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Abstract

This report explains the application of the finite-
element method to the weight-optimal design of
harmonically excited structures with viscous damp-
ing. The following constraints can be taken into
account: Maximum stresses in the elements, maxi-
mum accelerations and maximum deformations at the
degrees of freedom. The optimization task is sol-
ved according to the fully-stressed design and the
gradient method. Both procedures can be treated
one after the other in one calculation process.
That way the advantages of the rapid initial con-
-vergence of the fully-stressed design are combined
with the mathematically exact optimization accord-
ing to the gradient method. The described procee-
ding leads to good convergence.

One important advantage of the gradient method
concerning structural dynamics, in particular, is
founded on the fact that further constraints can
be introduced into the program in a simple way.
Experiences have already been made with the con-
straint "minimum natural frequency of a system"
and, in the field of wing design, with the con-
straint "minimum flutter speed".

The dynamic optimization program DYNOPT was app-
lied to the AEROS satellite. Compared with a ver-
sion manufactured for the structural test weiéht
savings of about 20 % could be achieved. The con-
sidered mathematical model consists of 18 degrees
of freedom and 21 elements. The number of the used
constraints amounted to 57. The final result was
achieved after 30 iterations.

* This research was supported by the West German
Ministry of Research and Technology
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I. Introduction

A1l optimization methods mentioned in the litera-
ture are iterative procedures; this means that the
optimum structural design which meets the require-
ments can only be achieved by a sequence of iden-
tical calculation operations. Good convergence be-
haviour and economic efficiency are the prerequi-
sites for the applicability of a procedure to a
structure optimization task. The procedures which
by now have largely been used for static problems
were examined from these points of view. It is the
objective of this work to show the application and
enlargement of these procedures to dynamic struc-
tural problems.

Basically, there are two types of optimization me-
thods:

a. Procedures based on optimality criteria

b. Mathematical procedures.

With the methods mentioned first, criteria are
elaborated which, according to the engineer's ex-
perience may result in a favourable structual de-
sign which, however, does not necessarily repre-
sent the optimum. The optimality criterion is sup-
posed to supply a structural design which is also
sufficient for the purposes of the design engineer.
Among. the number of procedures working with opti-
mality criteria the fully-stressed design is suit-
able for the optimization of dynamically excited
systems.

As a mathematical procedure, the gradient method
is mentioned which linearizes the. optimization
problem step by step. On this basis the optimiza-
tion task can be represented mathematically exact.
The weight function which is to be minimized, and
the constraints are processed together in each



iteration step by means of the simplex algorithm.
The obtained optimum is exact within the scope of
the desired accuracy.

II. Assumptions and Basic Equations

The task consists in designing harmonically exci-
ted structures with viscous damping that are opti-
mal with respect to weight. The constraints re-
quire that neither the maximum acceleratjons and
maximum deformations at the degrees of freedom nor
the maximum stresses in the elements may be excee-
ded. The design variables are the element stiffness
values and the damping values. The geometry of the
system remains unchanged in the course of optimiza-
tion, i.e. the elements do not disappear. The
damping values may, however, assume any positive
value or even become zero. Because systems with
arbitrary viscous damping (dashpots) have to be
calculated, the frequency response method is suit-
able for the determination of the dynamic respon-
se.

The equations of motion may be expressed as fol-
lows in the form of matrices:

M-g (t) + C-q (t) +Kg (t) = R _(t), (1)

with M as mass matrix, C as damping matrix, and K
as stiffness matrix. The vector g (t) contains the
time-dependent displacements of the system. The
vectors § and é_gg) are the derivations with re-
spect to time of the deformation vector g (t).

The structure is excited by a harmonic force.
R (t) = Ry e’ (2)

In the steady state the system response is also
harmonic and given by the frequency of excitation.

a(t) = rpe'™® (3)

with r, as the complex reSponse amplitude vector.

This vector is calculated according to the fre-
quency response method:

_ o1
o =L Ry (4)

with the impedance matrix:
Z=K-0>M+iaC (5)

The maximum values of the accelerations and defor-
mations which are important for the problem can be
determined by means of the statement of motion (3).

The maximum stresses are related to the respective
element coordinate system and result from the
equation:

K=

= -D—.I.ro’ (6)

with D as difference matrix containing the values
r z

rd
1Q-provided with signs (E = modulus of elasticity,

1J= length of the elements) for the j-th tension-
compression bar, for example. The matrix T estab-
lishes the relation between the basis and element
coordinates.

The system matrices M, C and K in (1) result from
the superposition of the respective element matri-
ces. They describe the inertia, damping, and
stiffness distribution in the structure. Since the
stiffness and damping values represent the varia-
ble design quantities, the system matrices have to
be established anew after each improvement of the
structure.

The system mass changes also from one iteration
step to the other together with the design variab-
les. In the case of a diagonal mass matrix M for
a system composed of bars the masses concentrated
in the knots have the quantity: ‘

4 1 . - L]
M= Moi * 7 2 (pyrAyrkyyteg G &
with o = material density
A = cross-sectional area

The index j characterizes all elements joining in
the i-th knot. The device masses which are inva-
riable in the course of optimization are referred
to as m.. vy and v, designate mass transmission
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factors which indicate the ratio of the design
element mass to the theoretical element mass.

III. Preliminary Layout According to the
Fully-Stressed Design

The procedure of the fully-stressed design is ba-
sed on the assumption that the structural weight
is minimized when the permissible stresses in the
individual elements are optimally used. A mathe-
matical formulation for the weight minimum can not
be introduced in the calculation process. The meth-
od of the fully-stressed design may be applied to
dynamic problems. However, only constraints can be
considered in the element stresses, and, as de-
sign variables only the cross-section values are
available. The acceleration and deformation con-
straints with simultaneous damping variation can
only be observed in separate calculation processes.
In general, the convergence is good, it grows wor-
se, however, with the structures becoming more

- complex. For these reasons the fully-stressed de-
sign is used only for a preliminary optimization
of dynamically stressed structures. The element
cross-section values A are improved corresponding
to the ratio of the existing stresses to the per-
missible stresses according to:

g .
alvtl) o alv) .‘(f.i_y.(m(v)) with 1,0<8<1,2 (8)
J J % zul -
for the j-th element in the v-th jteration step.
The rearrangement of the forces in statically in-
determinate structures is taken into account by
the exponent 8 which influences the convergence
speed. For values g8 > 1.2 the cross sections may
oscillate violently with the iterations; or diver-
gence may occur. The same may happen in applying
the fully-stressed design when the structural Tay-
out is not far from its weight minimum.

IV. Improvement of the Structural Design
According to the Gradient Method

The dynamic response of an excited structure de-
pends on the size of its stiffness and damping va-
lues k and c. for the i-th degrees of freedom and
the j-th element this results in:,

95  =a;  (kpscp)

Tmax max

9; =g m applies to (9}
max Tmax (ks cm) all elements

o) = O

Imax me(%ﬁcw

The structural weight is a function of the design
variables:
W=W (km’ cm) (10)
The changes of the dynamic response in dependence
of the design variables improvements dx can be ex-
pressed in an abbreviated form as follows:

da; = (va)® dx (11)

The requirement that accelerations, deformations,
and stresses must not exceed fixed maximum values
leads to the constraints system:

. . t .
)+ ()T () ¢ 9zu1

t
a4 ()T ) g

zu1 (12)

t
o)+ (o)) )

The following equation applies to the weight func-
tion accordingly:

w(V+1) = w(V) + sz)t . é§‘v+l) L Min. (13)

The index (v+1) stands for the (v+l)-th iteration
step.

The deformation gradient is obtained by applying
the V-operator to the relation (4).

ory = - (Efgzﬂfigg)_l-(VE-QZVM+iQVE)’ro (14)

According to the equation of deformation (3) the
acceleration gradient is determined by:

q = - 2 yr, (15)
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and, according to (6) the stress gradient results
in:

yo=D-T-.gr

(16)

The number of lines of the gradients is equal to
the number of the respective constraints, the num-
ber of columns is given by the number of the de-
sign variables.

The size of the gradient system can be reduced if,
during the calculation process, a difference is
made between the active and passive constraints.
In this case, the constraints, having only little
or even no influence on the system layout, are
eliminated at each iteration step. The active con-
straints are selected from the overall constraints
system by the transformation:

b (9, va, W)t

(1xm)

|en

(17)

(nxm) (nx1)
In this equation, §F is a Boole's matrix whose
number of columas 1 represents the total number
of all existing constraints, and whose number of
lines n corresponds to the number of the active
constraints. The matrix QF is the reduced gradient
whose number of columns m indicates the number of
the design variables.

In its final form the restriction system can be
described as follows:

(17)

Ax is the vector of the unknown changes of the de-
sign variables. The indices 11 and ul stand for
"Tower 1imit" and "upper 1imit". The vector r con-
tains the greatest possible increases of the 1imi-
ted values in the respective iteration step.

In the next step the weight function (13) is mini-
mized while the boundary conditions defined in
(17) are observed. To this end, the Simplex algo-
rithm is used.

The applicability of the simplex procedure depends
on the following conditions:
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a) More variables Ax than equations must be
available.
b) The variables Ax must be greater than or

equal to zero.

Condition a) is not met only if the system is sub-
Jjected to too many constraints which consequent]y
leads to the incompatibility of two or several '
constraints. A solution to this problem is the ex-
amination of incompatible constraints within the
restriction system in order to eliminate them.

Condition-b) is always met by means of a trans-
formation.

0< (18)

&l

<

A%y - AXqy with AX = Ax - Axy,
The true values of the changes of the design va-
riables result from the re-transformation of 2x.

In the case of a geometkica] interpretation of the
Simplex algorithm the restrictions represent the
planes 1imiting a space of permissible solutions.
The origin of coordinates must be included therein,
according to the requirement that the solution
point components assume values that are greater
than or equal to zero.

The object function - in the present case the
weight function - is a plane which is shifted
against the space of the permissible solutions
while the direction of its normal vectors remains
the same. The direction of the shift results from
the requirement of a minimum value of the object
function. The solution is reached when the object
function will touch the space of the permissible -
solutions in one of its corners.
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FIGURE 1 - Geometric Description of the Simpiex
Algorithm

After the run of the Simplex algorithm the design
variables and the structural weight will be corec-
ted:

PO L E ) g (D)
Cj(v+1) Cj(v) . ch(\,+1) (19)
w(\)+1) w(v) + Aw(v+1)

The iteration procedure is concluded once the opti-
mum has been reached. Here, it is necessary that
the weight changes by no more than one given per-
centage in the case of a monotone approach to its
minimum.

V. Seguence of Operations within the
Optimization Package

The gradient method and the "fu]ly—stressed de~
sign" are combined with other computer programs in
a mathematical optimization procedure. Fig. 2
shows a rough flow diagram. For each new system
configuration one run through the great iteration
loop is performed. This iteration loop includes
the drawing up of the improved system matrices,

a dynamic analysis, and an evaluation of the ei-
genvalues in which the actual values are cal-
culated. The loop also includes one of the descri-
bed optimization procedures. The calculation is

conc]uded with the question for convergence. The-
reupon either another iteration step is made or the
calculation is concluded, provided the accuracy is
adequate.

The calculation run,which begins with a set of
initial values for the stiffnesses and the damp-
ing coefficients,is fully automatic. Any inter-
ventions of the user are not necessary.

START
ORGANISATION

MASS-, DAMPING-
AND STIFFNESS-
MATRICES

[ DYNAMICAL ANALYSIS |

EIGENVALUES

WEIGHT

CONSTRAINTS

- [SIMPLEX-ALGORITHM _ |

¥___________

[ IMPROVED DESIGN VARIABLES |
NO
YES

FIGURE 2 - Diagram of DYNOPT Calculation

VI. Application of the DYNOPT to the
Satellite AEROS

The program DYNOPT has been applied to two calcu-
Jation models of the satellite AEROS. These are
the longitudinal vibration models with 8 and 18
degrees of freedom respectively. Due to symmetry
the calculation can be carried out with one half
of the system, i.e. in the following diagrams
only one half of the structural weight is given.
Apart from the number of the degrees of freedom
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the two systems also differ in their structure.
The model of 8 degrees of freedom is statically
determinate. A11 spring-mass-chains are open. The
model with 18 degrees of freedom has 3 self-con-
tained spring-mass-chains and is statically in-
determinate. Fig. 3 shows the aeronomy satellite
AEROS and in Fig. 4 a graph of the mathematical
model with 8 degrees of freedom is given.

\ Antennen

Sonnenzellen Antennas
Gegenspannungsanalysator Solar Cells
Retarding Potential Analyzer

EUV—Spektrometer
XUV Spectrometer

Massenspektrometer
Mass Spectrometer

Jojo—Entdralimechanismus

/Neutral Atmosphere Temperature
Experiment NATE (NASA)
Yo—Yo Despin Mechanism

Hydrazintriebwerk
Hydrazine Powerplant

FIGURE 3 - Aeronomiesatellite AEROS
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FIGURE 4 - 8 DOF model of the satellite AEROS

The damped system is pre-optimized according to

the "fully-stressed design" and its weight is op-
timized by means of the gradient method. The
"fully-stressed design" allows only the stiffnesses
as design variables. Fig. 5 shows how fast the
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stiffnesses change with the iteration steps.
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FIGURE 5 - Cross-sections of some elements

In Fig. 6 the changes of the normal stress in ele-
ment D are shown. This element is the only one in
which the permissible stress of 10* N/cm? is rea-
ched.
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FIGURE 6 - Stress in element(@®

Fig. 7 shows the weight changes above the iteration
steps. The structural weight approaches in monotone
convergence its optimum which is reached already
after 9 iteration steps. The weight savings amount
to about 20 %.
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FIGURE 7 - Weight of one half of the satellite
AEROS

The following diagrams include the results of the
optimization calculation with the mathematical
model with 18 degrees of freedom. Only the gra-
dient method was applied. Here, 36 stiffness va-
lues and damping coefficients are variable and 51
stress, deformation, and acceleration constraints
are given. The system is excited in its respective
fundamental -frequency by means of harmonic forces.
In order to reduce the number of calculation pro-
cesses an activation 1imit of 20 % has been intro-
duced. Thus,only those restrictions are used for
which the described value is 20 % greater than
permissible. Compared to the calculation with the
model with 8 degrees of freedom the permissible mi-
nimum cross-sections have been increased so,that
the calculation produces cross-sections that are
compatible with the design. Furthermore, reduced
permissible stresses are calculated with in order
to design the elements according to the criteria
of stability. Both measures lead to a somewhat
higher structural weight.

Fig. 8 shows the mathematical model with 18 de-
grees of freedom which is used for the satellite
AEROS.
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FIGURE 8 - 18 DOF model of the satellite AEROS

With each element which is identified as spring a
damper 1is also connected in parallel.

Since the accelerations and deformations are far
below the permissible limits only some of the
stresses are shown as example in Fig. 9.
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FIGURE 9 - Stress in elements (D to ®

The stress of element (D) is slightly higher than
the permissible maximum value of 10* N/cm? and
oscillates only within a very limited range. This
phenomenon sometimes occurs if several constraints
are exceeded simultaneously, especially in stati-
cally indeterminate systems. This is due to the
fact that in the closed circuit systems of springs
and dampers the weight is constantly shifted.

In Fig. 10 the curve of the fundamental frequency
is plotted above the iteration steps.
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FIGURE 10:- Lowest fundamental frequency

As already seen in thé case of the stresses the
system starts to stabilize with the 30th iteration
step. The subsequently occurring changes of the
system responses as well as of the design vari-
ables are insignificant.

Fig. 11 shows the curve of the weight changes
which is plotted above the number of iterations.

The values decrease monotonously and approach
thus the minimum.
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FIGURE 11 - Weight of one half of the satellite
AEROS, 18 DOF

The convergence is good. Numerical difficulties
did not occur. The weight savings as against the
first realistic structural design amount to about
25 %.

VII. Conclusion

A description was given of a general optimization
procedure for the weight-optimal design of dynami-
cally excited structures with which large-scale
optimization calculations are carried out for sa-
tellites.

The basis of this method, i.e. the "Finite-Ele-
ment-Method" and the "Gradient-Method”, allows the
extension to any number of element types. In addi-
tion to constraints concerning accelerations, de-
formations, and stresses, other constraints can be
included. Thus, weight optimization calculations
under constraints concerning minimum natural fre-

- quencies were carried out in individual examina-

tions. In the field of wing design for aircraft
wing boxes were designed with an optimum weight

“in consideration of statical and aeroelastic con-
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straints. The integration of the mentioned con-
straints into the entire program is easily possi-
ble.



