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Abstract

Airplanes taxying on runways are - like
every land vehicle with wheels - endanger-
ed by self-exited vibrations which may lead
to severe accidents.

Since the first papers concerned with this
problem more than one dozen of theories has
been proposed. As every author thinks his
theory to be the best, for the design engi-
neer of today there exists the problem to
select one of the theories under the view-
points (a) physical clearness, (b) compu~
tational costs, (c) description of the es-
sential phenomena. To support the selection
in this paper the substances of the most
important theories are systematically com-
pared and classified starting with the mo-
del rigid wheel on rigid runway.

Finally the theories are applied to simple
examples and the computational results com-
pared.

The results of the theoretical and the com-
putational comparison are clearly arranged
in synoptical tables and diagrams. Future
theoretical investigations and crucial ex-
periments are proposed.

1. Introduction

Especially nose landing gears but also
main landing gears are endangered by self-
exited vibrations which sometimes are call-
ed "shimmy", "flutter" or "kinetic or dy~-
namic instability". This phenomenon may be
described in the following way: When an
airplgne is accelerated on the runway at a
"critical velocity" vgrit the landing gear
starts to vibrate violently with increasing
amplitude perpendicular to the rolling di-
rection. These vibrations may lead to a
rupture of the landing gear followed by se-
vere accidents.

The principles of this dangerous pheno-
menon can be described in a qualitative way
by the very simple model "rigid wheel on
rigid runway"(1)- see also chapter 2. But
to describe it quantitatively one has to
consider the (elastic) detormation of the
tire, chapter 3. These additional degrees
of freedom enormously increase the diffi-
culties of the mathematical formulation.
Therefore it is not surprising that since
the first papers concerned with this prob-
lem more than one dozen of theories has
been proposed to answer the relative simple
question whether a landing gear runs stable
or not. This question may be called "simple”
because due to an important result of the
Copyright © 1986 by ICAS and AIAA. Al rights reserved.

theory of stability it is only necessary
to treat the linearized differential equa-
tions That is why this reduction is
used throughout this paper.

The following theories have been consi-
dered in the author's dissertation ’
where also the voluminous and systematic
derivations are given:

1. Slip Theory

2. Kalker's Theory

3. B. de Carbon's Elementary Theory con-
sidering or neglecting the elastic
deformations of the tire

4, B. de Carbon's Complete Theory

5. Curvature Theory considering or neg-
lecting the elastic deformations of
the tire

6. Moreland's Theory

7. Modified Moreland's Theory

8. Improved Modified Moreland's Theory

9. Theory of v.Schlippe and Dietrich/

Smiley/Pacejka
String Model
10. Pacejka's Theory (Approximation II) -
String Model
11. Generalisation of the Theory of
v.Schlippe and Dietrich/Smiley/Paceijka
- String Model
Transmission of the Generalisation of
the Theory of v.Schlippe et al. to the
beam model
13. B. de Carbon's Elementary Theory
applied to a wheel set
New theories are underlined.

For the design engineer of today there
exists the problem to select one of the
theories under the viewpoints
- Physical clearness
- Computational costs
- Description of the essential phenomena.

(Approximation I) -

12.

To support the selection in this paper the
substances of the listed theories are
systematically compared and classified
starting with the model "rigid wheel on
rigid runway".

2. Model "Rigid Wheel on Rigid Runway"

This model, shown in Figure 2.1, is the
simplest one to describe the kinetic in-
stability(1) It is very useful to work
out the mechanism of self-excitation as
the cause of instability and to find essen-
tial parameters. The landing gear is repre-
sented by a wheel fixed to a rigid bar
which is suspended in the airplane by
springs.
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Figure 2.1. Model "Rigid Wheel on Rigid
Runway", coordinate systems
and parameters.

Assumed

- the airplane is running with constant

speed v

-~ the bar is rigid

- the only degrees of freedom are X, Y,y

- the link G is frictionless

- the wheel is represented by its center

plane

tbe following system of linear differen-

tial equations with constant coefficients

can be derived with help of the Lagrangean
equations with nonholonomic constraints in

Pfaffian form(1), see also Figure 2.2,

Newton's second law for y-direction

my—maMV+cyy = A (2.1)
Euler's equation about G
2. p o
m(aM +1M2)y—maMy+cYY = —A1aR ’ (2.2)

quling (nonholonomic) constraint perpen-
dicular to wheel plane

' y-agy-vy = 0 . (2.3)
Newtgn S second law for the x-direction is
not 1pcluqed here because its differential
iqu?glg? 1sddecoup1ed from equations (2.1)

e} . and is of no importance i
stability analysis( . ° m the

mass of wheel + bar

The rolling constraint of equation (2.3)

can be explained twice:

- The wheel runs without sliding
or

- The velocity of wheel contact point R
perpendicular to the wheel center plane
vanishes (is zero), see Figure 2.2b.

velocities

forces and moments

Cw‘-“

&Y G

a)l b)

Figure 2.2. Model "Rigid Wheel on Rigid
Runway", forces and moments
and velocities.

3. Model "Elastic Tire on Rigid Runway"

The model of chapter 2 has to be com-
pleted by considering the following facts
of an elastic tire, Figure 3.1:

- The contact point R becomes a contact
area; in most theories the wheel is re-
placed by its center plane - so we have
a contact line.

- The rigid wheel center plane becomes
flexible, in other words, an infinite
number of degrees of freedom is added.

- The tire is able to transmit a moment M
about the vertical g-axis.

Due to these additional effects the
system of differential equations (2.1} to
(2.3) must be altered and enlarged:

- The equation due to Newton's second law
remains unchanged

my—maMV+cyy = X - (3.1)

- In Euler's equation about G appears the
additional moment MC

o

M z .(3.2)
The mathematical description of the soil
reactions is discussed in sub-chapter 3.1,

- Due to the additional degrees of freedom
of the wheel center plane the rolling
constraint has to be completed by the
associated velocities which are symbo-
lised in equation (3.3) by a circle

&—aR§~Vy+() =0 .

2., 2 . . _
m(a +iy )y—maMy+ch = A1aR+M

(3.3)
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Figure 3.1. Elastic tire on rigid runway;
deformations and soil reac-
tions A1 and MC'

The "contents" of the circle is discuss~
ed in sub-chapter 3.2.

~ Also due to the additional degrees of
freedom which are - in other words - ad-
ditional unknowns an associated number
of additional equations has to be creat-

ed, symbolised in equ. (3.4) by a dotted
line

=0 .
Details are given in sub-chapter 3.3.

(3.4)

...............

In the following theoretical comparison
of the theories (chapter 3) listed in chap-
ter 1 two groups can be distinguished (see
also Figures 3.3, 3.5, 3.6 in which the se-
paration is symbolised by a double line):
1. group (Theories 2, 3, 4, 5, 6, 7, 8, 13)
Here no concrete model is used:

The elasticity of the tire is taken into
account by considering its kinematical be-
haviour under special conditions; an over-
view is given in Figure 3.7.

2. group (Theories 9, 10, 11, 12)

Here a concrete model is used:

Prestressed string on elastic foundation,
called "string model", Figure 3.2. Only in
theory 12 a "beam model" is considered.

In the theoretical comparison it is not
necessary to distinguish in the theories
nrs 3 and 4 wheather the elastic deforma-
tions are considered or neglected, but in
the computational comparison of chapter 4
this distinction will be of importance.

Theory nr. 12 is not treated here in de-
tail because its system of differential
equations is congruent to that in theory
nr. 11; only the coeff%?ients have a diffe-

rent physical meaning( - se¢ also Figure
3.10.

Kalker's theory has been developed in
connection with contact problems at rail-
way vehicles and is considered here be-
cause of its close relationship to B. de
Carbon's Elementary Theory. Kalker used in
his derivation the model of a paraboloid

rolling on a half space but the result
justifies to classify his theory tg the
first group - in the context of this paper.

String model .
Additional assumptions with re-

Figure 3.2.

spect to chapter 2:

- Wheel is represented by its
center plane

- Curved string is replaced by

. a straight infinite one

- Mass of string is neglected

- Damping of tire is neglected

Additional degrees of freedom:

Additional parameters: .

c Spring stiffness of elastic

foundation

2h Contact length

S Tension force in string
(not shown in Figure).

3.1 Comparison of the Mathematical Descrip-

tion of the Soil Reactions

Figure 3.3 gives an overview: .

-~ Most theories use a linear spring law,
relating the soil reactions A, and M, to
the degrees of freedom ny and Yg'respec—
tively by the coefficients of stiffness
C)1r CMz- These coefficients can be
either gained by static experiments or
by analysis from the string model using

the following general formulas (see Fi=-
gures 3.2 and 3.4)
2h _
= n n{o,t))+c (E,t)de
A1 \CBL(n(2h<33+n(0, )b \?é n(g,
transition curve contact line
(3.5)
= n -n{0,t))+ (3.6)
transition curve,,
+cgl N(E,t) (E-h)dE
\_.0 N /
contact line
with L = S/cB = relaxation length.
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Rigid wheel with Mo =0
nonholonomic constraint

Slip Theory >Ay = «-0 = finite value MC =0
M = «.0 = finite
Kalker's Theory & value
N
B. de Carbon's
Elementary Theory
Curvature Theory
B. de Carbon's constants
Complete Theory L CA1s CME from

7 : :
Linear Spring Laws static experiments

A = Crqtngi My = cyi-YR

Modified " (’i . 1 n
Moreland's Theory average displacement

Moreland's Theory

Improved Modified n st
average rotation
Moreland's Theor g

Cy1s cMg calculable;

Theory of v.Schli iet-~
y ippe, Diet contact line assumed|

rich/Smiley/Pacejka (Appr.I) \

7 - :
Theory of Pacejka as straight line -
(Appr.II)- ) see Figure 3.4

Generalisation of the Theory No Spring Law; contact line with arb

itrary shape
of v.Schlippe et al. approximated by (e.g.) Fourier serleg___ﬁéa__gguiﬁ_l*ij

.Figure 3.3. Comparison of the mathematical description of the soil reactions, overview.

Description of the
contact line
Theory of Assumed as straight line
v.Schlippe, — - -
, , Dictrichy - i I
- The assumptions made in the first theo- Smiley/ ————
ries of Figure 3.3 may be interpreted-as Pacejka _ N9~y =
a limit case of the linear spring law (Appr.I) no=ong ot aE [
with infinite stiffness and vanishing
degree of freedom.
- The Generalisation of the Theory of Th Assumed as straight line
v.Schlippe et al. is the most advanced eory of y
theory: Pacejka _ _
~- No spring law is used for the soil (Appr.II) l :___jﬁ
reactions ‘7-
-- Shape of contact line may be arbitra- = _ T _ oo + T
ry and approximated by any kind of n M4 Y1 Yq
series, e.g., Fourier series in any
desired order of accuracy. Generalisation Arbitrary shape
of the Theory E—
3.2 Comparison of the Rolling Constraint(s) | of v.Schlippe n.oi
Figure 3.5 gives an overview: et al. _ T
- Proceeding from the top line to the bot- | (Transmissablen(g,t)=bq(t)+by(t)5 +
tom the stepwise generalisation of the to beam model)  yr=
simple nonholonomic constraint for the + va+2(t>-51n§H€ =
rigid wheel can be regarded. = (P1T{p1*
- The most advanced rolling constraint is
formulated in the Generalisation of the Figure 3.4. String model; description of
Theory of v.Schlippe et al.: It is a the contact line.
partial differential equation and has * Any desired order of accuracy
the physical meaning: No point of the is possible by approximation,
contact line slides. e.g. with collocation method.

{¥} Vector of shape functions
{b} Vector of constants.

1375




Rigid wheel with
nonholonomic constraint

Velocity of point
is zero:

R perpendicular to wheel center plane
y-apy-vy = 0

Slip Theory

Velocity of point R
is not zero but has

perpendicular to wheel center plane
.the finite slip velocity Vsar,

N,

Kalker's Theory

/which is proportional to the side force >\1:vSGL ~ X1

B. de Carbon's
Elementary Theory

%

Curvature Theory

B. de Carbon's
Complete Theory

Velocity of point R perpendicular’ to contact line in
\point R is zero:

Moreland's Theory

4 .
y=agy+np=viy+yyp) = 0

Modified
Moreland's Theory

Improved Modified
Moreland's Theory

Theoryof v.Schlippe and DietH
rich/Sniley/Pacejka (Appr.I)

a)Rolling constraint for point R and point 1
b)No point of contact line slides: Point_ 1 becomes Rafter

rolling of h: Y4 yR(Ix+h) yR+hyR/v+h2yR/2v2+...

Theory of Pacejka

(Appr.II)

Rolling constraint for point 1

Generalisation of the Theory
of v.Schlippe et al.

Rolling constraint for each point of contact line:
y-(ag- (E- h)) Y+ (E, t) ~v (y+n (T, t)) = 0

Figure 3.5. Comparison of the Rolling Constraint(s), overview.

ﬁV: Bn/ag =

3.3 Comparison of the Additional Equations

Here the greatest differences between
the theories appear. In Figure 3.6 the two
groups of theories already mentioned in
chapter 3 can be distinguished:

1. group: No concrete model is used; the
elasticity of the tire is taken into ac-
count by describing its kinematical be-
haviour under special conditions which are
shown in Figure 3.7: The wheel is pressed
to the soil by a vertical load (not drawn
in Figure 3.7), then loaded by a side force
A1 or by a moment about the vertical axis
My and rolled slowly ahead. During this
motion the wheel is forced to remain per-
pendicular to the surface. In the left two
cases shown in Figure 3.7, also the tuning
degree of freedom about the vertical axis
is blocked, while it is free in the right
two cases.

In all four cases the wheel tends to a
stationary behaviour after a short tran-
sition phase.

This different behaviour of the wheel is
formulated mathematically as shown and in-
troduced as. additional equations to the
various theories cited at the bottom of
Figure 3.7.

Most theories use the kinematical beha-
viour of the wheel with turning axis being
blocked. Only the Curvature Theory assumes
the wheel to be free to turn about the

Inclination of contact line with respect to wheel center plane.

vertical axis. B. de Carbon's Complete
Theory is a mixture between the left and
the right two cases and is difficult to
understand from the physical point of view.
The two equations found in Figure 3.7,

side slip formula

Yg = —(1/Ksn)-k and (3.7)
curvature formula
G/v% = =k, g Ayt M) (3.8)

seem to be contradictory extremes. But the
curvature formula can be reduced to the
side slip formula as shown in Figure 3.8.
2. _group: String model is used.

The additional equation is found by mathe-
matically formulating the observation from
experiments that the transition between
contact line in point 1 (Figure 3,2) and
the transition curve of the string is
"continuous" and_the inclination yy being
proportional to n1.

v, = -(1/D)7, (3.9)

Additional remarks are given in sub-chap-
ter 3.4.
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Rigid wheel with
nonholonomic constraint

——————

Slip Theory

Kalker's Theory

B. de Carbon's
Elementary Theory

Curvature Theory

1. group: No concrete model is used; the elasticity

\ of the tire is taken into account by describipg its |

B. de Carbon's
Complete Theory

/'kinematical behaviour under special conditions shown
in Figure 3.7

Moreland's Theory

Modified
Moreland's Theory

Improved Modified

Moreland's Theory
e
Theory of v.Schlippe, Diet-
rich/Smiley/Pacejka (Appr.I)

e ————————————————— S —————————————————rs i TR
REmmeE eSS R

2. group: String model is used.

Theory of Pacejka
(Appr.II)

S The inclination Y4 of the contact_line in point 1 is
proportional to the displacement nq at point 1:

Generalisation of the Theory

Yq = —(1/L)FT. The constant of proportionality may be

of v.Schlippe et al.

derived from theory or measured by experiments

Figure 3.6. Comparison of the

additional equations, overview.

turning degree of freedom blocked turning degree of freedom free
wheel plane 71 IX1
topview o0lli M M
(topview) rolling \MC N,
side force moment side force moment
“=- t MR PPN S ."'..-“."-.
..face ~ £rase +lrace .. trace .
/‘I’YR. .o R .. ‘- R ..
Stationary state Stationary state : I :
MC = CMC_,YR = KNX'I MC =0 .. M I :
ay Stationary state Stationary state
= SR _ A = 1 s _ Yro - v
> YR T T = ¥ ~ A R = = =3 Y
R R 1 R - Yy ~ 1.y a0 -2R
de V2 1 R yR V2 ¥ MZ;
- N/ N \L———T—__d/
1
# external loads + Slip Theory
C * Kalker's Theory
- B.d.C's Elementary
1 . ) Theory
soil reactions * Moreland's Theory
& - Modified Morel. Th
B. de Carbon's |
Curvature Theory Complete Theory - Improved Modified
Moreland's Theory

Figure 3.7. Comparison of the

additional equations for the 1. group of theories. The

kinematic?%)b?g?viour shown in the right two rows has been proved by ex-

periments
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Two

extremes

Side slip formula

Curvature formula

YR = —(1/Ksn)')\1
Slip angle . side

¥g
5 = ={Ky A, tK,, M)
) A5 M

3.4 Comparison of the Systems of Differen-

ven in detail by the author

tial Equations

This voluminous comparis??)has been gi-
. Here only

some remarkable facts are listed:

a)

All systems of differential equations
are formed by linear, homogenious ordi-
nary differential equations with con-

and Dietrich/Smiley/
Paceijka

derivatives of curvature

Curvature . si
force side stant coefficients. There is only one
force and moment : X :
exception: The Generalisation of the
‘ Theory of v.Schlippe et al. and its
T transmission to the beam model. These
Limit case theories are described by an integro-
v ¥ differential equation; the rolling con-
‘ straint is a partial differential equa-
tion.
K21 b) Moreland's Theory using a "time-lag-
MC = X1 term” is isolated completely from all
Mz, other theories. The "distance~lag-term"
Ky used in the Modified Moreland's Theory
"Pneumatic caster" makes it an integral part of the syste-
matics of theories, see Figure 3.10.
c) Some additional equations of those com-
Wheel equi pared in sub-chapter 3.3 can be shown -
a torsiggézaien? to after some lengthy conversions - to be
Pring: special cases of the Theory of
M =c,¥Y v.Schlippe et al. An overview is given
z Mz 'R . .
in Figure 3.9.
i d) It is possible to derive Kalker's Theo-
ry by applying B. de Carbon's Elementa-
1 S Kyq ry Theory to a wheel set with a finite
- Yg =~ A1 width when the rolling constraint is
Ken MM K, C formulated for a point lying at a
C C ME MC 1 n 3 "
distance ky ("pneumatic caster ) before
Figure 3.8. Connection between side slip point R.
formula and curvature formula.
B. de Carbon's %
Elementary Theory 0 = - R = YR
en
side force -~ slip angle
dy dy €y nC
Modified —R_1_R_1 Vx - __MOTAT ng - 1 Yx
Moreland's Theor 4 A < c
Y N dat 01 Mo1
N
distance-lag~-term
1,0, °mo°x1 1
Improved Modified ;(y+yR) = -——np - YR
Moreland's The - c re)
ory °Mo1 Mo 1
turning of wheel plane about vertical axis allowed
Yr RN i
Curvature Theory o2 = 3rtvg) TTEA1CA1"R T MMz TR
curvature side force and moment
Theory of v.Schlippe Zg Zg N

T X3Yg

Figure 3.9. Aqdit%onal equations as special cases of the Theory of v.Schlippe and

Dietrich/Smiley/Pacejka.
Additional terms with respect to the preceding line are underlined by ——-.
CMO’ Cypq are constants.
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e) Some additional remarks to the Genera-
lisation of the Theory of v.Schlippe et
al.:

This theory is described by the egqua-
tions (3.1), (3.2), (3.5), (3.6) and
the rolling constraint given in the
last line of Figure 3.5. These equa-
tions are 5 partial integro-differen-
tial equations for the 5 unknowns 'y, v,

Y1+ My, n. That means no additional

equation is necessary! Trials to gain

an approximate solution by the collo-
cation method fail because the result-
ing system of algebraic equations be-
comes singular. This is due to the fact
that the rolling constraint, being re-
presented by a partial differential

equation, is integrable! Its solu-

tion is

n(E,t) = =y(t)+(ag- (E-h) y (t) -0 (vE-T).
(3.10)

This means that the degrees of freedom

are linearly dependent.

The last underlined term in equation

(3.10) is determined by the initial

conditions. The voluminous discussion

of the initial conditions leads to the
following results:

- Only when the contact line is straight
and lies on the tx-axis (see Figure
3.2) stable rolling of the system is
possible: The wheel runs like in a
groove and behaves like a conservative
oscillator.

Otherwise unstable rolling occurs be-
cause the wheel leaves the neutral po-
sition without return.

The cause for this behaviour of the
model: The assumption "No point of the
contact line slides" (see sub-chapter
3.2) is too rigorous. It can be avoid-
ed by allowing the contact line to
slide at least in the foremost portion
of the contact line. The most simple
form to allow this is to use the "ad-
ditional equation" given in the last
line of Figure 3.6 in a somewhat dif-
ferent form:

79(2h,t) = —% T(2h,t) . (3.11)

With respect to mathematical classifi-
cation equation (3.11) is no "addi-
tional equation" but a boundary con-
dition.

Thus it is to solve a system of par-
tial integro-differential equations
completed by the boundary condition
(3.11). This can be done by any appro-
ximation method, e.g. collocation
method, which is close to the cl?s§ic—
al solution by v.Schlippe et al. T,
Better numerical result may be expect~
ed by Galerkin's method or others.
These considerations are transmissable
analogously -‘to the bean model (1) with
some additional considerations.

3.5 Summary of the Theoretical Comparisons

The most important differences and simi-
larities are summarized in the flow chart
of Figure 3.10. The symbol +(>+ means
that the theories are described by a system

of differential equations of the same ma-
thematical form. Only the physical signi-
ficance of the constants is different. In
Figure 3.10 some branches are marked by
dotted lines. They have been added in the
author's dissertation and allow to con-
struct important correlations between the
separate branches developed in the litera-
ture until that time.

4. Computational Results of Special Cases

Computational results have been gained
for two special cases
- Kinematical Shimmy
- Wheel without caster(6) /(7).

4.1 Kinematical Shimmy

Here the wheel rolls so slowly that
mass forces may be neglected compared to
spring forces and soil reactions. By this
assumption the order of the characteristic
equation is decreased; for all theories an
analytic solution may be given.

The results in Figure 4.1 show larger
discrepancies in the region of small
caster; here crucial experiments will be
necessary and helpful.

If in B. de Carbon's Elemenatary Theory
the finite width of the wheel is consider-
ed an additional region of instability
appears (fourth line in Figure 4.1). In
the author's opinion a similar phenomenon
will occur in the other theories and the
finite width must be included in future
computations.

4.2 Wheel without Caster

In this special case the wheel has no
caster lagp = ay = 0). Contrary to the K%ne—
matical Shimmy the mass forces are consi-
dered here. In Figure 4.2 only some typic-
al results are summarized. More details
are given in references (6) and (7).

The results show significant differen-
ces in the region near the frequency ratio
Q= (wY/wy)2 = 1 and V = 0 where
w = o /(mify) wy = c,/m and V is the
dimensionless velocity Xf the airplane.

Two results should be mentioned especi-~
ally.

- The difference between the second and
the fourth line in Figure 4.2 is due to
the connection between these theories
shown in Figure 3.8: For high velocity
the curvature formula reduces to the
side slip formula.

- The last two lines show the great impor-
tance of the finite width of the tire
which has already been mentioned in sub-
chapter 4.1.
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Stationary behaviour of
a wheel, vertical turning
blocked

Slip Theory

Consideration of the
finite width of the wheel

Kalker's Theory

B. de Carbon's

Elementary Theory b

Application to a wheel set

... NO concrete model;
elasticity considered by
special kinematic behav-
iour of the wheel

B

Rigid wheel with nonholo-
nomic constraint,
no sliding

Consideration of the
elastic deformation of
the wheel by ...

Time-lag-term i1 Moreland's Theory
Instationary behaviour of //"
a wheel, vertical turning
blocked ceevreonroatenne snee
<\ Distance-lag-term sofom Modified Moreland's Theory
Consideration of turning
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— and Dietrich/Smiley/
//ﬂ’ :gsiggimation by Taylor Pacejka (Appr.I)
In soil reactions the
contact line is assumed
as straight
\\t; Rolling constraint Theory of Pacejka
for point 1 > (Appr.II}
String model

a concrete model

l group l

esavsecanan

Beam model

MesnseensRereeneuststnennse soast

. usnou

‘ The soil reactions and
the rolling constraint M
for each point of contacti

s e S S S e S
line are approximated to
any order of accuracy
desired

ertegeerncem

———

Generalisation of the
Theory of von- Schlippe
et al.

| PR S

evesesenncen .se
Transmission of the
Generalisation of the
Theory of v.Schlippe et
to the beam model

ST
i

Figure 3.10. Flow chart summarizing the differencies and similarities of the theories




Conclusions and Outlooks to Future
Research

74 5.

Rigid wheel with non-—

holonomic constraint In chapter 1 the problem was mentioned

to select one of the theories under three
viewpoints. To summarize the results gain-
ed until now the author proposes an order
of theories being - in his opinion - the

Slip Theory

B. de Carbon's Elemen-
tary Theory without
finite width of wheel

B. de Carbon's Ele-

mentary Theory with

finite width of wheel
- Kalker's Theory

» Curvature Theory

+ B. de Carbon's Com-
plete Theory

- Improved Moreland's
Theory

Theory of v.Schlippe N 2 terms
and Dietrich/Smiley/
Pacejka with terms

in the Taylor series

3 terms

Theory of Pacejka
(Approximation ITI)

. . L2 terms
Generalisation of the \ / N
theory of v.Schlippe N ’ \
et al. with terns /| \
in Fourier series \

N
\ 3 terms
2\
< N

Figure 4.1. Computational results for the
Kinematical Shimmy.

Abscissa: Dimensionless caster
ag
Ordinate:
ness ¢

Dimensionless stiff-

llbestll

ones:
Physical clearness
~- Theories without concrete model
Curvature Theory
- Improved Modified Moreland's Theory
-~ Theories with concrete model
- Generalisation of the Theory of
v.Schlippe et al. and its transmis-
sion to the beam model
Computational costs
-- Slip Theory
-=- Curvature Theory
-=- Improved Modified Moreland's Theory
Description of the essential phenomena
Here no answer can be given by the
author because of lacking test facili-
ties and crucial experiments respective-

ly.
Future research should be done with re-

spect to three fields:
- Theory

Examination of a "jumping phenomenon”
in the Theory of v.Schlippe et al.,
when the number of terms in the Taylor
series is increased (7)., This phenone-
non was also mentioned by Collins (%),
Stability analysis of the wheel with
caster.

- Analysis of the Generalisation of the
Theory of v.Schlippe et al. by more
efficient numerical approximations
(e.g. Galerkin's method).

Considering the influence of the fi-
nite width of tire in all theories.
Considering damping and mass forces of
the tire.

Relation of the results given in this
paper to theoretical and experimental
results found by considering a wheel
excited harmonically( .

- Experiments

Gathering of further experiments given
in the literature.

- Examination of the theoretical stabi-
lity regions shown in Figures 4.1 and
4.2 and the relations between the pa-
rameters of different theories given
in references (1) and (7) by systema-
tic crucial experiments.

- Practice

If the magnitude of an instabi-~

lity region is determined by an

additional parameter this fact
is symbolized by dotted lines.

(2)
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(1}

Reduce the costs for design, develop-
ment, manufacturing and service of
Shimmy dampers.
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