can be scen that the
smallest principal gains of the return ratio for the
proposed method at lower frequencies are increased,
1., the capability to eliminate steady-state errors is
increased. In addition, the condition numbers (?r/g)
or the separations between o,'s for the proposed
method are also decreased, i.e., the proposed method
is more robust. The largest principal gains of
sensitivity function obtained by the proposed method
the
disturbance rejection capability is increased. In

at lower frequencies are decreased, ie.,
addition, the maximal overshoot of the largest
principal gains of sensitivity function at the crossover
frequency w_ is also decreased, i.e., the proposed
method can provide better noise rejection, dynamic
decoupling, and reference command transmission.
Moreover, the separations of the principal gains of
the complementary sensitivity function at higher
frequencies for the proposed method are also

decreased, ie., the ability to reject measurement

(65)

noises, dynamic cross-coupling as well as parameter
variations of the proposed method are better. On the
other hand, in the time domain all the command
tracking, overshoots of the system unit-step responses,
cross-coupling effect as well as amplitudes of the
actuators inputs are improved and reduced by the
proposed method.

IV. Conclusions. From the previous derivation, we
have shown that the proposed method can take all the

time domain, frequency domain, and robust

decoupling design techniques into a unified process.
It should be also noted that in the design procedure,
in addition to the tunable weighting factors
W,V, Q, andR, the parameter o of the LEQG

method can also be manipulated to get better
performance response. This provides another degree
of freedom for the designer. By the results of
numerical simulation, we also have demonstrated that
the proposed method can make the system to be more
robust to disturbance, sensor nois¢, and parameter
variations. In addition, the time domain responses are
also better. '
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