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Abstract
A method based on the . s
s Ratio of specific heats
conservation form of the full Y P
potential equation has been used to £n Curvilinear coordinates in
anal'yze r'eallstlc aircraft ’ circumferential and normal
configurations at supersonic directions

speeds. A fighter forebody with and
without a canopy and a supersonic ¢
cruise wing-body concept have been
addressed in the Mach 1.41 to 2.30

Velocity potential

speed range. Comparisons of Subscripts:
predicted and measured surface b Body
pressure distributions and 1ift and
drag for the forebody configurations
showed excellent t% good ¢ Canopy
correlations although some . c s
oscillations in the gomputed FRIC Skin friction
pressures were observed. Good to - i
excellent results for the wing-body PL giﬁfpy forebody parting
configuration were obtained as
well. The nonlinear behavior of the ;
pitching moment was well predicted TCL Forebody top centerline
although the magnitudes were
somewhat low. These analyses have Introduction
all been conducted using -
single-precision arithmetic on Linear theory methodsl have
a VAX 11/780 computer. Execution been widely used for many years in
times averaged from one-~half to the aerodynamic design and analysis
three quarters of an hour for the of slender supersonic
forebody configurations and slightly configuration32,3_ The application
over four hours for the wing-body. of these methods is relatively
straightforward and the required
Nomenclature computer resources are modest. As
the design flight envelope of
C Drag coefficient advanced fighter a;rgraft expands to
D include both efficient supersonic
c Lift coefficient cruise and supersonic maneuver
L regquirements, the linear theory
C Pressure coefficient methods become increas;ngly
P inappropriate tools for the aircraft
CPU Central processing unit designer. To more qccurately
estimate the aerodynamics of such
C Pitching moment vehicles, the designer must look to
m coefficient the nonlinear aerodynamic
methodologies.
' Lengen The nonlinear methodologies
M Freestream Mach number include methods based on the Navier-
® Stokes, Euler, and full potential
X,¥,2 Cartesian coordinates equations. Due ?o gomputer
limitations, the application of the
a Angle of attack full Navier-Stokes equatiops to
arbitrary and complex geometries 1is
not yet a practical reality, but
* This work was supported by the significant progress has ?een’made
United States Air Force, using the thin layer approximation.
Aeronautical Systems Euler solvers also requilire
Division/XRH, WPAFB, Ohio substantial computer resources and
Copyright © 1986 by ICAS and AIAA. All rights reserved. are somewhat restricted in the
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complexity of conf%?urations which
can be analyzed. Impressive
advances are being made, however, in
the application of the Euler
equations to practical problems in
aircraft designb, ang combinations
of Euler and linear theory methods
hgve proven useful for designing a
fighter aircraft wing.’

Techniques based on the full
potential equation offer a very
attractive alternative to the Euler
equations approach. The full
potential techniques are capable of
providing results which are
equivalent to the Euler results when
the assumptions of irrotational and
isentropic flow are valid. A
significant reduction in computer
resources also occurs when the full
potential method is selected.

The purpose of this paper is to
present and discuss the results of
several analyses conducted using a
full potential method8. Both
pressure coefficient and force and
moment coefficient comparisons with
test results for several cases are
included at supersonic Mach numbers
ranging from 1.41 to 2.30. Practical
problems such as determining
forebody aerodynamics with a
high-visibility canopy or estimating
the longitudinal aerodynamic
characteristics of configurations
with highly noncircular cross
sections are addressed. Also
included is a discussion of the
efficiency of conducting analyses
such as these on a computer system
which is substantially less
sophisticated than state-of-the-art
supercomputers, but which is widely
available in government and industry
facilities,

Discussion

The ultimate purpose of any
aerodynamic design or analysis
technigue -~ whether it be a
sophisticated computational fluid
dynamics algorithm or a relatively
simple linear theory approach - is
to provide accurate and timely
answers to practical engineering
problems. The aerodynamic design
and analysis environment requires
that a large number of calculations
be made as a new design is sized and
optimized, and thus the tools
employed must be efficient and
easily adaptable to changing
configuration geometries and flight
envelope requirements. The
configuration modeling process must
allow convenient and rapid geometry
variations as the design is refined.
The selected code should be robust
and not require an unusually high
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level of user expertise to achieve
timely and accurate results.

Methodology

The full potential methodology
selected for the analyses presented
in this paper is rapidly maturing to
a level which meets the design and
analysis tool characteristics
described above. The method has
been described in detail in a number
of paperssr9r 0,11,12 and thus will
only be summarized here.

The numerical method solves the
full potential egqguation in
conservation form for the supersonic
flow past arbitrary and complex
geometries. Configurations which
can be treated may include a

fuselage, canopy, wing, canard,
nacelle, vertical and horizontal
tails, and inlets. A flux

linearized upwind differencing
technique is employed to advance the
solution along the configuration.
The finite difference equations are
solved using an implicit
factorization scheme. Embedded
subsonic regions are treated using
conservative switching operators to
transition from the supersonic
marching algorithm to a subsonic
relaxation technique. Computational
grids between the body surface and a
user specified outer boundary are
developed using an elliptic grid
generation routine. Boundary
conditions regquire no net normal
flow at the body surface and
freestream conditions at the outer
boundary which is set outside the
bow shock location. A starting data
plane is established near the nose
of the configuration to initiate the
solution. For sharp-nosed
configurations conical starting
solutions are generated while for
blunt noses a method based on the
axisymmetric unsteady full potential
equation is employed.

The geometry modeling
requirements of this method are
particularly attractive. Analyt1§al
descriptions of the configuration
are not required. Instead, 'a
surface description of a number of
configuration cross sections is
specified on a point-by-point basis.
This type of geometry information
is readily obtainable during the
early stages of a configurapion
design and allows for efficient
updates to the numerical model as
the configuration is modified and
refined. The cross section defining
points are splined by the code to
obtain complete cross section
definitions while 1;near
interpolation is employed in the
streamwise direction for marching



plane locations between the input
stations.

This full potential method
solves the entire flow field between
the body surface and the outer
boundary. Program output consists
of velocity components and pressure
coefficients at all grid points and
overall force and moment components
on the configuration.

Fighter Forebody Analysis

A fighter forebody with and
without canopy for which
experimental pressure and force data
were availablel4 was selected for
analysis. Figure 1 illustrates the
geometric details of the
configuration with the canopy.
Wireframe representations of the
forebody alone and with the canopy
in place are shown in Figure 2. Test
data were available for these two
configurations at Mach numbers of
1.41 and 2.01 for angles of attack
ranging from -6° to +12°. Although
test results for nonzero sideslip
angles are also available, only the
zero sideslip cases were considered
in the present analysis.

As noted in Figure 1, both the
forebody and canopy cross-section
shapes are ellipses and thus the
surface point definitions of the
defining cross sections were easily
and conveniently obtained £from the

equations for the ellipses. The
line of intersection between the
canopy and forebody (i.e., the

parting line) was similarly
determined.

A computational grid containing
20 points in the normal direction
and 30 points in the circumferential
direction (a 20x30 grid) was
specified for the full potential
code analyses. Typical grids for
both configurations are shown in
Figure 3. Marching solutions for
the forebody alone were obtained in
a single program run, while three
runs were required for the forebody
with canopy - one for the forebody
forward of the canopy, one for the
canopy region, and one for the aft-
body. In each case, the marching
step size was determined internally
by the code based on CFL number
considerations.

Computed pressure distributions
along the forebody top centerline at
Mach 2.01 for angles of attack of
0.49, 69, and 12° are presented in
Figure 4. The full potential code
results agree well with the data and
accurately predict the variation in
pressures associated with the angle
of attack changes. Some
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irregularity in the computed
pressure coefficients occurs near
the nose, however, and at 12° angle
of attack there i1s a lack of
agreement with the test data over
the rearward portion of the forebody
where pressure values are more
positive than the measured data.

Similar results are shown in
Figure 5 for a Mach number of 1.41
and angles of attack of 0.4°9, 309,
and 99, The full potential results
agree quite well with the test data
at a =0.4° and 39. Accurate results
were not obtained for the rear half
of the forebody at the 9° angle of
attack, however. For this case, the
20x30 grid was modified to a 30x30
grid to increase the normal grid
density in an attempt to improve the
computed results. As shown in
Figure 5, however, these results
with the increased grid density are
essentially the same as for the
original 20x30 grid. At this
combination of low Mach number and
relatively high angle of attack, the
code 1is apparently unable to
properly handle the adverse pressure
gradient along the lee side (top
centerline) of the forebody.
Decreasing the marching step size
might improve the numerical results
in this case.

As shown in Figure 5,
oscillations in the full potential
code pressure distributions occur
near the nose of the forebody. The
reasons for these oscillations were,
at present, not determined although
they may be related to the
transition from the conical starting
solution to the nonconical marching
technigque. They do not appear to be
related to a possible error in the
input geometry as they occur at
different longitudinal locations for
the angles of attack considered. As
will be shown, these oscillations
have 1little effect on the computed
force coefficients.

Comparisons of the measured

pressure coefficients and the full
potential code results for the
forebody with canopy are shown in
Figure 6. Pressure coefficients
along the canopy-forebody parting
line (line of intersection) are
plotted against canopy fractional
length for angles of attack of 0°,
6©, and 129 at Mach 2.01. In
general, the full potential code
results agree very well with the
measured data. At 129 angle of
attack, however, there is a sizable
region over the forward twenty-five
percent of the canopy where poor
agreement between the computed and
measured pressure coefficients
occurs. This lack of agreement is



most likely due to a pocket of
subsonic flow. A more detailed
calculation for the subsonic pocket
would probably improve these
results. Also note that some
oscillation occurs in the computed
pressure distributions as has been
described for the forebody alone.

Figures 7 and 8 summarize 1ift
and drag coefficient results for the
forebody alone. Similar results
with the canopy are presented in
figure 9. The full potential 1lift
results agree very well with the
measured data and accurately reflect
the nonlinear characteristics. The
drag correlation includes an
estimate of the skin friction
obtained using the T' methodl3. The
full potential drag plus skin
friction results agree reasonably
well with the measured data for the
forebody alone at Mach 1.41 but
uniformly underpredict the drag at
Mach 2.01 for both configurations.
This underprediction appears to be
related to the skin friction
estimate. Note in particular that
oscillations in the computed
pressure distributions and local
areas of disagreement between the
measured and predicted pressures did
not result in significant errors in
the computed force coefficients.

Supersonic Cruise Configuration
Analysis

Figure 10 i1illustrates a
supersonic cruise configuration for
which a set of both pressure data
and force and moment data are
availablel®, This Mach 3.0
design employs a modified arrow wing
planform with a leading-edge sweep
of 759 inboard and 60° in the wing
tip region. A chine extends aft
from the fuselage nose and blends
into the wing leading edge at the
wing side-of-body location. A
minimum drag wing twist and camber
distribution is employed for
improved supersonic performance.
Other configuration components
include flow-through nacelles
located at the 31 percent wing
semispan location, twin vertical
tails mounted atop the wing where
the leading-edge sweep changes from
759 to 60©, and a ventral £fin
mounted on the aircraft plane of
symmetry.

The model geometry was measured
on a three-axis dimension-recording
machine to obtain accurate details
of the model as tested. These
measured geometric values were used
to develop the numerical models for
the full potential code analysis
presented herein.
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The full potential code has
been used to analyze the wing-body
combination at a Mach number of 2.3
and angles of attack of -0.189,
5.819, and 11.82°. Both pressure
coefficient and force/moment
coefficient correlations between the

predicted and measured data have
been made.

Typical computational grids for
the cruise configuration are
illustrated in Figure 11. Grid
densities ranged from 25x29 to 32x61
as the solution progressed down the
length of the configuration.
Gridding was specified in two
regions with the dividing line being
the normal grid line which emerges
from the wing tip.

Comparisons of the computed and
measured surface pressure
distributions for the wing-body at
Mach 2.3 for angles of attack of
5.800 and 11.820 are shown in
Figures 12 and 13. The cross
section locations selected for these
comparisons correspond to those
previously shown in Figure 10,

At a = 5,810, the comparison
between the predicted and measured
results is excellent at station
25.53, but only fair at station
35.10. Although the lower surface
pressures are well predicted at the
more aft station, the upper surface
values are more negative than the
test data near the wing leading
edge.

The agreement for a = 11.82°
is good to fair. At station 25.53,
the predicted upper surface
pressures are again too negative
while at station 35.10, the lower
surface values are less positive
than the measured data. The reasons
for the lack of agreement between
the predicted and measured pressures
is presumed to be related to the
inability of the full potential
method to model the vortex flows
generated by the chine and
highly-swept wing leading edge.
This vortex flow intensifies as the
angle of attack increases, and the
more aft longitudinal stations see a
more fully developed vortex than do
the forward stations.

The near-constant upper surface
pressures shown in Figure 13 for the
outer portion of the wing reflect
the pressure limiting incorporated
into the full potential code. This
feature prevents the computed
pressures from exceeding the
isentropic vacuum limit, -2/Y Mg
Pressure limiting 1is implemented
through the density term in the full



potential equation solution. This
approach prevents numerical errors
which result from negative density
values developed near the wing
leading edge where the flow expands
from the lower to the upper surface.

As will subsequently be shown,
these discrepancies in pressure
coefficient result in relatively
minor errors in the computed force
coefficients.

Figure 14 illustrates the
computational grid and pressure
coefficient profile at station 47.56
where the wing wake is present along
with the outboard wing panel. The
angle of attack is 5.81°. The
representation of wakes in the full
potential code is done in an
approximate manner. The full
potential equation is not solved at
wake points. Instead the equation
(0] = 0 is solved such that the
pressure change across the wake is
approximately zero. The wake 1is
thus a transparent surface through
which flow may pass. As Figure 14
shows, realistic wake
characteristics can be obtained
using this approach.

Lift results for the supersonic
cruise wing-body configuration are
presented in Figure 15 for a Mach
number of 2.3. The agreement
between the predicted and measured
data is excellent for the 1lift,.

The T' method was used to
estimate a skin friction increment
for the configuration. This result
was combined with the pressure drag
obtained from the full potential
code to obtain the drag polar shown
in Figure 15, The agreement with
the test data is excellent for 1lift
coefficients up to about 0.15.
Above this value, the agreement is
good, although the drag is slightly
underpredicted.

Nonlinear pitching moment
characteristics are particularly
difficult to accurately estimate-
especially at the higher angles of
attack. As shown in Figure 16, the
full potential method very nicely
predicts the trend of pitching
moment with increasing 1ift
coefficient, but somewhat fails to
accurately estimate the magnitude.
Errors in the computed pressures are
evident in this case even though
compensating errors probably
contributed to some extent to the
quality of the 1lift and drag
predictions.

Overall, the full potential
code has provided accurate estimates
of both the aerodynamic loading and
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relative

the longitudinal aerodynamic
characteristics of the
configuration.

Computer Hardware Considerations

Table I summarizes typical VAX
11/780 execution times for the
configurations analyzed. Note that
all analyses were conducted using
single-precision (32-bit)
arithmetic. Also, the VAX 11/780
computer system utilized has a
floating-point accelerator.

TABLE I. VAX 11/780 EXECUTION TIMES

CPU Time
Configuration (Hours:Minutes)
Forebody Alone 0:27
Forebody + Canopy 0:45
Supersonic Cruise 4 :11
Wing=-Body
NOTE: Single-precision arithmetic

in all cases.

The VAX 11/780 is a relatively
slow machine when compared to more
sophisticated hardware, but the
execution times shown in Table I are
considered to be reasonable and
acceptable. Computers of the type
used in these analyses are widely
available in government and industry
and are relatively inexpensive to
purchase and operate. The total
cost per analysis is thus low.

The full potential code used in
these analyses was originally
developed for the Control Data
Corporation Cyber 173, 175 machines.
Conversion to the VAX 11/780 was
very straightforward, but no attempt
was made to optimize the code for
the VAX environment. Additional
work in this area would certainly
result in a more efficient code for
the VAX with corresponding
reductions in execution times.

The vax 11/780 is a virtual
memory machine. This feature allows
higher computational grid densities
to be used when necessary by simply
revising the FORTRAN DIMENSION
statements and re-compiling the
code., Fixed memory machines such as
the Cybers are limited to a maximum
grid size which may not be adequate
in all cases.

illustrates the
accuracy of
single-precision versus double-
precision arithmetic in executing

Figure 17



the full potential code. The
configuration selected for this
analysis was the forebody alone at
Mach 2.01 and 0.4° angle of attack.
The computational grid in each case
was 20x30. As the pressure
distributions in the figure show,
essentially identical numerical
results were obtained in both cases.
The double-precision case, however,
required nearly twice the execution
time. No code problems due to
numerical precision were encountered
in using the single-precision
arithmetic.

Summary

A method based on the
conservation form of the full
potential equation has been used to
analyze realistic aircraft
configurations at supersonic speeds.

A fighter forebody with and without
a canopy and a supersonic cruise
wing-body configuration have been
addressed in the Mach 1,41 to 2.3
speed range.

Predicted and measured surface
pressures for the forebody agreed
very well for angles of attack from
09 to 1209, Although oscillations in
the computed pressure distributions
were noted in some cases, the force
coefficient correlations were good
to excellent.

Good to excellent pressure
distribution comparisons with wind
tunnel data for the supersonic
cruise wing-body configuration were
obtained as well. The overall lift
and drag estimates were in excellent
agreement with the test data. The
nonlinear character of the pitching
moment variation with 1ift
coefficient was well predicted by
the full potential code although the
estimated magnitudes were somewhat
lower.

These analyses were conducted
using single-precision arithmetic on
a VAX 11/780 computer system. No
numerical problems were evident in
using the 32-bit arithmetic, and the
execution times were considerably
faster than when using double
precision. Forebody solutions
required about one-half to three-
guarters of an hour of central
processor time while the wing-body
runs averaged slightly over four
hours. These times are considered
reasonable and acceptable for a
widely available computer system
which is reasonably inexpensive to
obtain and operate. Reduction in
execution times are anticipated
through optimization of the FORTRAN
code for the VAX environment.
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The full potential code
represents a useful and economical
bridge between the linear theory and
Euler methods. Further application
and improvement of the method will
result in a reliable design and
analysis tool which can be
confidently applied to a variety of
supersonic problems.
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coefficients for the
wing-body configuration
at Mach 2.30.
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cision full potential
code results for the
forebody alone. Mach
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