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Bl Summary

The paper describes an investigation concerning
the question whether Prandtl's classical lifting
line theory and Weissinger's extended lifting line
theory (3/4-chord method) are really applicable to
the aerodynamic analysis of the helicopterrotor in
forward flight. Although usually a lifting line
model in one form or the other is taken as the
basis of rotoranalysis, no existing theory is
entirely satisfactory for the analysis of the un-
steady, sheared flow encountered by the blades of
a helicopterrotor.

In the paper the description of the flowfield is
based on the acceleration potential instead of the
usual velocity potential. The use of the acceler-
ation potential allows a relatively easy derivation
of lifting line theory using a "matched asymptotic
expansion” technique. The systematic treatment
afforded by this approach enables one to gain a
clear insight into the problems associated with
lifting line models.

Not only is the method proposed in this paper able
to solve these problems relatively easily, but it
also offers the means to cut down computing times
considerably in actual numerical calculations. The
evaluation of the induced veloeity in points on

the blade, which requires normally a two—dimension-
al integration over the skewed helical vortex
sheets forming the rotorwake, is reduced to a one-
dimensional integration using the acceleration
potential.

By means of the matched asymptotic expansion
technique two numerically efficient lifting line
theories, fully applicable to the helicopterblade,
are deriged. The first one involves errors of the
order A™“ (where A is the aspect ratio of the
blades). The second one is a more elaborate higher
order method, involving relative errors of the
order A . If applied to the simpler case of the
unswept wing in steady flow, these methods would
reduce to Prandtl's classical method and to
Weissinger's 3/4-chord method respectively.

The matched asymptotic expansion analysis yields

at the same time the complete pressure distribution
over the blade's surface, which is a great advantage
over the existing lifting line methods.

24 Introduction

Prandtl's classical model of a lifting surface
represented by a lifting line may seem to be some-
thing of the past. Lifting surface methods, whose
practical use has been made feasible by the advent
of fast computers, have largely superseded the
lifting line theories with their inherent short-
comings. There is however one area of aerodynamics
where lifting line theories are still in general
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use: the area of helicopter rotor flow analysis.
This is, no doubt, due to the great complexity of
the flow around a helicopterrotor in forward
flight.

wake vortex

[ elements

Fig.1: Wake vorticity ot a helicopterblade.

Figure | shows schematically the system of skewed
helical vortex sheets trailed by a helicopter
rotor. The vorticity in the wake consists of the
socalled trailing vorticity, resulting from the
spanwise variation of circulation along the blades,
as well as the socalled shed vorticity, resulting
from the time-variations of the blade circulation.
In order to determine the induced velocity in
points of the blade surface ("collocation points')
it is usual to apply Biot and Savart's law, which
requires a two-dimensional numerical integration
over the skewed helical wake. To limit the amount
of computational effort needed for a complete
analysis of the time- and spanwise loading of
rotorblade, it is then essential to limit the
number of collocation points to an absolute
minimum. One tends to minimize especially the
number of pcints along the bladechords, since it
is well known that the spanwise variations of the
loading along a rotorblade can be very rapid. One
is thus forced by practical considerations to use,
what might be called some type of "one point"
lifting surface method, in other words Prandtl's
lifting line theory or the 3/4-chord point method
due to Weissinger.

Now every type of "one-point" method must
necessarily be based upon an assumed type of
chordwise load distribution. In both the existing
lifting line methods the load distribution is
assumed to be the one derived in two—dimensional,
steady aerofoil theory. Application of one of the
existing lifting line methods to the unsteady,
sheared flow encountered by the sections of a
rotorblade is therefore bound to stretch these
classical methods beyond their limits of validity.
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The purpose of the investigation described in this
paper is, to develop a method for the analysis of
the pressure distribution over the blades of a
helicopterrotor which does not demand more than
moderate numerical efforts, but which is neverthe-
less fully adapted to the special type of flow
encountered by helicopterblades.

It will be shown that the description of an in-
viscid flow field by the method of the acceler-
ation potential is almost ideally suited to this
purpose. The acceleration potential, being in in-—
compressible flow proportional to the pressure,
does not show any discontinuities in the flowfield.
This is in direct contrast with the more usual
method of the velocity potential where the dis-
continuities (vortex sheets) play an essential role.
When the blades are modelled into lifting lines

(as far as their far field effect is concerned),
the absence of discontinuities in the field permits
the complete pressure field of the rotor to be
expressed analytically as the field due to a set

of pressure-dipole lines. The evaluation of the
velocity in some point of the flow at a certain
instant of time is equivalent to the computation

of the velocity acquired by a particle of -air
travelling through the known pressure field and
passing the considered point at the required time.
The computation of the induced velocities along a
rotorblade thus requires only a one-dimensional
integration of the equations of motion with respect
to time instead of the two-dimensional spatial
integration over the helical vortex sheets needed
in the velocity method. This results in consider-
able savings in computing time.

The absence of sheets of discontinuity also
facilitates the derivation of the blade's near field,
by means of a "matched asymptotic expansion"
procedure. Such a systematic derivation instead of
the more usual intuitive ‘one has the advantage of
leading almost automatically to the form which
lifting line theory should take under the special
circumstances met in a rotorblade analysis. The
asymptotic procedure may furthermore be used to
derive a higher order lifting line theory. The
latter may be of special importance in relation to
helicopter analysis: although in general the blades
have large geometrical aspect ratio's, the flow is
aerodynamically more comparable to a relatively
small aspect ratio case, because of the rapid span-—
wise variations of the loading.

The paper concentrates on the fundamentals of the
method of analysis mentioned above. For this reason
great emphasis is given to the derivation of classic-
al lifting line theory in the simple case of an un-
cambered wing in uniform motion, and to the modific-
ations of the theory needed to account for sheared
flow, unsteady conditions and higher order approx-—
imations respectively. The consequent application
of the derived methods to the actual rotorblade
will be self-evident in principle, and is not
treated in great detail. The reader is furthermore
referred to the original work (ref. 1) for more
details, proofs and further extensions of the
theory.

3. Brief review of the theory of the acceleration

potential

The acceleration potential was first introduced
in 1936 by Prandtl for the analysis of lifting
surfaces in incompressible flow. The quantity
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- E (x,y,z) was called the "acceleration potential
of the flow, since according to Euler's equation

av

DY oY
ot

Dt

+ (L.DY = - grad®) (n

the gradient of -p/p equals the acceleration of the
fluid particles. Writing V = U + V' and

p=p, + p' where U is the undisturbed velocity
(taken to be independent-of the space- and time
coordinates) and V' is the perturbation velocity,
linearization of Euler's equation leads to

= % grad p' )

which yields, on taking the divergence of all the

terms of (2) and applying the continuity equation

div V' = 0,the Laplace equation for p':
2, 2, 2,
div grad p' = - g L g .. g =0 (3)
ax dy dz

In the following the primes will be omitted for
convenience, so that p and V will both denote
perturbation quantities.

Eq. (2) expresses the fact that in the linearized

theory considered here, the velocity in a point of
the field is found by integrating the acceleration
of a particle of air coming from far upstream,

whilst during this integration the particle's

trajectory may be approximated by its straight,

unperturbed trajectory. Boundary conditions must

accordingly be applied to fhat surfaces, parallel
to the undisturbed flow.

In incompressible flow fields the pressure perturb-
ation p cannot display any discontinuities except
on the solid boundaries of the field. This is the
main advantage of the pressure formulation: des-
cribing the field in terms of the pressure, no such
things like free vortex sheets can enter into the

mathematical formulation of the problem.

4, The pressure field of a flat plate aerofoil

As a preliminary the pressure field of a flat
plate aerofoil in steady parallel flow will be
considered (fig. 2).

+ X
+ c/2

Fig. 2: Filat plate aerofoil

In linearized theory particles of air moving along
the surface of the aerofoil do not experience an
acceleration in Y-direction so that according to



Euler's equation dp/9y should be zero on the aero-
foil, except at -the very leading-edge where the
streamline kink implies an infinite acceleration
of the particles and hence also a pressure singul-
arity. The boundary value problem for the pressure
field thus becomes:

2 2

3_B+_3_E=0
2 2

ax oy

’

p~+ 0 for x2 + y2 - >(4)
9p/3y = 0 on the aerofoil, i.e. on the
stretch of the X-axis between

x = -c/2 and x = +c/2

p + - @ at the leading edge, such that
v/U = - a_ on the aerofoil A
condition of smoofh flow at the trailing
edge is implied by the above boundary value problem,
since a singularity of 3p/dy has been required only
at the leading edge. For the solution of this and
subsequent problems, it is very convenient to use
an elliptical coordinate system (fig. 3),

Kutta's

Y
P = const
p=0
X
¢C/2
Fig 3:Elliptical coordinate system
conforming to the transformation formulae
x = ¢/2 coshn cos (5)
y = ¢/2 sinhn siny (6)

Surfaces of constant n are ellipses, whereas the
aerofoil is identical to the coordinate surface

n = 0. Surfaces of constant {p are hyperbolae,
orthogonal with the ellipses. The problem as stated
in (4) reads, transformed into elliptic coordinates:

2 2
3_%+§_%=0
on P
p~+0forn-»>ew
N
9p/dn =0 for n = 0
p~>r-— forn =0 and =1

The solution, as may be checked easily, is given
by the following pressure field:

c "
p____1__ sin® (8)
%pUZ w coshn + cosy

where ¢ is the liftcoefficient of the aerofoil,

equal to 2mo  according to the well-known results

of velocity potential theory. What is very important
for subsequent developments, is a consideration of
the behaviour of the pressure field at large"
distances from the aerofoil. For large values of n
the elliptical coordinate system degenerates asymp-
totically into a circular coordinate system (fig.4),

Y
e
12
X
X
Fig. & Circular cylinder system .
with
5 c n
¢/2 coshn & ¢/2 sinhn 7e °r
for e (9)

P X

The pressure field of the flat plate aerofoil can
then be shown to degenerate at large distances to

—R—f ¢, ¢ %%%X + c c2 EEEEEK g odi e (10)
iU o 2nr

... for large r

where the first term of the far field expansion is
the field of a discrete dipole representing the lift
of the aerofoil, and the second term is a quadrupole
representing the pitching moment about the mid-chord
point. The next term would not be, as perhaps
expected, a discrete octupole. Equating coshn to
sinhn as_is fzﬁé in (9) implies neglecting the
factor e "= £L2 with respect to the factor e“:z§z.
Relative errors of the order (c/r)2 are thus in-
curred in approximating the elliptical system by a
circular one, and the octupole field would there-
fore have the same order of magnitude as this error.
If one would expand the pressure field (8) further
than two terms, one would no longer find discrete
poles for the higher order terms.

5. Classical lifting line theory, as considered

from the point of view of the pressure method

The linearized boundary value problem for an
uncambered wing with span b and chord c (fig. 5)
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b
X
Z
Fig.5: Notations straight rectangular wing.
may be formulated as follows:

2 a2 a2
22,232,238

X ay 3z
p'*Oforx2+y2+z > ® an

3p/dy = 0 on the wingsurface

p* -~ along the leading edge, such that
v/U(z) —ao(z) on the wing

Instead of trying to find an exact solution for this
problem, we will try to determine an approximation
for the pressure field arround the wing, to a pre-
determined order of accuracy.

On physical grounds the assumption seems justified
that in the immediate vicinity of the lifting sur-
face, staying away from the tip regions, the
characteristic length scale for spanwise pressure
variations is the wingspan b, whereas the character-
istic length of chordwise pressure variations is the
chordlength c. Writing the Laplace-equation in terms
of the characteristic coordinates

X z
and 372 leads to

c/2 * c/2
2 2 2
e S 3P2=_1_2_3P_2 (12)
X - i A 42
Yy, o2, W7

in which equation the three partial derivatives of
p may be assumed to be of an equal order of magni-
tude, in accordance with the physical assumption
introduced above. Eq. (12) shows that for wings

of very large aspect ratio (A » =) the pressure
field close to the wingsurface (the socalled "near
field") satisfies a two-dimensional Laplace-
equation. In order to increase the accuracy of the
analysis, one may attempt to describe also the rate
at which the pressure field becomes two~dimensional
for A »

In A
> pz(x,y,2)+
A

(13)

p(x,y,2)=p (x,y,z)+ % P, (x,y,2)+

[o]
1
+ ;7 p3(x,y,z)+ ... for Adw
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where p_ 1s the two-dimensional pressure field. The
particular form chosen for the asymptotic behaviour
will be substantiated later. Substituting the series
(13) into the Laplace-equation (12) and multiplying
successively by A, a2 ln']A, A2, etc., one finds on
taking each time the limit A+ the following
equations to be satisfied by pk(k=0,1,2,3):

2 2
3Py 3P
y 5 =0 (k=0,1,2) (14)
X
AT AT
2 2 2
2 p3 £l p3 k) pO
2 * 7 =~ i (1%
8(277) 3(Z§7) 8(375)

In a theory accurate up to the order O(A—l) the near

pressure field pnear(x,y,z) thus becomes equal to

the pressure field of the flat plate aerofoil, ex-
cept in the following respect. The assumption that
the partial derivatives of p in the Laplace
equation (12) are of equal order of magnitude can be
valid only near the wingsurface, not too close to
the wingtips. At larger distances from the wing the
characteristic length scale for the pressure field
may be assumed to be equal to b in all directionms,
so that the socalled "far pressure field" will
certainly not satisfy a two-dimensional Laplace
equation. For this reason we may not apply a

condition at infinity to p The field p may

near’ near
thus contain a part that does not vanish at large
distances:

) ) °1(z)

near _ sinY
2 7 coshn + cos
ipU n P
<0
+ I an(z) cosh(nn) sin(ny)
n=1

The far pressure field p___{(x,y,z) satisfies, as
z £ 5 !

already explained, the £ifl three-dimensional

Laplace equation. When relative errors of order

O(A—z) are allowed, Pe,y DaY still be simplified

however, namely to the field of a lifting line, i.e.
a line along which pressure dipoles, quadrupoles
etc. are distributed. This may be seen from the
preceding paragraph where it was shown how the
singularities distributed along the chord of an
aerofoil at large distances seem to shrink into
discrete singularities. Now this asymptotic behav-
iour of the pressure field was valid only_yhen
allowing relative errors of the order (%) . In the

three-dimensional case we mean by "far field" the
part of space at distances r from the wing that are
of the same order as the span b. In points of this
far field we "see'" the wing at its correct span,
while the wing chords seem to have shrunk into
points carrying discrete singularities. The lifting
line model of the far field is therefore equivalent
to expressing our willingnsss to,accept relative
errors of the order (b/c) ¢ = A~

By allowing errors of order A_2, we have obtained
now two approximations for the pressure field
around the wing, one that is valid near the wing,
and one that is valid far from the wing. Both these



approximations are still undetermined. In order to
complete the problem, one must apply a "matching
condition". This condition may be derived by re-—
quiring that it shall be possible to build up from
the near- and far field a composite field, which
is uniformly valid throughout the flow (fig. 6).

|

e
oy

Pnear

P composite

o

Pt

Fig.6: Composite pressure field

Such a composite field may be formed by summing the
near- and far pressure field, and subtracting a so-
called "commou field" which at large distances from
the wing is identical (to the required order of ac-
curacy) to the near field at large distances, and
which is close to the wing surface identical to the
far field.

Without going into the proof of existence of such a
"common field", it is clear that if such a field
exists, then we must require that the functions

hmr—>0rder (c) Pear and 11mr+0rder (b) Phear become
equal to the same function, so that also:
lim P = lim p
far
r+Order (b) near  sorder (ec) e
7

Now the near field behaves at distances of order
b/2, neglecting terms of the order O(A'z), like:

P :
near s1ny
772 e 5%
bou

(18)

: r
+ a](z) siny 72 L

Apparently, this field can be matched only to the
field of a dipole-line p,. (r,X,z), having a distri-
bution of dipole strengtglgqual to -c.(2).c. It can
be shown that the field of such a dipole-line be-
haves at small distances from the wing like

P, 1 =
i—d.llg—)-‘cl(z)c %‘:‘T;ﬁ +0(A ZlnA) (19)
pU

for r » Order (c/2)

which shows that in a theory which allows errors of
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-2
o ), al(z) must be zero. Both the near- and far

field are now completely determined, and the com-
posite field becomes:

pcogg = cl(z) siny pdip ik 2 .
£9U2 T coshn+cosy }pUz
IHORS -

We have thus obtained an expression for the pres-—
sure field around an uncambered wing. Wat is more,
the expression can be put into closed form by ex-
pressing the field of a dipole-line like

Pdip

_ osinx o 1 1
}pUz (r,%,2z)= —gar Bh (cose)Qn (coshy)

n=1
(21)
where P; (x) and Q; (x) are associated Legendre—

functions of the first- and second kind respective-
ly. The "prolate spheroidal" (fig. 7) coordinates

Y

6 = Const.

Fig.7 : Prolate spheroidal coordinates

© and y are defined by
r = b/2 sinh¥ sin®
X=X (22)
z = b/2 coshy cosB

Surfaces of constant y are in this system ellip-
soids, with ¢ = O representing the lifting lige.
The surfaces of constant 6 are hyperboloids ortho-
gonal to the Y = constant surfaces. In order to
represent by (21) the field of a dipole-line which
behaves as indicated by eq. (19), one must choose



the coefficients An as:

+1 z
_ 20+l 1 ¢, G577 1,z z
N PRI R YU Y
-1 b/2
(23)

Legendre functions are, thanks to certain recurrence
relations between them, easily and efficiently eval-
uated numerically. Expression (20) can thus be put
into an efficient, closed form expression for the
whole pressure field around the wing.

The resulting expression (20) is equivalent to
classical lifting line theory, as will be shown

now. If the wing is placed in a uniform stream
perpendicular t¢ the wingspan, with undisturbed
velocity U in X -direction (fig. 5), then according
to the linearized Euler equations (2):

(24)

so that the velocity perturbation in Y'-direction
occurring along the mid-chord line of the wing
follows from the equation
o
|
2
pU

) dx

comp (25)

%(0,0,2)= - - (p

The first term (the two-dimensional term) in the
right hand side of the composite pressure field
(20) gives rise to v/U of a two~dimensional aero-
foil, i.e. to

c

'Er'-
of (20) lead to -vi/U, where 4 is, what is called

It may be shown that the second and third term

in Prandtl's theory the induced velocity. Equating
in accordance with the boundary condition (12)
v/U(0,0,z) to -ao(z) the velocity integration (25)

yields after some rearrangement

cl(z) =2n { ao(z) - vi/U(z) } (26)

which is Prandtl's classical integral equation,
stating that a wingsection behaves like a two-
dimensional aerofoil placed at an effective angle
of attack @ -v./U. The errors in classical lifting
line theory aré thus shown to be of the order

0%,

All this may seem a rather large detour to find

back a long known method for analyzing the lift
distribution along straight wings. However, the
present alternative formulation of lifting line
theory has several advantages:

1) The pressure formulation of lifting line theory
requires a one-dimensional numerical integration
for the evaluation of v./U, a feature that is
always retained no mattér how complicated the
flow becomes. Although this is a disadvantage in
the simple case of a straight wing in parallel
flow (where v./U can be found completely analyti-
cally using the velocity method) it becomes very
convenient in cases where the vortex sheets are
of such a complicated shape that a two-dimension-
al numerical integration over the vortex sheets
would be needed.

The systematic rather than intuitive derivation
of lifting line theory enables us to derive just
as easily the form of lifting line theory appli-

2)
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cable to more complicated situations.

3) The systematic derivation furthermore points out
almost automatically how a higher-order theory
may be developed.

6. Lifting line theory of the swept wing

We assume again a parallel flow in X+—direction,
where the rectangular wing is now rotated with
respect to the undisturbed flow over the sweep
angle A (fig. 8).

Fig. 8: Notations swept rectangular wing.

In the wing-fixed coordinates (xw,yw,zw) the sur-

face of the uncambered, though twisted wing is
given by

y=Ey, =% (zw)xw |xw| s cf2 (27)
giving also the Y-coordinate of a particle of air
moving along the wing surface. The Y-component of
the particle's velocity is then:

=21=3L~X+§1—2

Dt ox w 02z w
W W

da

dz
1%

v

—uo(zw) U cosh - X, U sinA (28)

and the Y-component of its acceleration is derived
likewise:

2

da d7a

Dv [¢]
dz g

Dt

2

2 x U2 sinzA (29)
2 "w
dz

w

sin 2A-

Equating Dv/Dt to - %—%&, the boundary value

problem for the swept wing becomes



p + 0 for x2+y2+z2 +

haras ' B, d2a°
SPI9Y - 0 gin 2 + 7 X, sin%\ on the

pU2 dzw

Z(30)
dz
W

wing surface
p + —» along the leading edge, such that

along the mid-chord line
v/U(0,0,zw) = —ao(zw) cosh

P

This boundary value problem is very similar to that
of the unswept wing, except that 3p/dy is non-zero,
despite the absence of camber of the wing surface.
The non-zero value of 3p/dy on the wing gives rise
to an additional, non-singular pressure field, given

by

P da -
—2-—-2—2-0—51n21\ensin\p+
v’ A ah

; /2

s 0% a0
The near field associated with the second spanwise
derivative in (30), and a}& the far field terms are
given by terms of order A ©°, so that these may be
neglected to the order of accuracy achieved by lift-
ing line theory. The complete solution of the bound-
ary value problem is thus given by the sum of Py

and the singular composite pressure field derived
in the preceding section:

e (Zes)
Bo= 11 il siny

+
™ coshn + cosy

- «© .
siny 1 1
o z An Pn (cosB) Qn (coshy) +
n=1
- da
siny _

2 A -n _.
+c11(zw)<:2"r 2 sin 2A e sing (32)

W
d(g7§)

where ey still denotes the sectionwise liftcoeffi-

cient 1/(ip02c) and the indexed symbol c, indicates

5

that part of the total ¢, of a section which is

1

associated with the singular part of the pressure

field.

In order to derive an integral equation for the un-

known function ¢y (zw), one must compute the mid-
1

chord velocity perturbation v/U(0,0,zw) and equate

this to —ao(zw) cosA. To find v/U(O,O,zw ) at the
o
particular wingsection z, » the pressure gradient
o
is integrated as "experienced" by a particle of air,
coming from infinity upstream and reaching the
wingsection z, - In linearized theory the particle's
o
trajectory may be taken to coincide with its un-
perturbed trajectory, i.e. with a straight path,
parallel to the X -axis. In wing—fixed coordinates:

x (t) = U t cosA

w

y,(6) = 0 (33)
z (t) =z + Ut sinA

w wo

where the particle is assumed to reach the mid-
chord line at t = 0. Using the transformation-

formulae relating n,p , r, x,6 and § to x ,y ,2 ,

the time-function 3p/dy(t) as experienced by the
particle is found by differentiating the composite
field (32) w.r. to y. The value of v/U(O,O,zw )

follows from the time-integration o
o
. 2p
v/u(o,o,zwo = -0 3y (t) dc (34)

The integrand contains several singularities, namely
at the times when the particle reaches the leading
edge and the mid-chord line. Taking the necessary
precautions (not considered any further in this
paper) a numerical integration is easily performed.

Although the equations given above suffice to com—
pute the pressure distribution over the wing, it is
interesting to write out the expressions in a
slightly different form. Firstly, one may split off
from the composite pressure field (32) the purely
two-dimensional field-
c, (z )
1] Yo siny
™ coshn + cosp’

which yields after integration the mid-chord down-

wash ¥/U of a two-dimensional aerofoil placed in a

flow with unperturbed velocity U cosA , i.e.
cll(zw°)

= E;ESEK—(accordlng to the definition of ¢

adopted here).

Writing the integral of the dipole-terms in (32)

symbolically as -vi/U again, and rearranging, the

1

following expression for the sectionwise lift
distribution is obtained
\2

1 Het

% UcosA

2
1 (zw Y=2ncos A{ao(zWO)

1 o

o ¢, {z,()}=e; (2 )
[ﬁ{coshﬂ1)+cos@(t)

+ﬂUcosA_[ %—— 4 i ? .sinp(t)
4
k -0 w

dao ! &
—z{zw(t) }sin2Ae

W
d(g7§)

n(t)

+

% sinw(t)}dt (35)

Often in helicopter analysis, one accounts for the
sheared flow met by the blade sections, by consider-
ing only the velocity components perpendicular to
the blade section before applying two-dimensional
section data. This is the well-known cosA sweep
correction. Eq. (35) now shows clearly that this
procedure yields only one of the several corrections
necessitated by the sheared flow. The integrals in
(35) represent corrections of order 0(A°) that have
to be applied even in a low-accuracy method like
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classical lifting line theory. These additional
corrections are automatically included in the lift-
ing line method formulated in eqs. (32) to (34).

6. The helicopterrotor in forward flight

The situation is shown schematically in fig. 9.

tip path plane

T

Fig. 9: Notations helicopter rotorblade

The uncambered blades are assumed to have a rec-
cangular planform and an amount of linear twist €.
Whilst rotating around the azimuth (denoted by the
angle $. ) with angular velocity @, the blade sec-—
tions eXecute a harmonic pitching motion with re-
spect to the tip path plane, given by

r

b
=0 —-g— +
esection eo &R b

| coswb—a] sinwb (36)

where 8 = collective pitch angle of blade root with
° respect to the tip path plane,
r, = radial distance of blade element from
rotorhub,
a, and bl correspond to the usual notations

1
for the unit flapping angles with respect
to the control plane of the rotor.

The blades include furthermore a coning angle a

with the tip path plane. The free-stream velocity
U is directed at an angle of attack a to the tip
path plane.

Despite the complicated geometry indicated above,
the boundary value problem for the instantaneous
pressure field around a rotorblade as expressed in
the blade~fixed coordinates (xb,yb,zb) is not much

a

different from that of & wing in uniform motion:
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on the blade surface:

e e [

2R Byb

by
" =F, (b 02+ g F, (9, 52,)

F (37)

p~>0 for Xb2+yb2+zb2 >

the leading edge, such that
the mid-chord line

pr—= along
along

W

'ﬁ = F3 (wb’zb)

-~

The precise form of the functions F,, F and F3

will be found in the original work (reg. 1).

The essential differences with the straight wing in

parallel flow are:

a) p is the instantaneous pressure perturbation
field, with the boundary conditions depending
upon the instantaneous azimuth angle of the
blades,

b) ap/Byb is non-zero, even though the blades are

assumed to be uncambered.

The complete solution of the boundary value problem
is given by a pressure field which is instantane-
ously very similar to the one found in the case of
the swept wing:

c, (Y ,z )
P _ Ey Lk siny
pQZRZ i1 coshn+cosy
_ siny " I |
7 & A (WP (cosB) Q  (coshy)
n=1
cap Oh oty g DEEK P19 sinpe " (38)
g AL 7 A ¢
where . is defined as i, = _—%_5_ (note that % is
P R ¢

taken positive in negative Y, -direction), and c,
1

of a section which is

b
is that part of the total c,

associated with the
coefficients An(wb)

singular pressure field. The
are given by

+1 ctl(wb,zb)

A (P )= 2o+l 1 .
n''b n(n+l1) A z, 2 1
-1 {l—(§7§) }
1% “b
P G G (39)

Summing the pressure field (38) over all the blades
of the rotor yields an easily computable, closed
form expression for the pressure field of a heli-
copter rotor.
In order to derive an integral equation for the un-
known function . (wb,zb), one must compute the

1



mid-chord velocity perturbation %ﬁ (¢b,zb) and
equate it to F3(¢b,zb) in accordance with the
boundary value problem (37). To find %ﬁ at the

particular blade section z, when the blade is in

b
o
the azimuth position wb , one must integrate the
o
pressure gradient "experienced” by a particle of

air, coming from infinity u&stream and reaching the
b

blade section at time to ='-§2. In linearized theo-

ry the coordinates of the considered particle are
found as a function of time from its unperturbed
trajectory:

x(t) = X - U(t-to)

y (40)

y(t) A

z(t)

z
o

where XY s2, are the coordinates of the mid-chord
point of the considered section at s expressed in

the "flow-fixed" coordinate system (x,y,z) (fig. 9).
Now a set of transformation formulae may be derived
to relate the flow coordinates (x,y,z) to the blade
coordinates (xb,yb,zb) so that the functions

Xb(t), ¥,(€), 2, (t) pertaining to the particle are

known. This means that also p/(pQZRZ) (t) and
9p/dy(t) as experienced by the particle are known
as a function of time, and the time-integration

®op

w 1
FoT ST _[ oy, Tk

(41)

then yields the sought velocity perturbation.
Note that %ﬁ is found again by performing a one-
dimensional numerical integration with respect to
time, of an integrand which is evaluated readily.
This contrasts to the two~dimensional spatial inte-
gration over the skewed helical vortex sheets needed
in the usual velocity method.
Another interesting point shows up by reconsidering
eq. (38). In analogy with the earlier treated case
of the swept wing, one might again split off from
the first term in the right hand side a pressure
field:

c, {\bb(t),zb } ]

] o sin'
L coshn+cosy

(42)

The pressure field (42) represents the field

associated with a two—-dimensional aerofoil whose

lift is a periodic functlonw?f time. The time-

varying mid-chord downwash ﬁﬁ(t) associated with

the field (42) depends on the time-function . (t)
1

via a two-dimensional functional relationship:
1
k" Eymiain |:ctl(t):’ (43)

so that, analogous to the case of the swept wing,
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¢, may be expressed like:
1
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e ?ﬁi {¢b(t0) )zb

c
t

]{wb(t)’zb(t)}_Ctl{q}b(t)’zb }

1 { coshn(t)+cosp(t) } s -
t i
o4 Fily (5),z (0)}
T f W B -, . ¢
.sinp(t) e—n(t) dt ] (44)

Often in helicopter analysis, one accounts for un-
steady effects by calculating the periodically time-
fluctuating effective angle of attack of the blade
section, and equating the lift of the section to

the lift as experienced by a two-dimensional aero-
foil whose angle of attack varies in the same way

as the effective angle of attack of the considered
blade section. This procedure corresponds with the
first term in the right hand side of (44). The pres-—
ent analysis indicates that this procedure leads to
errors of the order 0(A"), since it neglects the
contribution of the other terms in the right hand
side of (44). Clearly, errors of O(Ao) cannot be
allowed in.a lifting line theory, which is accurate
up to 0(A 7).

Now one could nevertheless use this simple - but
incorrect - procedure hoping to get at least a
qualitative picture of what happens near the point
of stall of the blade sections. Ome would then de-
termine the two-dimensional functional relationship
(42) from two-dimensional experiments, in order to
study phenomena like dynamic stall. Note, however,
that in the case of the helicopter blade, the correct
two-dimensional experiment would be a very awkward
one: the pressure field (42) is the field of a two-
dimensional flat-plate aerofoil which is itself
fixed with respect to an inertial frame of reference,
while the undisturbed stream velocity has a time

varying direction with respect to the inertial frame
(aerofoil moving through a gust-field). This kind of
experiment is naturally hardly realizable. Much more
practicable is the experiment where the two-dimen—
sional aerofoil oscillates periodically with re-
gpect to an inertial frame of reference (the wind
tunnel) whilst the undisturbed stream is fixed in
direction with respect to the inertial frame. This
procedure is indeed often followed in practice. One
must then realize however, that by the oscillation
of the aerofoil a second, non-singular pressure
field is created as well. Especially when the in-
terest is concentrated on studying boundary layer
effects (dynamic stall), this second pressure field
might have a quite desastrous effect upon the relia-
bility of the two-dimensional experiment. One would
never be certain about the influence of the second
pressure field upon the boundary layer phenomena
studied.




7. Higher-order lifting line theory

One of the features of the pressure method is,
that a higher-order ~ more accurate - lifting line
theory may be derived readily. This will be illus-—
trated again for the case of the rectangular wing
in steady parallel flow (fig. 5). As may be seen
from the equations (14) and (15) of section 5, when
terms of order A™¢ are included, the near pressure
field Poogr DUSE satisfy a two-dimensional Poisson

equation:

2 2
3 Pnear 3 Pnear .
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X & 2 2 z 2 " two-dim
WG AT A G

The solution of (45) will consist of the sum of a
particular solution of the Poisson-equation and
solutions of the two-dimensional Laplace equation,
and takes in the present case the form

) (45)

c, (z)
P 11 sin
= - i . o .+
— - coshnrcosp T2 (z)coshnsinp+

NI (4n sinhn sing + 1 sin 2p) (46)
SO 8

+

indicates the c, associated

1] 1
with the singular part of the pressure field, which
is only a part of the total ¢y of the wing section.
denotes the second derivative of ¢
1 1

; . . z
with respect to the spanwise coordinate /2 °

According to section 5, the far pressure field
corresponds to a field of line singularities, if

where the indexed c

The symbol c;

relative errors of order A_2 are allowed. Now from
the preceding theory it appears that the leading
term in the far field expression (i.e. the dipole
singularity) is of the order A”! with respect to the
leading term in the composite pressure field. This
shows, that for the purpose of bg}lding up a com-
posite field accurate to order A “, the far field
representation by a distribution of line singulari-
ties may still be used.

Now considering the behaviour of the near field at
large distances (to order O(A_z)):

P . 2 .

near siny ¢ sin 2y
——*-c. (z)c te, (z) ¥— ——"5 +
ipUz 1' 2nr 11 4 2 r2

r . 1 " r r .
+a1(z) /2 siny+...+ 2nA2 cllln(€7z)z7fs1nx +
1 " .
+ c sin 2x
81!A2 11

for r + order (b/2) 47)
it is seen that the far field must now consist of a
dipole-line as well as a quadrupole-line. These can
be shown to behave close to the lifting line like:
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Pquad c2 sin 2x 1 .
—ﬂ—f—(r,x,2)+ ¢y (Z)Z_ 5 * 5 c{ sin2y +
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showing that the only unknown function al(z) is

given to O(A‘z) by:

z
0(377)

P
al(z)= T =2{ _ﬂlg(c/d,n/z,z)+ %cll(z)}(SO)

ou

These expressions suffice to build up the composite
field. When actually using the composite field
several gimplifications can be introduced, such as
the substitution of a single dipole-line shifted
towards the quarter-chord position instead of the
far field consisting of a dipole~ as well as a
quadrupole-line. Integrating the composite field
finally yields the following results:

Pi:

cl(z)=c1 (z)—n{—gig(clb,w/2,2)+ % 1 (z)} (51)
1 ipU 1

I 1

c (z)=5¢c, (2)+ c” (52)

m 4 11 64 A2 1l

where ¢y (z) is determined by the integral equation
I

=2 M SRS YT,
(z)= v(ao- U—) m 2(C/ ,ml2,z)+

C
L ipU

+

ERIN]

¢y (z)}
1

(53)

One may show that the higher-order lifting line
method developed here is equivalent to Weissinger's
three-quarter chord method, in the case of wings with
linear twist, placed in a steady parallel flow. For
wings with a more general type of twist-distribution,
Weissinger's method involves a_ﬁlight, but probably
insignificant error of order A . An impression about
the accuracy achieved by these higher-order lifting
line methods may be obtained from fig. 10, taken
from ref. 2. The figure shows the accuracy of the
higher-order lifting line methods to be close to
the accuracy of a full lifting surface method.
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classical lifting line theory

higher-arder lifting line -
and litting surface theary
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Fig.10: Computed C, _of rectangular wings, acc to ref. 2,
La 9

The difficulties of applying, as is often done,

Weissinger's method to helicopter analysis are:

1) the 3/4-chord method is not valid in unsteady
cases,

2) the 3/4-chord method does not give information
about the pressure distribution over the wing,
so that pitching moments cannot be analyzed.

Both these difficulties have now been eliminated by

deriving the higher-order method via en asymptotic

expansion procedure. The composite pressure field
may be used directly. in unsteady cases, in the saue
way as shown for the classical lifting line theory.

The pressure distribution over the helicopter blade

is equally easily constructed.

A typical computed pressure distribution for a

blade at the advancing side of the rotordisc is

shown in fig. 1]. The influence of the tipvortex of

a preceding blade, passing underneath the considered

blade at about 80Z of the blade radius, can be eas-

ily recognized. Although such results as shown must
be considered preliminary as yet, two important
tentative conclusions can be drawn:

1) the physical assumptions underlying the 1lifting
line approximations (section 5) can be seen to
be justified up to blade stations very close to
the blade tip. Considering the good accuracy of
higher-order lifting line methods and the fact
that it is possible to compute complete pressure
distributions using the  theory developed here,
the use of a full 1lifting surface method would
have hardly any advantage compared with the
higher-order 1lifting line theory.

2) The higher-order terms, i.e. the terms of order

A 2 rather strongly affect the pressure distri-
bution in the tip region. Their effect is such,
that for a given lift coefficient the leading
edge pressure peak is increased, compared with
the purely two-dimensional pressure distri-
bution. This fact could have an important in-
fluence upon the high Mach-number characteristics
of the blade sections mnear the tip.
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tip

leading edge

Fig.1: Typical isobar contours on advancing blade
{note: chord and span not drawn to same
scale, real aspect ratio A=12.7 )

8. Conclusions

1) The common practice in the classical lifting line
analysis of helicopter blades to account for
sheared flow by the socalled simple cosA sweep—
correction is incorrect. It introduces errors of

the order O(Ao) into the lifting line analysis
which itself may be accurate up to 0(A™1).

2) Consequently, it is incorrect to equate the un-
steady lift of a blade section to the unsteady
lift of a two-dimensional aerofoil which moves
through a periodical gust field, where the gust
distribution corresponds to the time-variations
of the induced velocity. This also introduces
errors of the order 0(A°).

3) The flow around a blade section is not even
qualitatively comparable with the flow around a
periodically oscillating two~dimensional aero-—
foil placed in a windtunnel. Therefore, such
wind tunnel experiments are of doubtful value.
This is especially so when the interest is
focused on unsteady boundary layer effects near
the stall, such as "dynamic stall".



4) The 3/4-chord lifting line method can be proved
to be exact up to the order 0(A™“) under certain
conditions. These conditions are not satisfied
however, when the 3/4-chord method is applied to
helicopter blades. In that case errors are in-

troduced of the order O(A—l).

5) Using the theory of the acceleration potential
in combination with a matched asymptotic ex—
pansion technique, lifting line methods can be
developed for application to the helicopter blade
which avoid all the above mentioned problemg.

6) The methods mentioned under 5) are efficient in
numerical computations, since the two-dimensional
integrations over the skewed helical vortex
sheets needed in the velocity method are reduced
to one-dimensional integrations using the acceler-
ation potential.

7) The matched asymptotic expansion treatment of
lifting line theory yields the complete pressure
distribution over the helicopter blades, which is
an advantage over existing lifting line methods.
Therefore, the good accuracy of higher-order
lifting line methods would seem to indicate that
little would be gained by developing full lifting
surface methods for the helicopter blade.

8) Preliminary results indicate that the pressure
distribution over the tip region of a blade
deviates rather much from two-dimensional
distributions. This observation could be of
importance in relation to the development of
blade sections for high critical Mach-numbers.
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DISCUSSION

W.P. Jones (Texas A & M University, College Station,
Texas, U.S.A.): I congratulate the author on a very
interesting paper and I would like to ask two ques-
tions:
1. How is the effect of wake distortion and mutual
interference due to the effect of other blades taken
into account?
2. Lifting line theory will not give the chordwise
pressure distributions and pitching moment deriva-
tives would not be given accurately. Does the author
agree?

By way of further comment I might point out that
M. Dat of Onera and Jones and Rao of Texas A & M
University had worked on the same problem and taken
compressibility effects into account.

Th. van Holten: 1. The mutual interference between
the blades is automatically accounted for, by sum~
ming the pressure field of all the blades in order
to arrive at the pressure field of the rotor as a

whole, When a particle of air comes from infinity
upstream, it will closely pass several of the blades
before it finally reaches the point (in general: a
collocation point on one of the blades) where the
total velocity perturbation is calculated. When
passing through the pressure field of any blade,the
particle whose velocity perturbation is calculated
experiences an acceleration. Therefore, all the
blades contribute to the final velocity perturbation.
In fact, it can be shown that the perturbation velo-
city thus obtained is the same as the perturbation
velocity such as would be calculated using the more
usual theoretical model involving vortex sheets.

The wake distortion is not taken into account
in the linearized theory described here. It can
be taken into account in a way which is indicated
in the original work (ref. 1 of the ICAS-paper).
2. The usual lifting line theories indeed do not
give information about chordwise pressure distri-
butions. The lifting line theories described in
the paper, derived by a matched asymptotic expansion
method, on the contrary do give full information on
the structure of the near pressure field, so that
the pressure distribution along the chord is known
(see for instance fig. 11 of the paper).
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