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Abstract

The slightly conic shell outrigger
tail of helicopters can be modelled in
strength calculation as a cylindrical
shell reinforced longitudinally and late-
rally. The outrigger is connected to the
body by bolted joint. Because of the inew
vitable production inaccuracy the flange
serving joint is not of perfectly plane,
thus the drawing of the coupling bolts
forces local deformation on the structu-
re, This effect causes relatively great
load in stiffeners and sheet fields con-
nected to the flange that weakens quickly
having the flange. Size deviations cau=
sing kinematic load can be regarded as
random variables of normal distribution
and independent pair-wise, according to
experience. Thus their effect can be
taken into account already in course of
design. In the knowledge of the operation
load of the structure and alloved load
the production tolerance and mounting
technology ensuring suitable strength
reserve can be prescribed.

I, Introduction

The stress~control calculation of
structures is generally performed on the
assumption that the structure is force-
and stress-relieved under no~load condi-
tion.

Due to the inevitable geometrical ine
accuracies resulting from manufacturing,
the elements of the structure will pro-
bably not perfectly fit itself, hence
some of the elements should undergo de-
formation during their assemblage.

In this paper, a method is introduced
briefly which is suitable for the estima-
tion of stresses arising during the
assemblage of reinforced cylindrical
shell structures.

The outrigger tail of helicopters 1is
generally a slender, gently conical light
-weight structure built up of thin flan-
ges /longitudinal stiffeners/, rings
/transverse stiffening frames/ and thine
wall covers. The tail is generally connec-
ted to the fuselage /body/ by means of
connecting rings with bolted joints.

Owing to the inevitable production in-
accuraces there are smaller or larger
clearances between the matching surfaces,
hence the tightening of set-screws for-
ces some elements to undergo local defore
mation., Let this forced deformation be
called briefly "kinematic load".
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For the sake of a better survey, the
mechanical model of the structure in this
case is built up as a strongly idealized
one

-~ the shell is considered to be a circu-
lar cylinder,

- there is no opening or local stiffening
or reinforcement, respectively, on the
examined section of the structure,

- the rings are enclosed frames of unie
form dimensions and are spaced along the
length at equal intervals. They can be
modelled ideally stiff under the load
applied to their own plane /as diaphragms/
or if it is necessary, their real elastic
properties can be taken into account.

~ They can be modelled as ideally flexibe
le under the load applied vertically to
their own plane.

- The cover is thin, so it can take over
only memrane~forces.

- The flanges of constant cross—section
are spaced along the perimeter at equal
intervals, and they are suitable for
taking over only normal forces.

- Let it be supposed that the kinematic
load itself does not involve either any
plastic deformation of the structure or
the corrugation of covers, l.e. the
principle of superposition can be applied
without any restriction.

-~ The end points of flanges coupled to
the connecting rings are fastened by a
fixed hinged-joint, while their opposite
end is free.

The enumerated idealization do mnot
affect the mechanical principle of the
problem but, first of all, they serve to
the pupose of clearer representation of
the phenomenon. /In a given case, the
calculations can be performed even with
much less idealization taken into account
at all./

The calculating operations will be
considerably simplified further on if in
stead of the entire outrigger tail /length
of lo-l2 frame intervals/, only a shorter
section of it, e.g. a section of four
frame-intervals in length is taken under
close examination. If this shorter secti=-
on is considered to be supported at both
ends, then the model is more rigid, while
if it is considered to be free at one end,
then it is more flexible than the real
structure., In this way, the lower and
upper bounds of the stresses resulting
from the given kinematic load are obtai-
ned, while the calculating operations
are diminished.
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The bounds can be reduced in length by
increasing the number of the reckoned
frame~intervals.

Determination of the resultant stressos

of the structure from a given /determinis-
tic/ kinematic load

The problem is solved by means of the
force method. The model of the structure
is shown in Fig.l. Let it be assumed that
the number of flanges is z sy 8nd the num-
ber of rings is 22>3' 1

i The degree of redundancy of the model
8:
n? = (22—1)‘(21-3) + 322 ’
if it is free at one end, and
n? = (2p-1)-(z;=3) + 2z, + 3z,
if it is supported at both ends.

The number of the dimensional inaccu-
racles involving kinematic loads is .k,
wich is not necessarily identical with
the degree of redundancy.

If the statically "redundant" external
constraints and internal connections are
eliminated in principle, thenthe stati-
cally determinate basic system is yielded.

In the place of the eliminated redunm
dant comnections, loading self-equilibra-
ting and unit value couples of forces are
assumed successively, and from these, the
generalized stresses of each section
within the properly divided structure are
determined. It follows from the propertie
es of the model that the stresses erising
in the flange-sections will be a normal
force changing linearly due to the unit
loads, while the stresses in the cover-
~sections will be a shear-flow constant
for each element, and the stresses arisirg
in the rings will be a variable bending
moment describable by means of a trigono-
metric function. /This latter can be
approximated by means of piece-wise quad-
ratic parabola-sections./

The different stresses are arranged in
the unit load matrix B.

The data characteristic of the elasticity
of each section are given in spring-mat~
rix R. /See Fig.2./

The set of compatibility equations in
the form of a matrix is:

Dy=¢ s where
the so called coefficient
matrix /nxn/

4 is the colummevector of the connec-
tion-forces to be determined /n/

g is the columm~vector of the kinema-
tic load /n/.

Kinematic load vector is generated by a
properly chosen geometric transforming
watrix from colum-vector £ /now con-
sidered deterministic/ confaining dimen-
sional inaccuracies k in number:

f =

ue
m

/Matrix L consists of rows n and columns
k; the pPhysical semse /iz=l1,2,...,n;

J=1,2,040,k/ of its element (;J is: the

displacement oecuring in the place and
direction of the itB unknown connection
-forc%hunder the influence of elimdinating
the j dimensional inaccuracy in the
basic system./

Accordingly, the solution of the set
of compatibility equations is the follo~-
wing:

-1

y=Dt¢=0"1L¢

The stresses arising in each section
as caused by the elimination of diwmensio-
nal inaccuracies given in column-vector
€ /i.e. tightening the coupling~bolts/
are yielded as the elements of the coluun~
-vector:
M:QZ =

-1

noy

D

ut

£

/Construction of M is similar to that
of any columms of B./"

It is to the pupose to concentrate the
guantities independent from the concrete
values of dimensional inaccuracies into a
single matrix:

EeBD'L ,
so the stresses can be calculated by means
of the formula:

M=HE

Note that the calculations can be per-
formed also by theassumption of a less
idealized model /approximating the reality
better, e.g. by means of the finite ele~
ment method/, and its result can be
written similarly, as the product of a
correspondent matrix H and column-vector

g »
Determinmtion of the stiresses resulting

from random kinematic loads

According to experience, the produce
tion inmaccuracies /i.e. the elements of
column-vector £ / can be considered as
random variables of normal distribution
and independent pair-wise. In this case,
the stresses coming from kinematic load
will also be random variables of normal
distribution, which can be characterized
satisfactorily by their expected value
and dispersion at any point of the
structure.

On the basis of these two characteris-
tics, even the waximum stresses of each
critical structural element can be esti-
mated.

The expected value of the dimensional
inaccuracies are given in column-~vector:

§t= [61, 62, Ej' DI €k]
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With the pair-wise independence taken
as a basis, the dispersions of the di-
mensional inaccuracies can be arranged
in diagonal matrix 1like this:

£ =<K€y, Eppeney €jyeney 1D

The expected value of the stresses is:
1_\_I=Hé

- =
==

While, instead of the dispersion of
stresses, there are column-vectors k in
number separately, each of them represents
dispersion of stresses calculable from
the dimensional inaccuracy-dispersion,

i.e4:
A
fi =5

".'.‘[gl,iiz,coo,ﬁj,oo-,fik] L4

Consequently, the jth column of matrix
M yields the dispersion of stresses cal-
Sulated from the jth inaccuracy-disper~
sion in each element of the structure
provided that the other dimensional in-
accuracy-~dispersions are equal to zero.

The simul taneous reckoning of the total
effect of all the dimensional inaccuracy-
dispersions can take place at any element
of the structure so that the row of hat-
rix M as belonging to the selected ele~
ment, is looked for, and then the square-
root of the quadratic sum of the matrix
elements to be found in this row is cal-
culated:

A e 2 5 2 - 2 _
My _\/(Ml,i) + (Mz’i) toeet (Mk,i) =
K

> (my és)z]

Jj=1

ftons

-
=

sqrt

i:l, 2, eeey P

The stress-~dispersion of all the struce
tural elements, with all the dimensional
inaccuracy-dispersions being taken into
account, is yielded by the column-vector
of the square-roots of the principal dia-
gonal elements of a matrix:

t gt
‘)

Stresses in any selected element are
found in the confidence-~interval deter~
mined by the expected value and the
triple dispersion to a probab of 99,%, hence
the relationship applicable to the stress
-~control calculations is:

Py ol 2|+ 3 |y )

where

,like this:

nx

i=1,2,e0e,p

is the permissible stress of the

Mi [
'Y element.

If this inequality is not true for any
section of the structure, then the stress~
es resulting from kinematic load should
be reduced.
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In principle, there are two possibili-
ties of solving this problem:

a./ Reduction in stiffness of the cri
tical elements by modifying the structure
/this involves the variation of the ele-~
ments of matrix H in the formulae/. This
solution in geneXrally involves reduction
in the "operating" load-~capacity, so it
cannot be carried out in most of the cases.

b./ By means of changing the technology
of manufacturing and assemblage, the ele-
ments of matrices { and £ can be reduced.

Owing to the fact that improvement in
technology will increase the manufacturing
costs, it is important that tolerances
are made closer only to a justified extent.
On the basis of the foregoing, this task
might be performed as well, even by means
of the trial~ and error method: the vari-
ation in technology leaves the elements
of matrix H unchanged, hence M and M can

be simply re-calculated by means of matri-
ces £"and £" characteristic of the modi-
fied processes of manufacturing and assem-
blage.

With the calculations reiterated
several times, the solution of the prob-
lem, as demanding the least possible extra
expenses, can be found.

Effect of dimensional deviations of un-
known type of distribution and non-

~dependent types

Such a case occurs, e.,g. when each ele=-
ment of the structure is manufactured by
machines of identical type, and the di-
mensions of these do not follow the normal
distribution.

Let it be assumed that the measured
dimensional errors of elements N in num-
ber are known., With the use of a suitable
method, an approximate empirical distri-
bution-function can be derived from the
former ones /the more accurate the cal-
culations are, the greater is figure N/
but it is better to do the calculations
by means of empirical moments which can
be handled easier numerically.

in-

Arrange the dimensional errors known
from measurements in Table T :

=T
L=16,1 £E1,2°°°" 51,1”
€2,1  €2,2 €2,N
%1 fx,2 Ekyn

The empirical estimate of the expected
value of vector £ is as follows:

oy

=¥
t=f1, 1, +.., 1], sun-forming vector
of element k .

Te s Where

te



The definition of the uncorrected co-
variance-mwatrix of random variable g is:

—

[£2]z e et _

t

Htony
fi Oy

This can be written in the following
form by means of the measurement data:

g2 x L t_ L t_ 31 t
[é]‘Nl-”é‘ 'Nz(gg) =xI8T .
where

9=E=3"%}'§§t and

E 1s an identity matrix of proper dimen-
s

The expected value and dispersion of
the stresses can be determined by means
of the train of thoughts dealt with in
the foregoing:

- 1 ,
B=yHTe

is the expected value and
W=surTger® EH

is the covariance-matrix.

The stress-dispersion of each element
can be obtained in the form of:

g, = sart (i o)

The probability of the chance that the
actual stresses of a selected element
deviate from M to an extent of AM ,
can be estimated in this case only on
the basis of Csebisev-inequality, or its
sharpened versions including higher
momenta.

The Csebisev~inequality:

1

A2

If similarly to the criterion used

with normal distributions, A= 3, then
the value yielded is:

P = 0,888
Consequently, inequality

\Mi max\ é ‘Mi\ + 3 lHj_‘
is true only to an extent of 89% of
probability.

If A= 4 is valid, there is still
% probability of

| M 1205, + 4 (ny) .

y v a1
P ( (My = M[< AM;)2 1 -

i max

The reliability of estimation can be

increased by the application of higher
momenta.,
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A numerical example

As an example of the application of
this method we introduce briefly the
results of calculations concerning about
& shell structure with 12 longitudinal
stiffeners and 4 ring.

Geometrical data of the structure:

Diameter of rings: D = 520 mm
Distance of rings: 1 = oo mm
Thickness of cover panels: v = 0,6 mm
Cross-~section area of flanges A = 250m
Inertia of the ring cross-secﬁionﬂz
I=28,33-10" um

2

Material of all the elements: aluminium
alloy: Young-modulus: E = 7.1°u N2 ,
mm

shear-modulus: G=2,8°104—H§ .
mm

The calculation was prepared in four
variations:

A: supported structure on both ends with
rigid rings

B: supported structure on both ends with
elastic rings

C: free structure on one end with
rigid rings

D: free structure on one end with
elastic rings

The elements of £ matrice are the mounting
clearence sizes between the first ring
and the support wich are measurable in
the place and direction of the stiffeners.
/i.e. k = 12 in each case/. Owning to the
cyclic symmetry of the structure the fie
nal degree of redundancy in the above
mentioned cases is: n = 21, 29, 14 and
22.

After determining the elements of the
matrice H let the effect of the "unit
kinematid load" /i.e. &Y ={1,0,0,...)'10"
um  be examined first.

1

The normal forces in flanges and the
shear flows in cover-sections owning to
this "unit kinematic load" are presented
in Fig. 3. Those stresses weaken quickly
leaving the first ring. The character of
the functions is different, but the value
of maximal stresses is in each case near-
1y of the same size, in spite of the fact,
that the elastic ring is /as compared to
the elasticity of other elements/ very
soft.

Owning to the cyclic symmetry it is an
allowable assumption that the expected
value and dispersion of random kinematic
load is equal in every supporting places.
In this case the expecteéd value of the
stresses is all over zero. The dispersion
of the stresses may be calculated simply:

i=Hf=fuEg={g

fiony

, and
A A jad
My =& sqrt Grhij)

In Fig. 4., the d}spersion of stresses is
presented when £= o,l1 mm.
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22 Number of flanges: z4
Number of rings : Zz
Number of flange elements:
Pr = 27{%“‘ 7)
Number of cover (panel) elements:
pc = Z7~(ZZ- 7)
Number of ring elements:
P r 21'22
Degree of redundancy: n

An arbitrary redundant force:
yi (/':7,2,.../7)

Number of size deviations, causing
of kinematic load: Kk

An arbitrary size deviation:
E.

' J
&

Fig. 1.

(j=12, .. k)

Modelling of fthe sfructure
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]q,r ~ inertia of ring element's cross section E - Young-modulus of the material
Agf — area of flange -4 - G — Shear modulus =
ch _ thickness of cover elements
AgF ab —area -n-
Index of an arbitrary flange element : g = 1,2, ...p¢
e cover = -x- o= 1,2,...P¢
- ring - q.=1,2,-.-pr

Fig. 2.  Mounting of the B and R matrices
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Fig. 4. Stress dispersions

when E=0,imm in every supporting

place
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