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Abstract

In this paper MacCormack's 1969 explicit numeri-
cal procedure will be compared with his 1981
implicit scheme. Both methods are applied to
two-dimensional inviscid internal flow near Mach
number one. A pseudo-unsteady formulation of the
governing equations is used, although only the
steady-state solution is of interest. Conse-
quently the energy equation can be replaced by
an algebraic expression. In the case of the imp-
licit algorithm the time step size has been cho-
sen to be so large that the Courant number is
greater than unity in all spatial directions.
Thus all boundary conditions, also those at the
entrance and exit region have to be givern in an
implicit formulation. The numerical efficiency
has been measured by comparisons of the CPU-time
at a conventional CDC-Cyber 76 computer and a
CRAY1, Whereas in the case of the explicit pro-
cedure the time step size is limited by the CFL-
condition it has been found out that there
exists also a restriction for the implicit nume-
rical scheme because of accuracy requirements
and wiggles originated by the treatment of the
boundary conditions. As a result it will be
shown that a fully vectorized version of the ex-
plicit MacCormack procedure ig slightly more ef-
ficient than a vectorized implicit algorithm for
the calculation of inviseid internal flow.

1. Introduction

In recent years time marching procedures have
been developed for integrating the Euler- and
Navier-Stokes equations. Because the time deri-
vatives are retained the schemes remain of a
hyperbolic type in the whole domain whereas the
governing equations for a steady-state flowfield
change from an elliptic type if the Mach number
is less than unity to a hyperbolic one for
supersonic flow regions', Therefore time mar-
ching methods have mainly been applied for cal-
culating transonic flowfields.
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In the 1960's explicit time marching methods
had been developed(2'3). As there is no matrix
inversion required explicit procedures are com-
pact and straightforward to be computerized. An-
other property of the explicit schemes is the
simplicity of implementing boundary conditions.
Thus there exist many references about the app-
lication of explicit time-dependent finite dif-
ference schemes for calculating steady-state

flowfields in turbomachines of any kind *-*"~.

The main disadvantage of explicit procedures
is a very restrictive stability criterion known
as CFL-eondition7. A physical meaning of the
criterion can be given if one considers the cone
built by the bicharacteristics which start from
the interested point in the x,y - plane at time
level (t+At). The time step size At is bounded
by the condition that the cone must intersect
the x,y =~ plane at the former time level t in
the space between the neighboring mesh points,
see fig.1. Therefore the step size valid for the
whole computational domain is determined by the
minimum mesh spacing. Especially for typical
meshes for solving the Navier-Stokes equations
where strong velocity gradients across the boun-
dary layer cause a fine wmesh spacing the
restricted time step size can lead to very large
CPU-times. In many cases the time increment be-
comes of about two orders of magnitude less than
that required for solving the Euler equations7.

To overcome the problems concerned with
restricted time increments hybrid schemes have
been developed. MacCormack8 suggested to combine
the best properties of explicit, implicit and
characteristic methods. In the paper referred to

‘the fluid flow equations are split into several

parts, each of them being treated in a different
manner., For multidimensional problems the compu-—
ter running time can be reduced up to two orders
of magnitude.

In other investigations further attempts have
been made for solving transonic flowfields in
a more efficient manner. Because of the require-~
ment for fine mesh spacing as e.g. in the neigh-



borhood of the stagnation points of blunt bodies
multiple grid techniques9 have been developed.
Time—splitting1 offers advantages in viscous
flow problems where the spatial increment normal
to the wall has to be chosen considerably smal-
ler than in streamwise direction. Nevertheless,
the structure of those codes is very complica-
ted, and the computerization of these algorithms
needs a large amount of efforts. Therefore, sin-
ce the 1970's more and more impliecit procedures
have been used which are based on Yanenko's
method of fractional steps11 or alternating di-
rection implicit (ADI-) schemes first given by
Douglas et al'?, In both methods the time consu-
ming matrix inversion is reduced to a series of
small bandwidth matrix inversion problems in
each spatial direction. Beam and Warming ° deve=-
loped an ADI-sequence where block tridiagonal
matrices have to be inverted along each line of
the computational grid. MacCormack extended his
1969 explicit method by adding an implicit
operator . As the MacCormack scheme consists
of a predictor and corrector step only block bi-
diagonal matrices have to be handled with. The
implicit scheme has been applied for calculating
external flowfields as well as viscous inter-
nal flows ~. In the last mentioned case the imp-
licit operator has been only applied perpendicu-
lar to the wall whereas in streamwise direction
the explicit ®procedure with a Courant number
less than unity has been retained.

time level y
t+ At
X
I explicit
g I’ scheme
o stable
At Pl
P -
=TT PR
Rl | AR time
P 8 level t

explicit scheme unstable

Figure 1. Symplified explanation of the physi-
cal meaning of the CFL-stability criterion

P: location of fluid particle at time ¢
Q: location of fluid particle at time t + At
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As a difference to the requirements for sol-
ving viscous flow problems there is no need for
choosing computational meshes with very fine
spacing normal to solid boundaries in inviscid
internal flowfield applications because of the
lack of viscous terms., Hybrid schemes or par-
tially explicit-implicit schemes as used in
ref.(16) do not offer any advantages because of
the overall uniform mesh spacing. Therefore the
implicit operator has to be applied to all spa-
tial directions and it can only be more effi-
cient than an explicit scheme if the increase of
the CPU-time per step due to the matrix inver-
sion can be compensated by introducing larger
time increments. As a consequence the Courant
number becomes larger than unity also in stream-
wise direction and, thus, all boundary condi-
tions have to be given in an implicit formula-
tion. Recently, Wiedermann17 examined the effi-
ciencies of both MacCormack's explicit and imp-
licit schemes for calculating two-dimensional
inviscid flowfields in a converging-diverging
nozzle, He applied the implicit MacCormack
scheme to a pseudo-unsteady formulation of the
governing equations. In the present contribution
the authors report about their additional exper-
iences in this topic including CPU-time compari-
sons of fully vectorized versions of the schemes
at a CRAY1 computer.

2. Calculation of flowfields in Laval-nozzles

The sample calculations used in the compari-
son concern the steady-state transonic flowfield
of an inviscid fluid in a converging-diverging
nozzle. In a former publication the authors re-
ported about the influence of different throat
geometries on the flowfield and the discharge
coefficient of high-loaded nozzles18. The calcu-
lation was carried out with MacCormack's expli-
cit scheme3 and good agreement with experimental
data was demonstrated. Now the results shall be
used as reference data for comparison purposes
of the explicit and implicit MacCormack schemes,

2.1 The governing equations

In favor of a consistent formulation of the
boundary conditions along the nozzle contour a
boundary fitted coordinate system has been cho-
sen, see fig.2. In a conservative formulation
the governing equations for an adiabatic invis-
cid flowfield are given by

au  aF _ aG £R:0

-é—t--tg-g--r-a—‘n--rr [@D)]

with the matrices
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where p and @ denote the static pressure and
density, whereas Uy and u_, are the velocity com-
ponents in a cartesian re%erence frame. The dif-
ferent rows of the matrices contain the conti-
nuity equation and the two components of the mo-
mentum equation.d¥ /3x , dM/38x and g /3y are the
non-vanishing metric derivatives and J is the
Jacobian of the boundary-fitted coordinate sy-
stem given by

J,,.‘g._a_"l (3)
dx 9y

Uy) means the contravariant velocity component
perpendicular to the lines Y = const. € is set
to zero for plane flow and becomes unity for
axisymmetrie flowfields.

As suggested by Veuillot and Viviand19 the
energy equation is replaced by an algebraic ex-
pression if the total enthalpy is assumed to be
constant within the whole domain and if only the
steady-state solution is of interest. For a per-
fect gas one obtains

hyzoyt_ P _Y P U-U )
Y-1 g v-1 g 2

where y is the ratio of specific heats and hy

the stagnation enthalpy.

At the entrance local isentropic conditions
and the flow angle are given. The boundary con~-
ditions at the exit region depend on whether
supersonic or subsonic motion occurs. In the
first case no boundary condition is allowed to
be prescribed and all the variables are obtained
by applying a linear extrapolation. For subsonic
outlet flow the static pressure has to be fixed.

At the center line symmetry conditions have
to be fulfilled. Finally along the solid boun-
dary the flow angle must coincide with the slope
of the contour line.

!
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Figure 2. Boundary fitted computational mesh
for 2D-nozzle flow

2.2 The explicit MacCormack scheme

As already mentioned the MacCormack integra-—
tion scheme consists of a predictor and a cor-
rector step3. Applied to the vector form eq. (1)
one gets for the

predictor step

AU = -(Fiy-Fi )+ At/AE

L

~(Gyjy- G} )+ At/AT - AtEH) (5)
nel _ 40 n
i = Uige 84y
and for the

corrector step

A= (IR at/ag

W T

(6™ ™). -mEH (6)
(6]~ G- ALY - At EHY
Ut = U e Ul aUp )

The subscripts i and j mark the location of the
discrete mesh points in the x,y - plane whereas
n denotes the time level. Increments are indica-
ted by the symbol "AY.

At the boundaries special one-sided differen-

ce operators are introduced for the free flow
variables,

2.3 The implicit MacCormack scheme

MacCormack's 1981 published difference
schemelu is an "add-on" to his earlier explicit
method. An implicit operator 1is incorporated
into the original algorithm to provide the capa-
bility of taking larger steps than are allowed
by the explicit stability condition.
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The first step to be done is a linearization
of eq.(1) with respect to the components of the

vector ﬁ: After having introduced Jacobian
matrices A and B, defined by

A=8E 5.8 ar_@H 3
=730 ‘T @0 ‘T80

eq. (1) can be modified into a relation similar
to the wave equation:

(8

As the Jacobian matrices A and B are no diagonal
matrices the obtained linearized scalar equa-
tions are coupled. That means that all unknown
flow variables have to be evaluated simulta-
nously and, as a more difficult effect, all the
boundary conditions have to be inserted into the
complete matrix.

As a next step the Jacobian matrices have to

be diagonalized by the matrices EA and EB to
yield the form
-1
A= “AQALA iBeLBly (9)

The diagonal matrices D, and 98 contain the
eigenvalues A, of A and B. As the energy equa-
tion is replaced by an algebraic expression the
matrices consist of three rows and three
columns. L, and Ly are constructed of the left
hand eigenvectors belonging to the eigenvaliues
K1, A, , and A3 as columns, After having repla-
ced the eigenvalues through the expressions

Ap= mux(lh‘! -%—-ﬁ-—;—im
(10)
1 At
Ag= qu(llsl --i--A—i--O)

one obtains the new matrices

LAL!

IAI “8—B™B

B

LAk, 1Bl (1)

relating to the Jacobian matrices. Because j&A
and‘AB contain non-negative elements the modi-
fied matrices!Aland IBlare positiv definite.

If one applies these procedures to eq.
the implicit MacCormack-scheme gives finally:

(8}
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predictor step:

AUi?j calcul. with eq. (5)
A__ l n At n noI
(E+ AL 1A 68U AU, S 1ALUL
At “r ‘ A (12)
At ne+ nel At n ned
(£« 4 1817y euls s AL 1B1L Ul
A+l n nel
ij = Upje 8UJ;
corrector step:
Al%‘;l calcul. with eq. (6)
At A0 oo nel At a el el
(E+ REIA; heul's aulit 0 1A euT; (
13)
_A.i net nd n»} At nel_, neit
(E «+ Av ELJ)GU U‘, IQLJJBU”1
net | n nsi +1
Uij = 7+ Uiy 8ULT

with E as the identity matrix. As one can see
only block bidiagonal matrices have to be inver-
ted in each spatial direction. Following the
ADI-sequence the integration is split into dif-
ferent operators in x- and y-direction. Relating
to the forward and backward difference operators
the sweep direction for solving the set of 1li-
near equations has to be changed in the predic-
tor and the corrector step. A special procedure
suggested by MacCormack ' has been applied. The
explicit scheme has to fulfill a stability eri-
terion (given by MacCormack10)

1

lud luyl /1,1
Ax Ay (Axy (ay?

with a being the speed of sound. By adding
eqs.(12) and (13) the complete scheme remains
unconditionally stable for larger time incre-
ments,

At = (1)

An important point is a proper treatment of
the implicit boundary conditions. As most of
them in compressible fluid flow are non-linear
relations between the direct flow variables Uy
u,, pand Q a llnearlzatlon with respect to the
components of the vector T (see eq. (2)) has to
be completed for implementing the boundary con-
ditions into the linear set of equations (12)
and (13). As an example the treatment at the
entrance region will be shown. Assuming local
isentropic flow there is a linearized relation
between 5Q"*! and 6qu*! if the energy equation,
eq. {(4), and the equation for vanishing of the
crosswise velocity component is used:



[(Yol)gy-Zg]"ﬁg"“.{l;—‘ gu,} 6qu.""'= 0 (15)

All variables are normalized with the stagnation
point values.

As at the edges the block bidiagonal struc-
ture of the matrices cannot be retained special
algorithms have to be found for evaluating the
flow variables at the boundaries.

3. Comparison of flowfields

Calculations have been carried out for plane
flowfields in order to compare the results ob-
tained by -different numerical methods and on
different computers. To characterize the nozzle
geometry the radius of the longitudinal curva-
Lure at the throat is related to the half-width
and gives the dimensionless number R, . As being

nozzle geometry with Ry= 2
—— implicit method ,At*= 10
------- explicit method ,At*= 1

main flow
direction

Figure 3. Lines of constant Mach number M

shown earlier]a Rv has been proved to be the
most essential parameter influencing the flow-~
field and the discharge coefficient of a nozzle.
Geometries with Rv = 2, and Rv = .625 have been
considered,

At first supersonic condition has been assu-
med at the nozzle outlet. The field of lines of
constant Mach numbers is plotted in fig. 3. The
computational mesh consists of 61%¥21 grid nodes.
The results obtained with MacCormack's implicit
scheme are in good agreement with the data cal-
culated with the explicit scheme. The time in-
crement has been chosen 10 times as large as the
time step size allowed for the explicit scheme.
In this case the maximum Courant number was 7.5.
If the time increment is further increased the
deviation between the Mach lines obtained by the
use of different time step sizes will grow be-
cause factorization errors inherent to ADI-sche-
mes begin to influence the results. At last in-
stabilities occur, first in the throat region,

nozzile geometry
with R, = .625

implicit method, ,’__J
CFL=4 ot

s

|
main flow )
direction x

| |

Figure 4, Isobars p/pt ,obtained with the imp-
licit MacCormack scheme
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obviously caused by the present treatment of the

boundary conditions along the wall.

In a further example the flowfield in a plane

nozzle with R, = .625 will be discussed. Now the
static pressure at the exit is prescribed in
such a manner that a shock ocecurs in the nozzle
(fig.4). If the implicit procedure is applied
(At™ = 5; Courant number =
can be clearly seen in the region where the
pressure gradient is very strong and many
isobars p/pt can be found. The best way in
comparing the different two schemes for that
case shows a graph in which the Mach number

distributions along the solid wall and the cen-
ter line are given (fig.5). Both schemes repro-

duce the shock with a steep gradient. With the
first appearance of the shock wave during the
computation small oscillations occur which can
be stabilized by adding an artificial damping
term in the implicit part of the scheme. By in-
creasing the time increments firstly wiggles be-
gin to grow nearby the discontinuity. At a cer-
tain 1limit instabilities destroy the result.
Therefore it can be concluded that even in the
case of inviscid internal flow the time step
size remains bounded because of the factoriza-
tion errors and occuring instabilities due to
the formulation of the boundary conditions,

4). the discontinuity

20
M R, = 0.625
implicit method, At*=5 EA
15 o center line
- v solid boundary
10— explicit method,At*= 1
- center line
"} — solid boundary
05—
—‘___o.-.o-oo 5
"‘_VWM N
00 T T T T
0. 02 0.4 06 08 x/

Figure 5. Mach number distribution
1: length of the nozzle

4, Convergence histories of the schemes

In order to discuss the efficiencies of both
numerical schemes the square of the differences
of the density between two adjacent time steps
at every mesh point was summed up. After the
normalization by its wmaximum value the square
root has been calculated and yields

2 (gM1-
RMS = ij (ng

n 2
o)

29} -92)2
ij , L)

(16)

The symbol RMS was chosen with respect to the
definitions in earlier investigations as e.g. by
Chakravarthyzo or Casier et.al.”'.

In fig.6 log;y(RMS) has been plotted versus
the number of time steps. In all cases the
steady-state solution is approached asymptoti-
cally in form of a damped oscillation. A rather
coarse mesh consisting of 31%7 grid nodes was
chosen for calculating the flowfield in a nozzle
with Rv = 2, At the outlet supersonic flow con-
dition occurs. A dimensionless number At™ is in-
troduced as a parameter and denotes the time
step size normalized with the increment which
had been applied for the explicit difference
scheme. For the explicit scheme only 75% of the
time step size allowed by the CFL-condition had
been found to be the most efficient increment.
Here the act*ual Courant number is given by mul-
tiplying At  with the factor of 0.5. Fig. 6
shows that the required number of iteration
steps can be reduced considerably if the impli-
cit part has been added to the original scheme.

2-D nozzle flowfield
Rv s 2
31x 7 grid nodes

[
togyg At*=1: explicit method , At = At,,
RSy at’- 8 } implicit method At=8-Atey
-1y At*=16 P At =16-Atey
\F’\
\\/-\

\ 1~
-3 IRV
\At* = m\m‘ -8
-4 T T T T T
0 100 200 300 400 500 600
time steps

Figure 6. Convergence histories of MacCormack's
schemes

However, the comparison of computer times requi-
red for these examples does not provide a saving
by applying the implicit algorithm (table 1),
Although a high level of vectorization has been
achieved in both schemes the larger effort of a
single implicit sweep cannot be compensated by
larger time step sizes except the cases At >
16, As a remarkable result it can be demonstra-
ted that there does not exist a linear rela-
tionship between time increment and the number
of iteration cycles. For the case At = 20 there
is even a slight increase of required steps.
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That means that one can obtain an optimum value
nearby the Courant number of 8. This kind of the
convergence history had been also observed by
White and Anderson22 who applied MacCormack's
implicit method to quasi-one-dimensional nozzle
flows. As stated in the present paper they also
found that there exists a limitation for the
time step size due to the implicit treatment of
the boundary conditions. The wmaximum Courant
number obtained by them is of the same order of
magnitude than that here in this investigation.

R, =2, 31x7grid nodes

y number of CPU - time
Ot7= At/At., time steps (completely)
1 562 5.91
8 159 966 -
12 m 674
6 88 5.35
20 92 56

Table 1. Comparison of CPU-times at a CRAY1

In fig. 7 the residue time history is plotted
for another example with a finer, 61%*21 computa-
tional mesh., As shown above the number of itera-
tion cyecles can also be reduced considerably at
higher Courant numbers. However, a look at the
CPU-times gives a similar result as in the case
of a coarse mesh (table 2). At a conventional
CDC-CYBER 76 there is a saving of nearly half
the computer running time of the explicit
scheme. On the other hand the explicit scheme is
more efficient at a CRAY. Although in both sche-
mes a high level of vectorization has been at-
tempted the efficiency of the explicit MacCor-
mack scheme grows faster with respect to the
length of the vectors. An analyzation of the
flow trace dumped by the CRAY-processor led to
the conclusion that mainly the special algo-
rithms for evaluating the boundary conditions
prevents a better vectorization at a CRAY.

Q
Rv = 20
(ogIO .
(RMS) 61x 21 grid nodes
‘\ At*= 1 : explicit method
”I .10 At*=10:implicit method

-3

T T 1 ]
0 2%0 500 750 1000 1250 1500
time steps

Figure 7. Convergence histories of MacCormack's
schemes

In table 3 a comparison of the computational
efforts for a single time step per mesh point is
given. In both cases there is an immense saving
of computer running time at a CRAY in comparison
with the CPU-time at a CDC~CYBER 75. It can be
also seen that for the CRAY1 the explicit scherne
becomes more than twice as fast as the implicit
scheme. The absolute values of the calculation
times are similar to the figures obtained by
Kordulla23 who also compared the efficiencies of
the MacCormack schemes at different computers.
But opposite to the present paper his work is
concerned with external viscous flow problems
and he only applied the implicit operator nor-
mally to the wall, whereas the Courant number
remained less than unity in streamwise direc-
tion.

At last the influence of the total number of
mesh points on the required CPU-times per step
per grid node shall be demonstrated, fig. 8. The
CPU~-time necessary for the implicit difference
scheme is normalized with the corresponding
value of an explicit method. The graph de-
monstrates the tendencies of the computational

numerical time step Number of CPU - time CPU - time
method At time steps (CDC),sec. | (CRAY1),sec.
explicit 0002 1437 368.2 16.56
implicit 002 210 217.2 26.83
Table 2. Comparison of CPU-times at a CDC-CYBER 76 and a CRAY!1 51x21-gﬁd nodes
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effort with growing mesh point numbers. Whereas
there is a negative slope in case of a conven-
tional computer the relation between the running
times of the implicit and explicit scheme grows
considerably if using a vector computer. As men-
tioned above the special treatment of the boun-
dary conditions by applying the additional imp-
licit operator is mainly responsible for the un-
favorable development of the vectorization le-
vel,

method cDC CRAY1

explicit 200-10°° 09.10°°

implicit 81.0.10-° 10.0-10-5
Table 3, Absolute CPU-time per time step and

per mesh point.

CPU
104 X/CRAY 1
(fully vectorized)
PN
57 ~~~s..__CDC-CYBER 76
0 t +
0 1000 2000
number of
grid nodes
&PU 2 CPU(impl.Mac Cormack scheme )
CPU(expl. Mac Cormack scheme )
Figure 8. Relation between CPU-times of the

implicit and the explicit HacCormack schemes
versus number of time steps

5. Conclusions

In this paper a comparison between MacCor-
mack's 1969 expliecit scheme> and his 1981 impli-
cit time marching method has been carried out.
Both methods have been applied to inviscid two-
dimensional nozzle flow. In the case of the imp-
licit algorithm the time step size has been cho-
sen to be so large that the Courant number is
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larger than unity in all directions. Of course
all boundary conditions, also those at the ent-
rance and the nozzle outlet have to be formula-
ted in an implicit manner. At the exit the flow
might be alternatively supersonic or subsonic.

As a conclusion it has been found out that
the time step size is also restricted in the
implicit procedure mainly due to the following
points:

1.) The introduced ADI-scheme yields to an ad-
ditional approximate factorization error.
2.) Further errors are introduced by lineari-
zing the nonlinear boundary conditions.
These can cause convergence problems and
even instabilities.

Comparisons of CPU-times at a conventional CDC-
CYBER 76 and a CRAY lead to the conclusion that
the explicit MacCormack scheme is slightly more
efficient than the implicit scheme. As an impor-
tant result it has been observed that the expli-
cit scheme becomes more efficient if the number
of mesh points is increased because the special
handling of the implicit boundary conditions
prevents a better vectorization. In addition the
explicit scheme is easier to be computerized
whereas the vectorization of the implicit opera-
tor is very elaborate especially due to the imp-
lementation of the boundary conditions. Thus, it
can be concluded that the explicit scheme is
more efficient for calculating two-~dimensional
inviscid internal flowfields.
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