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Abstract

Mathematical difficulties in confidence li~
mits calculation for three-parameter Weibull
distributions may be evaded by the use of
discrete error distribution formulae. Error
distributions are generated from all possible
combinations of 4 or more specimens of the
test run, or -~ upward from 8 piece runs =

by a special Monte Carlo process,

Ranking accuracy and low-cycle safe
life investigations are being done in three
ways: ranking formulae have been compared,
reciprocal binomial fatigue life distributions
and cross-plotting between different stress-
-levels for the complete W8hler curve have
been ftried,

Notation:
a constant
b constant
i rank order of test piece
j number of test pieces being evaluated
k number of possible combinations
n total number of test pieces
P failure probability density
P discrete scatter probability density
1
x aln(Ni-NoI)from Eq.(15)
v ln( Ni-NOI )
N number of load cycles to failure
No minimum fatigue life
N 100 maximum fatigue life

failure probability
scatter probability
Weibull shape parameter

scatter parameter, in ( 10 ) scale para-
meter

minimum life ratio
skewness parameter

average inaccuracy 2
normal stress N/mm

N/mm2

Ao ™ R QW

ultimate tensile stress

Subscripts:

i i-th in order

j wéighed for a number of specimens j
w as calculated with Weibull distribution
P at failure probability P

1, INTRODUCTION

Cycles to failure values for a fatigue
test series are always received - by the
very nature of the work - in the form of a
discrete sequence, Against this, basic theo-
retical and practical considerations require
working life - failure probability relationships
to be of the continuos type., There is a fair
assortment of mathematically well-proven pro-
cedures for t{reating each of the respective
distribution categories separately (see e.g.(l) )
but transitions of the type required here are
to be made by means of the more or less

voluntary process of ranking.

Interesting as these problems are, re-
searches reported on in the present paper
have been motivated not so much by theo-
retical but by primary practical considerations.
Improving on current confidence limits calcu-
lation procedures has been one of them. In
addition, there are the correlative problems
of test series irreguarities, ranking accuracy
and analytical smoothing of the W&hler curve,
We have tried to get one step shead in them
by investigating what would haﬁpen if transit-
ion from the discrete probability treatment to
the contiuos distributions would be made not
at the first step but somewhat later in the

calculations.
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2, CONFIDENCE LIMITS CALCULATIONS
FOR WEIBULL DISTRIBUTIONS

2,1 Weibull Statistics

From among the probability distributions
presently in use for smoothing of faligue test
results the author is preferring the so-called
three~parameter Weibull type. Basic properties
of Weibull distributions are well known { see
e.g. Johnson 2) ana Amstadter(s) ) but full uni-
formity in practical details of calculation pro-
cedures and in formulae has not been reach-
ed as yet(4 . Theoretical as well as practical
reasons are strongly recommanding concent-
ration on determining the minimum fatigue life
Noas exactly as possible..lts physical reality
has been re-emphasized a few years ago
by Freudenthal 5 and our own practical ex-
periences, too, are speaking for it. Following
his nomenclature the equation for the three-

~parameter Weibull distribution reads(e):

piN) - 1- xpf-{§ =N} (28)

Personally we are prefering a slightly

modified form:

pin - 1-axpf- (N1 (19)

and this will be used in the following,

In Eq. (1a) B is for the scale parame-
ter, i.e. for the P=63.2 % failure probability
fatigue life, We are marking the scatter para-
meter with ﬁ; a point of view justified in
our opinion not so much by & simpler formula-
but by conformity with the discrete type dis-

tribution functions to be spoken of later.

For ease of calculation Weibull distribu-

tions can be put in the form:

e ) g U DA

where the minimum life ratio, in our notation

£t - (3)
P

is a good first estimate of the statistical fa-
tigue behavior, Eq. (2) is giving by double

logarithmic transformation

0 in oLy = <InIN-N)- <inp ()

being a straight-line relation for the correct

value of the minimum fatigue life No.

Fatigue test series life sequences do
not fit in correctly with this function necessi-
tating smoothing e,g. by least squares pro-~
cedures, Our computer programs are working
on the principle of shkaight-line fit indicated
by .the maximum value of the correlation co-
efficient, This way a most likely combination
of parameters o ﬁ and N0 is worked out,

2,2 Analytical Confidence Band Calculations

Reliability of the best fit parameter com -
bination may always be open to question and
this is accounted for by appropriate confi-
decence limits, The customary analytical pro-
cedures for this purpose are setting out from

two interconnected basic assumptions:

a/ if the number of test pieces could be in-
creased to infinity then the experimental
life distributions would hold to a perfect

Weibull type one;

b/ irregularities in the finite experimental life
distributions are therefore to be explained
entirely by the random order of test pieces.

Assumptions a/ and b/ may be set forth
and formed into analytical formulae using
standard reliability resp. extremal statistics
procedures, For a given or known set of
parameters the method can give exact re-
sults 6) not so however in the much more
frequent case of individual fatigue test series
evaluation, Basic mathematical difficulties are
restricting here the universal solution essen-

(2)

and others are working with zero

(8

the fest fit & to be the correct value, etc.

tially to the two-parameter case.So Johnso
McCool ’
minimum fatigue life, MArialigeti*™/ is assuming
Amstadter(3> is going another way: he is
accepting the correctness of No and plotting

the experimental points to the higher failure
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probabiliies corresponding to tle respective

confidence level,

All these analyﬁcél procedures are giv-
ing confidence limits as function of the num-
ber of specimens tested and of Weibull para-
meters only, regardless of the good or bad
fit of experimental points (see assumption
a) ') This view can be accepted if and only
if convergence to the ideal distribution can
be proven for each individual case. Sorry
to say, a try done by the author has shown
in some way inconclusive results even when

working out averages for a couple of test

sem'.es(9 It has been therefore undertaken
to develop a confidence bounds calculation
procedure applicable without restrictions to
the three-parameter case and to imperfect

distributions, too,

2,3 Discrete Confidence Limits Procedure

Our provable individual knowledge of a
given series of specimens is actually limited
to the measured fatigue life values, In this
abstract academic sense no further statements
not even & maximum likelihood smoothing
would be correct, so there is clearly a need
to agree upon some auwxiliary hypothese
acceptable to common sense and compatible

with practical experience,

In view of the difficulties concerning the
proof of the Weibull convergence postulate
we can fall back upon postulating the set
of specimens tested to be a fair representat-
ive of the whole lot the qualification of which
the testing has been intended for, This agree-~
ment authorizes the smoothing of results
albeit for lack of further investigations with
the possibility of incorrect extrapolations. Fur-
thermore, we can generate an error proba-
bility distribuﬁon for whatever fajlure proba-
bility level by observing the errors we would,
made against the full series result if testing
had not been made on the whole series of
specimens,In other words, we can extrapolate
to the higher number of pieces of the whole
lot by a systematic observation of going back

to part of the series tested,
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Let us leave out a single piece from a
series of n specimens, All of them are equi-
valent in .this respect, so this can be done
in n different ways, i.e, for each of the spe-
cimens, If j is the numer of pieces left from
a series of n specimens then the number k

of possible combinations is:

kini)=() (5)

At least 4 specimens are needed for a
Weibull evaluation to be of any significance,
Upwards from this all possible combinations
should be worked out, Each of them gives
after Weibull smoothing a fatigue life value
for every failure probability level P we in~

tend to investigate.

Debatting the uniqueness of the sample
size j as a measure for the probable error
does not mean discarding it wholly as such
at the same time.. It has to be the dominant
parameter in every confidence band formula
and in a case, as ow's is, when an error

distribution is formed from series of mixed

sizes, allowance has {to be taken for this,

too,

Individual

meter Weibull distributions are weighed by

scatter points for three-para-

j=3. The resulting composite scatter picture

is incorporating irregularities of the sample
lot, too, In this respect it is giving an un-
biassed picture of the whole, at least as far

as the sample series is representative of it.

Full

evaluation for each wvariant is a lengthy pro-

combination with individual Weibull
cess, even for present-day computers, We
have restricted its use therefore to runs of
up to and including 7 pieces. For the larger
runs we are using a special Monte Carlo
process, In this procedure the total number
of partial sequences is limited to say 100
while their relalive number is held to that

corresponding to Eq. (5).

An example of how this works out in
practice for a moderately irregular 9 piece
test series at the 10 % failure probability

level is given on Fig, 1. Calculation of the
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Figure 1:

Discrete Scatter Density at 10 % Failure Probability Level

scatter probability 9 from the discrete scatt-
er density p is a straightforward process

as is the working out of confidence limits.

The method is also applicable to fatigue
life comparison problems as on Fig. 2 for
lots A and B. The confidence number for
superiority can be

ard reliability methods,

worked out by stand-
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Figure 2:-

Comparison of Two Lots for Fatigué Life

Our confidence limits calculation pro-
cedure is the result of several years of de-
velopment, It has been used in its final form
many t{imes and practical experiences are

most encouraging so far.
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2.4 Goodness of Fit Control

Although strictly speaking a subject out-

side of confidence limits calculation, some
words are to be said here about individual
test series regularity classification, too. Con-
fidence bands are good for giving scatter
boundaries but for other purpoéés a single
qualifying number concerning the regularity
of the sequence comparative to the smoothing

function is also needed.

Formerly we used the so-called weighed
inaccuracy number derived from the Weibull

(9).

correlation coefficient for this purpose
Recently the problem of comparison between
different smoothing functions has also arised,
We had therefore to change over to the mean
square type equation giving the average in-

accuracy as

A=Yy

(L3)

(6a)

This error number too, can and has to

be weighed for the size of the lot j:

“—3 Zj"le'Ni
A" 5) 0N,
=t

(6b)

In the following this type of inaccuracy

number will be used,



3, THE RANKING PROBLEM

8,1 The Need for Reliability Percentage
Ranking
In every case when a discrete series of
test data, e,g. of fatigue lives, is to be

smoothed and eventually extrapolated by some
continuos type distribution function it is ne-
cessary to assign discrete probability levels
to each of the measuwred wvalues., Several
formulae are known for this purpose giving
slightly different values to the ranks. Fortuna-
tely, for lots of at least medium siies there
is no danger of gross errors because of
this, Nevertheless, possible errors may over-
shadow details of trends in convergence, in
stress level influence, etc.,, making the cor-
rect freatment of some advanced topics diffi-

cult if not impossiblé.

By the very nature of the problem, there

is no possibility of a direct proof by experi-
ments for one of the respective formulae, We
" have therefore ftried to get some numerical
data on the magnitude and on trends of rank-

ing errors by comparing different formulae,

3.2 Ranking Formulae and Relative Errors

Perhaps the most accepted equation for
assigning the probability level P’i to the i-th

item in a series of j specimens is:

i (7)

When working with normal distributions it
is customary to use mean ranking as given
by

i-0.5
R== (8)

Schott et al.(lo)

formula worth of consideration: !

are listing an empirical

p=-3-l (9)V
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Miilter (22) is using:

=0
+0.

w

R= @o)

—
»
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The author has developed the following
empirical ecuation to start the iteration process

for the median rank determination with:

a-[(1+%%)j-}i- Ny %5.]/(34,.3%) (11)

Probability theory is giving for the median

ranks the implicit relation:

£0) o) wos

According to reliability mathematics the

(12)

correct process for statistical evaluation of
discrete test data is by median ranks. If this
view should turn out in the investigations to
be exact
between Egs. (7-11) and Eq., (12)

in every respect then differences
would
turn into absolute errors. While not committing
ourselves to this as a final view we have
out magnitudes and '

nevertheless worked

trends as basis for comparison. Maximum
differences for lots of j=3~50 pieces are as

on Fig. 3.

In doing this a quite practical 6bject,

too, has been sought, Median rank tables

are not very numerous in the available li-
4,

terature; the ASTM standard proposa and

Johnson2 give a 4 digit table up to j=20, The
reliability table for 50 percent confidence in
the handbook of Amstadte 3 is applicable
only to early failure problems and above
=20 to round lot sizes. We have worked
out a 5 digit table up to j=100, it is to be
mimeographed in limited numbers soon. Mo-
dern developments, as e.g. unified parametric
evaluatior ° or unified Wodhler curve fitting,
may require still higher number of specimens
to be ranked collectively. In principle our
computer programs are capable of handling
it but computer time is gradually becoming
prohibitive and storing them is occupying too
much memory space. In such cases a simple
approximate formula having acceptable error
levels would give us badly needed help, Let

us examine therefore trends in this respect.
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Figure 3:

Relative Errors of Ranking Formulae

From the first two formulae Eq. (8) is
giving better results, In case of manual plott -
ing without a pocket calculator this one is
to be recommended. From among the two va-
riante of medium complexity Eq. (10) is
astonishingly good. Eq. (11), the starting
first approximation in our median rank com-
puter program, is going a step still further
but at the price of some complexity. Its use
is reasonable for older desk computers or
for programmable pocket calculators, In the
whole, ranking differences respective to the
median ranks do not give concern because

of gross inaccuracies,

4, FATIGUE TEST EVALUATION BY
RECIPROCAL BINOMIAL DISTRIBUTIONS

4,1 Basic Concepts

Weibull smoothing of our test results has
_regularly shown an annoying trouble: for me-
dian life values below about 60,000 computer
programs. were unable to give any positive

safe life value No 9) and in a representative

560

low-cycle case a distincily non-Weibullian
behavior could be proven by progressive
data accumulation simulation, The physicalA
existence of a minimum fatigue life is obvious
for all stress levels below ultimate but arbitra-~
ry fixing of some convenient value for it
would break the otherwise well-founded prin-

ciple of maximum correlation,

It has been decided on investigating the
problem in detail and ftrying to eventually
improve on it by switching over’to a more
flexible distribution type, Handbooks on app-
lied mathematics { e.g, Ref.(1) ), on reliability
(see Ref, (3)), on fatigue (as Schott et
al.( 10)) and papers (e.g. Miiller( 123 list
several statistical functions to choose from.
We are intending to make a multiple compa-
rison between them for probable average
errors but first of all, the possibility of using
some sort of discerete type statistical distri-
bution had to be examined, This decision
has been motivated by the intention to get
in addition complementary data on the rank-

ing problem, too.

Prospective candidates have been selec-
ted by several aspects, They should:
- give a safe minimum faﬁgue life;
-~ have some phisical motivation;
- be unimodal;

- be as simple as possible.

Providing maximum life value, too, is
regarded a welcome option but not absolutely

essential,

Preference from among the variants test-

ed will be given to the one

- giving an average inaccuracy generally
not worse and for low-cycle work sub-
stantially better than the Weibull distribu~
tion;

- passing the progressive data accumulation

simulation test,

The eventual final acceptance of a new
type distribution function will depend on se-

veral years of favorable practical experience,

First of all, our attention has been drown

to the binomial distribution, If after passing



a safe life of N0 load cycles failure probabi-

lity would follow the binomial model then
differences in individual fatigue lives would
form a reciprocal binomial sequence, In equa-

tion form:

N~ N, -a[(iL) #"‘(1-17)1'-“1]—1 (13)

with the skewness parameter 0<H <1, If a
given sequence of test results has to be
smoothed by linear regression we can refer

to the full formuia derived from Eq. (13):

N=No = ag[(%)o"‘h_‘”,_m]—t

Variants of the Method

(14)

4,2

For 4%%0,5 Eq, (14) can be regarded

in some respect as a discrete counterpart
to the normal distribution, This and the mo-
derate success;' of our first trials using it
~led to the investigation of a second variant
modelled to a certain extent as a skewed
and discrete lognorm statistics with minimum
fatigue life, The physical interpretation of
this form would be that after passing beyond
the safe minimum life the distribution of ad-
ditional cycles to failure ratios is following

the reciprocal binimial law. In the general

m=0'

case this leads to the somewhat unusual
form:
ey PO e
In‘Ni‘NoJ'aZ[( '{‘) .r"‘{1—¢)“”] +InN,,  (15)

and the resulting safe life is the sum:

No= No, +Noy (16)

This peculiarity may be explained by
going through the

shown on Fig, 4.

smoothing process as

There is no such universal plotting aid
as the Weibull paper for this distribution type.
We have to proceed as follows, First of all,
an approximate value for N0
More about this later, Then a first estimation

for the skewness 09, too, is required, This

I is to be choosen.
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y=ax+b

Figure 4:

Least Squares Fit for Reciprocal Binomial

Distributions

alone enables us to calculate the plotling
scale x, i.e, the sequence of sums in Eq.(15).
The scala y representing -the left-side of
Eq. ( 15) is fixed by test results Ni and by
the value of NoL postulated. Linear regression
through points defined by the two scala is
giving point of intersection B and with it b,
the second term in the right side of Eq.(15).

Hence the dual form of No'

Because of the logarithmic scala it is not
‘possible to reduce Nonto zero, Two other
possibilities remain:
N in Eq.(15) or the duality has to be

ol
accepted,

zero can be posited for

4,3 Problems and Experiences

First trials have been made with eva-
luation by Eq.(14). The only calculation prob~
lem concerning it was thalt of finding the cor-
rect value for /3 . First approximation can be
made by a special ‘method of moments and from
this an iteration process is working out the
value for maximum correlation coefficient or
for minimum average error.As already mention-

ed, first results did not come up fully to ex~



pectations, perhaps because of lack of spe=-

cial experience,

Eq.(15) has been tried next. Basic prob-
lem with this type of evaluation is the correct

choice for N0 Having it, optimal 49 calcula-

tion is as aboxfe, At first we aimed at perfec-
tion by specifying minimum average inaccuracy
number as vcondjﬁon for it, We have got some
very promising results but for want of a cor-
rect and sufficient proof for tracing the idea
back to laws of nature we are rather cautious

about it.

We have experimented also with the va-
riant NoI=0 . It is a quite easy procedure to
work with but minimum fatigue life wvalues
frequently seemed us urnreal by erring too
much to the safe side and inaccuracy, too,
did not show consistent improvements against

the Weibull method.

Most test calculations, including prog-
have

as determined by our

ressive data accumulation simulations,
been done with No

standard Weibull

I
procedure, Much can be
brought up in prise of it but the improvement

in accuracy over the zero No case might be

sometimes more, Anyhow, weI intend to make
much more trial calculations before committing
ourselves to use one of the variants for in-
dustry work or discarding the whole by dec-
laring it to be good only for special theore-

tical invesiligatitns.

In this latter respect we can book already

some success., The method is giving also

maximum fatigue life values N by expand-

ing Eq.(14) resp. Eq.(15) :oooi=j+1 summa-
rizing thus to j and using the last term of the
binimial sequence, too, This possibility might
be usefull for a more exact investization of

the unlimited fatigue life problem,

It

and crack propagation periods in the fatigue

is usual to speak of crack initiation

life to failure. Manson and his co-workers had
even f{ried to base a new damage accumula-
(13) . Though

some tests are indicating the need for
(14, 15)

tion calculation method on this
fur ther

improvements it may be regarded to be
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a valuable development giving always more
accurate results than customary linear. pro-
cedures, The greatest problem in its further
improvement and practical use is the invest-
ment in labor and cost necessary for the two-
level test series. If the dual safe fatigue life
proves to be correct then the possibility of
it for the

sub stituting two-level tests, too,

might be investigated,

Progress has also been made relating to
the low-cycle respective faulty technology safe
life problem but this leads on to the Wohler~

curve smoothing procedures.

5, UNIFIED WOHLER~-CURVE PLOTTING

5,1 The Concept of Unified Ranking

The classical Wohler form of handling
fatigue data as function of the stress level
6§ is in its simplified form deficient in several
ways, Various attempts have been made to
improve on this situation and e.g.the "Wolfsburg
mesh" of Miiler (11,12) is acceptable for lots
of good quality and in conditions it has been
made for, We would like however to get also

the following serviees:

-

analyiical cross-plotting between siress

levels for lower bounded life distributions;

development of the cross-plotting into

unified evaluation for considerable im-

provement in accuracy.

We have already succeeded in doing

unified evaluation of parametric technological
tests by the weighing function fmethod(g) sO we

set out upon the whole, The weighing method

does not require constant parameter test
series but in its present form it is giving the
same values for & and E, all over, Shape
parameter and minimum life ratio are strongly
dependent on the stress-level so unified
Wohler-curve fitting cannot be done this way,
It is not impossible to improve on the weigh-
the

ing method but existence of constant

stress-level test series enables us to work

out a better solution to the problem, Our

program on trial works as follows.



Standard Weibull plotting and smoothing
is done first for each of the respective stress-
-level separately giving approximate values
for o , ﬂ and & . Least squares fit by
suitable analytical functions o&(6) ,ﬁ( 6)
and E(6) is the next step, In the weighing
function method unified plotting is done over
the weighed fatigue life giving the most pro-
bable order of specimens for fatigue endu-
rance, The same can be made using the
three analytical parameter functions and ex~
perimental load cycles to failure giving an
"analytical" failure probability. This is com-~
puted from Egq, ( 2). It is enough for this
purpose to calculate the exponent on the
right side of the equation, i.e, the term in

brackets,

From the rank order determined this way
a new median rank value can be assigned to
each test specimen, Now & second Weibull
curve fitting has to be made, because of the
different parameter values separately for
each of the respective stress-levels, This
.results in revised parameter values for the
load levels and a second parameter function
calculation follows, etc. The process is to
be repeated until there is no change in in-

dividual ranks during the whole cycle.

5,2  Trends in Weibull Parameters

Accuracy of the unified Wohler-evalua-
tion depends very much on the correctness
of the analytical parameter functions., Several
years of practical experience will be required
to arrive at the full and final solution, For
the moment we can only report on the first

dbservations and reflexions,

The character of the scatter parametér
P( 6’) is expected to be similar to

the so called neuiral model or to the Stiissi

function

type Wohler - function for 50 % failure pro-

babilits}l) . Strictily speaking, this function

as well as those for ® and € should be
676_B as in-

dependent variable, But the stress ratio would

based on the stress ratio

be true only if genuine and effective stresses

could be compared, In this case fracture

strength should be substituted for ultimate
but what about the true applied stress level?
Practical experience has already thought us
that corrections e.g. by effective peak factors
are out of question for higher stress~levels.
Trends in the minimum life ratio & against
load level are of prime importance. Standard
Weijbull procedures have given consistenily
a sharp decrease in it when approaching
stresses for N50
to zero, Should it be attributed to the inflexi-
bility of the Weibull function, to ranking er-

around 60.000 going even

rors or taken to be a law of nature?

In order to Iinvestigate this problem,
three low-cycle fatigue test series made by
(16)
Hvas

the N= 101—10

with constant strain amplitude in
2 range have been evaluated
by our Weibull program. To our greatest
satisfaction we got wvery good life ratios,
€ -3.82, 5,29 and 1.54 respectively, Weigh~
ed inaccuracy numbers, too, turned out very
good indicating the trustworthiness of the

results.

After an examination of the load-strain
diagrams recorded during the test the fol-

lowing can be stated:

a/ Weibull evaluation of strain-controlled low-
~cycle fatigue tests is giving correct po~

sitive minimum life values.

b/ Median ranking is therefore not to blame

for the low-cycle safe life ratio problem.

¢/ Load-controlled low-~cycle tests on good-
-quality specimens have to give also po-
sitive values for the minimum life in spite
of greater and more irregular scatter. Nu-
merical determination of the true safe life
may be tried either by a discrete pro-
bability distribution or by a novel Weibull

No optimalization procedure,

Taking all these into consideration we
are experimenting with linear first order app-
roximations for o &) and €(6 ). Expe~

rience will prove or correct our view,
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6, CONCLUSIONS

It is possible to calculate confidence li-
mits for three-parameter Weibull fatigue life
distributions by a discrete probability method,
Generation of the sample scatter distributions
for the respective failure probability levels
is done by combination of all possible partial
sequences from the sample lot containing at
least 4 spe€cimens,For lots of more than 7
pieces a special Monte Carlo process has
been developed for the same purpose, Ex-
perience with the procedure is very favorable

so far,

Accuracy of various probability ranking
formulae relative to the median rank type has
been controlled, In case of non-availability
the latter there

of is a good sortiment of

substitute equations of different complexity
to choose from. In general, probable errors

in ranking do not give cause for concern,

Experiments in new smoothing and eva-
luation procedures are being made using re-
ciprocal binomial

distributions.

type discrete probability

Basic computing rules have
been worked out and some good results ob-
tained but there is as yet no proved and
definitive optimum principle for safe life de-

termination,

A Weibull type unified Wohler-field plott~
ing program is on trial, Based on the prin-
ciple of unified ranking, it is using analytical
fitting different

in the Weibull para-

approximation functions for
stress~levels, Trends
meters are being observed in order to find

the best function types.
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