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Abstract 

With the proliferation of unmanned air vehicles 

in the last few decades, there has been a series 

of applications proposed around the concept of 

collaborative unmanned systems. However, it is 

difficult to assess at what point collaboration 

actually results in true benefits to mission 

performance and also difficult to determine the 

degree of benefit possible to achieve.  This 

paper describes a framework which allows 

decision makers to analyze the effectiveness of a 

coordinated group of UAVs as a function of the 

physical mission parameters, showing benefit 

over a single UAV or uncoordinated multi-

aircraft approach.  To demonstrate the use of 

the framework, a case study is presented for a 

maritime search and rescue mission on a 

parameterized mission space. From the 

analysis, critical points in the mission space 

were found where the coordinated group of 

UAVs brought no additional benefits to the 

mission. However, at other points they were 

able to cut down the mission time by more than 

one hour. This framework can be used to guide 

decision makers and help estimate the 

effectiveness of coordinated UAVs in a 

parameterized mission space. 

1  Introduction 

Analysis of aircraft operations has become an 

increasingly difficult task as technology has 

developed in recent decades. Single aircraft are 

now often viewed as a single component of a 

complex system of systems (SoS) which cannot 

be well understood from simple analysis. A 

primary challenge facing decision-makers is the 

ability to predict the behavior and effectiveness 

of a SoS in the complex mission space facing 

operators on a daily basis. This is especially true 

in the case of unmanned systems, where 

collaborative tactics have been proposed for a 

number of missions.  However, it is not 

necessarily clear that collaboration is 

necessarily better in all cases.  While there are 

many promises of the performance benefits of 

collaborative behavior, these potential benefits 

come at the cost of increased overall complexity 

and risk.  Increased reliance on the ability of 

vehicles to share information can lead to 

significant lapses in performance in the event of 

communications degradation.  Software 

complexity for systems that need to create a 

shared information picture and make decisions 

based on this shared picture is generally higher 

than for systems operating in isolation.  

Furthermore, there is an increased probability of 

emergent behavior from these systems, making 

them more difficult to test and certify.   

Therefore, a framework is needed which would 

allow decision-makers to understand the impact 

of various collaboration strategies on mission 

performance. Furthermore, the decision makers 

must be able to assess the performance of the 

mission in the event of degradation that inhibits 

collaboration.  This paper hypothesizes that not 

every mission will have a measurable benefit in 

performance from collaboration, and that 

mission characteristics can be identified which 

describe the “tipping points” at which 
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collaboration truly gives a significant bonus in 

overall mission performance.   

To test this hypothesis, it is necessary to create a 

framework to model operations, quantify and 

evaluate the metrics of effectiveness, and 

determine which  operational paradigm is most 

effective for a given mission and scenario. With 

advances in computing power and development 

in data analysis techniques, such an analysis is 

now possible. This paper will showcase such a 

framework used to evaluate the effectiveness of 

a group of coordinated unmanned aerial 

vehicles assisting in maritime search and rescue 

operations under varying mission parameters. 

The goal of the framework will be to allow 

decision makers to determine what combination 

of mission characteristics and collaboration 

tactics will actually lead to overall mission 

improvement, as well as identify mission 

scenarios in which mission performance is 

insensitive to the addition of collaborative 

tactics.   

 

1.1 Autonomous Coordination 

An autonomous system of UAVs is said to be 

coordinated if it consists of a group which 

communicates and shares information which is 

then used to make decisions leading toward a 

pre-determined goal. The type and frequency of 

information shared is dependent on the design 

of the system and would vary based on the 

application. 

Currently, UAVs have largely been used 

individually and in an uncoordinated manner. 

However, recent technological advances are 

enabling the maturation of coordinated groups 

of UAVs. The main drivers have been advances 

in computer science which have improved data 

storage and processing capabilities. At the same 

time, many leaders in industry, government, and 

academia have included UAV coordination in 

their scope of future research and development. 

In their 2011 to 2036 Unmanned System 

Integrated Roadmap, the U.S. Department of 

Defense has stated that, “… autonomous 

systems need the capability to interact and work 

together with other autonomous systems … and 

do so safely and reliably.”[2] Additionally, the 

U.S. Navy has stated that, “The area of 

autonomy and control is a major research area 

of all UVs … aspect of autonomy is the 

cooperative or collaborative coordination 

among multiple vehicles.”[3] There is therefore 

a clear desire to implement coordinated multi-

UAV systems. Furthermore, the technology to 

enable these advances is being matured, even 

though the advances themselves have yet to be 

realized. 

However, there has not been a significant 

amount of research on defining the 

characteristics of missions and scenarios in 

which coordination would truly provide a 

measureable benefit in mission performance 

over simply using an uncoordinated group of 

multiple UAVs.  Much of the literature and 

vision documents assert that there is much 

benefit to be had from collaboration, but often 

gloss over the cost of achieving that 

collaboration.  Given that the development and 

implementation of such a technology is neither 

trivial nor inexpensive, it is necessary to 

understand the cases in which the achieved 

benefits from collaboration are worth the cost of 

implementing the technology.  This paper 

presents a methodology and framework 

understanding the sensitivity of the 

collaborative benefits to changes in the scenario 

under which a mission is being executed.  This 

approach provides a way to assess the value of 

unmanned vehicle collaboration for missions 

and scenarios of interest by comparing the 

coordinated mission performance to a baseline, 

uncoordinated mission performance.  Using a 

sensitivity analysis, the characteristics of the 

scenario in which collaboration is necessary to 

achieve significant mission performance 

improvements are identified for the case study 

presented.  This framework is presented through 

the application to a case study, described in the 

following section.   

1.2 Case Study Introduction: Maritime 

Search and Rescue 

Maritime search and rescue (SAR) has a very 

simple problem statement: a missing person is 

lost at sea and must be recovered as soon as 

possible. SAR is a relevant engineering problem 

for a number of reasons. First, the search area 
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must be explored in minimum time. This can be 

framed as an optimization problem, and many 

possible methods may be devised to accomplish 

this goal. Second, uncertainty about the missing 

person’s location and the impacts of the weather 

environment may make the search area very 

large. Finally, a person or life raft in the water is 

a challenging object for most sensors to detect.  

The combination of these challenges makes this 

a particularly difficult mission, and one in 

which any operational edge is critical.   

 Further challenges are introduced by 

assuming the search area is large. A larger area 

requires more time to explore when only a few 

vehicles are available for the search effort. Once 

the time required becomes large, persistence 

becomes an issue and planners must begin to 

consider refueling needs. If the number of 

search vehicles is increased to mitigate these 

challenges, more personnel will also be 

required. These challenges imply a need to 

search the area more quickly, with a larger 

number of vehicles having higher persistence, 

and with fewer personnel required for the search 

effort. This implies a possible solution to the 

problem may be a coordinated group of 

autonomous UAVs.  The goal of the case study 

presented in this paper is to determine under 

what characteristics of the search area will a 

coordinated group of UAVs provide a 

significant benefit to mission performance (in 

terms of mission completion time) as compared 

to one or more uncoordinated UAVs,   

2 Case Study Objectives 

Several questions immediately arise when 

considering whether to employ collaborative 

UAV groups in maritime SAR. The first 

question asks whether the group is truly needed, 

or under what circumstances such a group may 

be useful. For instance, many SAR missions do 

not involve a large search area. If the search 

area is small, it is not clear that an autonomous 

group would bring added value. However for 

large search, there is little debate that, given the 

necessary technological advancements, such a 

group would be of immense use. The question 

still remains as to how much benefit can be 

gained from coordinated operations over simply 

using a large number of vehicles in an 

uncoordinated manner. Answering these 

questions is impossible without the means of 

such a framework as we propose. The 

framework must allow the physical 

characteristics of the search problem to be 

varied parametrically.  

Therefore, the framework proposed here is 

designed to aid in answering the following 

general questions: 

 Under what scenarios does a group of UAVs 

provide measurable benefit over a single 

UAV for a given mission? 

 Under what scenarios does a coordinated 

group of UAVs provide measurable benefit 

over an uncoordinated group of UAVs for a 

given mission? 

Thus, the goal of the work presented in this 

paper is to create a framework that can be used 

to evaluate the effectiveness of conventional 

maritime SAR operations and a hypothetical 

group of autonomous UAVs in a physically 

parameterized mission space. Here, the problem 

of optimizing the search methods is not 

undertaken. Instead, we create a framework to 

determine under what circumstances a 

coordinated group is useful.  

Some of the mission specific questions 

answered in the case study include:  

 How large must the search area be before a 

group brings added value?  

 What are the impacts of sensor technology 

and weather conditions on the metrics of 

effectiveness?  

 What are the cost impacts of utilizing a 

coordinated group?  

With this framework, a decision maker can 

identify critical points (if any) inside the 

mission space where collaborative search 

becomes more effective than the current 

operational paradigm. The framework also 

allows the decision-maker to identify the more 

effective operational plan for a particular set of 

mission space input parameters. 

This maritime search and rescue case study is 

not the end-goal of this framework and related 
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research. This case study was merely a starting 

point in the research of exploring the 

implication of large mission spaces to the 

operations and technologies used within them. 

The same approach may be applied to any 

similarly parameterized mission, or extended to 

evaluate alternative collaboration methods to the 

single method considered in this study.  

 

3 Methodology 

3.1 General Approach 

The proposed framework is based around the 

application of a decision-making process to 

answering the questions posed in the previous 

section.  Thus, the general steps taken include 

are: (1) Clearly define the parametric mission 

space of interest, (2)  Clearly define the baseline 

against which collaborative operations will be 

evaluated, (3) Determine coordination methods 

of interest and group configurations to be 

evaluated, (4) Develop and implement an 

appropriate modeling and simulation testbed, 

(5) Evaluate the baseline and proposed 

alternatives using the testbed, and (6) synthesize 

and visualize results to gain insights and support 

decision making.  In order to describe the 

application of these steps to a problem, the case 

study is used as a demonstration.  Note that this 

same overall framework can be applied for any 

other mission in which similar questions arise.   

3.2 Application of Methodology to Case 

Study 

The first step in the development of the 

framework was to describe the problem of 

interest.  In this case, a person issues a distress 

call from a known point in the ocean.  The coast 

guard immediately deploys one or more 

vehicles to search for and rescue the person in 

distress.  The primary measure of success will 

be the time to locate and recover the distressed 

person.  Other metrics, such as the cost to 

complete the mission, will also be tracked. The 

dimensions of the search area are linked to the 

estimated uncertainty of the missing person’s 

initial location and the expected drift. Once the 

search area is defined, both the conventional 

and collaborative search operations must be 

identified. With these methods in place, 

evaluation of the operational alternatives 

requires an agent based modeling and 

simulation environment. In our environment, 

each search vehicle is modeled as an agent 

having a set of attributes and methods which 

guide its motion, behavior, and interactions with 

other agents. The environment enables input of 

mission parameters, dynamic visualization of a 

mission, measurement of metrics of 

effectiveness, and comparison between 

operational methods. The two operational 

methods considered in this study are the 

conventional SAR operations as described by 

the US Coast Guard in [4], and an algorithm for 

autonomous coordinated search described in [6] 

and [7]. 

3.2.1 Mission Definition 

SAROPS [9] is a major operational planning 

and decision support tool used by the US Coast 

Guard. The tool automatically generates a 

search area based on a probability of mission 

success (POS), probability of containment 

(POC), and probability of detection (POD). This 

search area is comprised of an outer perimeter 

(an irregular polygon) and a probability density 

function overlaid on the interior space. Within 

SAROPS, the outer perimeter is varied until the 

POC is under a certain threshold. Thus, the 

definition of the search area is itself an 

optimization problem which depends on the 

rescuers’ best intelligence about the behavior of 

the missing person prior to distress and upon 

weather conditions affecting drift.  

For our study, we chose to adopt a similar 

probabilistic approach to defining the search 

area, but simplified its shape. We assume a 

datum point has been reported in a distress call, 

and a circular area whose radius is equal to the 

uncertainty attached to the reported position. 

The search area is then lengthened and widened 

in the direction of the expected drift. The 

widening angle is related to the uncertainty of 

the drift estimate, and the length is equal to the 

expected drift velocity multiplied by the total 

time allotted for the search effort. A sketch of a 

representative search area used in our 

simulation model is shown in Figure 1. 
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Figure 1: Search area and standard ladder 

pattern from the U.S. Coast Guard 

3.2.2 Baseline Development 

Although the Coast Guard uses a probability 

density map to define a search area, the rescue 

vehicle makes no use of the distribution after 

the mission has begun; it is used only as a 

planning tool to define the search area prior to 

mission start. Once a datum point is defined, a 

deterministic search pattern is flown over the 

area until the missing person is located and 

recovered. Two typical search patterns are the 

ladder (Figure 1) and the expanding square. In 

our implementation, we choose to model the 

expanding square pattern as the baseline. 

 

 

3.2.3 Definition of Alternatives 

The next step in the process was to identify 

coordinated operations to model and compare to 

the current operations of maritime search and 

rescue. As discussed previously, the current 

SAR-Ops generates a probability distribution 

based on inputs such as distress location 

certainty, and wind and drift velocity. The 

operators then use this data to determine a static 

search pattern. This method, while simple, 

abandons a lot of information in the distribution 

that could be further used to conduct a search 

using a more complex, but robust method. It 

was therefore sought to identify a search method 

which utilized such information and could be 

used by a group of UAVs to, in a coordinated 

fashion, intelligently search the area for the lost 

person. 

 

After a literature search on coordination 

methods for finding a lost object in a dynamic 

environment, a method called “an optimal 

search in a Bayesian world” was identified as a 

potential approach for collaboration [5][6]. In 

such a scheme, a probability distribution 

function is overlaid on a physical environment 

based on known information. The probability 

over each cell is the probability or “belief” that 

the target is in that location. A group of UAVs 

are then released to explore the environment 

each with their own belief map. At each time 

step, the UAVs check their sensors and update 

their local belief map with the new information 

along with a time stamp. Then, they share their 

new belief maps with other agents within 

communication matrix and update their maps 

based on information received. Additionally, 

due to uncertainty, wind, and drift, the 

probability in the cells of each agents map begin 

to “grow back” if the cell has not been visited or 

updated for an extended amount of time, and the 

values in cells shift in space at the same rate at 

the drift; this is similar to the “spreading fire” 

problem. An example simulation from a group 

that helped developed this method is shown in 

Figure 2. Using this coordination method, a 

group of UAVs can search a complex space in a 

non-redundant manner while ensuring the areas 

of highest probability are searched first. 
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Figure 2: Example of multiple agents 

searching for a lost target using an optimal 

search in a Bayesian world [5] [6] 

It was therefore required to generate a 

probability distribution for the agents in the 

model to use to search the space. The U.S. 

Coast Guard handbook was again consulted to 

attempt to reproduce a rough approximation of 

what their statistical model may output. A 2-

dimensional Gaussian distribution was created 

based on statistical information provided by the 

U.S. Coast Guard data. The positional 

uncertainty of the location reported in the 

distress call was used as a guideline for creating 

the standard deviation of the distribution. The 

standard deviation stretches in the direction of 

the drift velocity. This stretching is time-

dependent to reflect the real-world insight that 

as time passes, the true location of the missing 

person becomes more uncertain. The equations 

for a standard Gaussian distribution, the mean, 

and the standard deviation are shown below and 

a graphical representation of the distribution 

changing in time is shown in Figure 3. In this 

example, the bearing error is 4 degrees (as 

defined in the U.S. Coast Guard S&R manual) 

and the radius is of the distribution at mission 

start is 15 nautical miles. 

 

Equations 1-5 describe this implementation.   

   (1) 

      

   (2) 

    

  (3) 

           

  (4) 

             

 

     (5) 

 

 

3.2.4 Modeling and Simulation 

In order to penetrate the complexities of a SoS, 

a modeling and simulation environment is often 

required. While visualization of the system is 

important, the real benefit of such an 

environment is the ability to explore and 

identify behaviors in the SoS which were 

unforeseen until revealed by exploitation of the 

model. The environment required for this 

problem is an agent based simulation capable of 

modeling multiple, coordinated UAVs. In 

addition, the environment must be able to 

handle other aspects of the problem such as the 

missing person(s), weather condition, and the 

Bayesian model of the search area.  

 

Before constructing a new environment from 

scratch, existing solutions were explored, and 

one was found that fit most of the requirements 

from the previous paragraph. The Java-based 

environment is called the Unmanned Vehicle 

Collaboration Research Environment (UV-

CoRE) [10], shown in Figure 4. Although UV-

CoRE was already an agent-based simulation, it 

Figure 3: Gaussian distribution evolution at 0, 

64, 150, and 240 min into after the distress 

call, read left to right, top to bottom 
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lacked inter-agent coordination and the 

Bayesian search method. Therefore, these 

missing pieces were added to the environment. 

 

 

Figure 4: Unmanned Vehicle Collaboration 

Research Environment (UV-CoRE) 

3.2.5 Evaluation of Mission Effectiveness 

In order to be able to evaluate the coordinated 

operations, the metrics of success for this 

mission had to be defined. When searching for a 

person lost at sea, especially in cool water, the 

most important thing is to find them as soon as 

possible. In waters as warm as 50 degrees 

Fahrenheit, hypothermia can become a serious 

risk in as little as 30 to 60 minutes, with the 

expected survival time being as low as 1 to 3 

hours [8]. Another metric of success in the cost 

of the mission. Currently, the United States 

Coast Guard spends approximately 50 million 

dollars annually on SAR operations [4]. 

Therefore, the two main metrics of success 

identified for a maritime search and rescue 

mission were the total time to find the target, 

and the total cost of running the mission.  The 

time to find the target is the sum of the response 

time (the time it takes the rescue team to take-

off after receiving a distress call) and the 

amount of time to find the target. While the time 

metric is straight forward to calculate, the cost 

metric is much more difficult to estimate 

accurately. The mission cost is broken down in 

Table 1 and discussed in the following 

paragraph. 

Although we acknowledge the acquisition cost 

of the rescue platform, we do not model this 

cost in the simulation environment. . As the 

acquisition cost of vehicles are amortized over 

its entire lifespan, a proper estimate for the cost 

of ownership during a single mission was not 

able to be found. Therefore, to avoid making 

poor assumptions, it was not included in the 

model (however, a user with such knowledge of 

their system could easily modify the 

environment to include any acquisition cost they 

chose). The direct operating cost consists of fuel 

cost and crew support. At each time step, the 

thrust required was calculated from a simple flat 

plate drag model. The fuel burn was determined 

from the thrust required and an estimated thrust-

specific fuel consumption. The cost of fuel was 

estimated by the current average price of Jet-A. 

The crew support is an input of the cost per hour 

for the helicopter crew to monitor the group of 

UAVs and participate in the search. Lastly, 

much like the acquisition cost, there once again 

was difficulty properly estimating maintenance 

costs per vehicle per mission. Therefore, 

maintenance costs are acknowledged, but not 

included in the model. 

Table 1: Cost Modeling Breakdown 

Total Cost 

Acquisition 

Cost 

Cost of 

vehicles and 

sensors 

Not 

included 

Direct 

Operating 

Cost 

Fuel and 

crew 

support 

Fuel: 

$2.00 per 

gallon 

Crew: 

$2800 per 

hour 

Indirect 

Operating 

Cost 

Maintenance 

of vehicles 

Not 

included 

 

 

4 Experimental Setup 

With all of the pieces of the framework 

identified, the maritime search and rescue case 

study can be implemented. A design of 

experiments (DoE) was performed on the 

parameterized input space and a surrogate 

model of the metrics of success was generated. 

With the surrogate mode, an analysis of the data 

could be performed with substantially fewer 

simulation runs. 
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4.1 Mission Variables 

To set up the parameterized mission space, a list 

of the mission parameters to be varied was 

defined. Some of the parameters are best 

explained with a visualization and are shown 

below in Figure 5. All input parameters are 

discussed below: 

 

1. Response time 

The response time is the time between receipt of 

a distress call and the dispatch of a rescue team 

to recover the missing person. 

 

2. Radius of uncertainty 

This parameter quantifies the uncertainty of the 

initial location reported in the distress call. The 

magnitude depends on the technology used by 

the distress vessel to generate the latitude and 

longitude coordinates. 

 

3. Wind velocity / Ocean current velocity 

The wind velocity and ocean currents affect the 

drift of the target throughout the mission. This 

parameter allows the user to perform sensitivity 

analysis based on atmospheric and oceanic 

conditions. 

 

4. Estimated drift velocity 

The drift velocity is estimated by a 

superposition of the wind velocity and ocean 

currents. 

 

5. Offset factor/angle 

The offset factor is the distance from the 

missing person’s actual location to the location 

reported in the distress call. Small vessels with 

low-quality equipment may report a location 

which is inaccurate by tens of nautical miles. 

The offset angle defines a direction to the 

missing person relative to the drift velocity. 

These parameters are known to the simulation 

object, but are neither known nor accessed by 

the search and rescue team during a simulated 

mission. 

 

6. Drift angle to base 

The drift angle to base is the relative angle 

between the estimated drift velocity of the target 

and a vector to the take-of location of the rescue 

team. This parameter enables sensitivity 

analysis based on the effects of approaching the 

search area from a downwind, upwind, or 

crosswind direction. 

 

7. Type of UAV 

The type of UAV selected for this project was a 

MQ-1 Predator. The UV-CoRE environment is 

modular, so any existing or hypothetical 

platform may be modeled by the user. 

 

8. Number of UAVs 

The number of UAVs in the coordinated group.  

 

9. Sensor effective sweep radius 

This parameter defines the maximum radius at 

which the UAV may be reasonably expected to 

detect the missing person. The simulation does 

not model signal degradation. Instead, a 

probabilistic model is used to handle the 

possibility of the search vehicle not detecting 

the target and reporting a false negative. 

 

10. Probability of detection (UAV) 

Even if the target is within the sweep radius of 

the sensor, it is difficult for recognition 

algorithms to detect the person, especially in 

adverse conditions and high sea states. This 

parameter introduces stochasticity into the 

simulation.  

 

11. Probability of detection (manned vehicle) 

This is the probability that a trained search and 

rescue pilot will not identify a person even if the 

person is within the pilot’s field of vision or 

sensor radius.  

 

In addition to the mission parameters, a model 

of the current operational paradigm had to be 

defined. For this purpose, a search helicopter 

was simulated to follow an approximation of 

present-day U.S. Coast Guard operational 

procedures. The helicopter flies directly to the 

peak of the PDF. After reaching the peak, it 

discards the PDF and begins an expanding 

square pattern. 

 

For a very practical reason, a helicopter was 

also included in the simulation of the 

coordinated group of UAVs. In a real mission, it 
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is extremely unlikely that a group of fixed-wing 

UAVs will be deployed alone since they have 

no way to recover the person once located. So to 

reflect the fact that a person needs not only to be 

found but rescued, a conventional rescue 

helicopter is dispatched by the simulation along 

with the group of UAVs. Upon arrival, the 

UAVs continue to use the PDF and perform the 

steps shown in Figure 6. After arriving at the 

peak of the distribution, they check their sensors 

at each time step and use the information to 

update their belief map. If the missing person is 

not found at that location, the probability is 

lowered at that location. Then, each UAV shares 

its map with all other UAVs within 

communication range. After sharing data, each 

UAV moves in a steepest ascent direction to the 

next-highest probability. The step where they 

share information is what makes the operations 

coordinated and not just autonomous. 

  

A sample visualization from an actual 

simulation run is shown in Figure 7. In this run, 

seven UAVs and a search helicopter are 

dispatched to find a missing person (identified 

by the circular icon). In the figure, the search 

helicopter and the UAVs are indistinguishable 

from one another. 

 

Offset factor

Offset angle

PDF peak

Missing person

Initial radius of 

uncertainty

Est. drift velocity

UAV starting 

location (base)

Drift angle 

to base

Function of wind and 

ocean currents

Est. drift velocity * total 

simulation time

Mission parameter definitions:

 

Figure 5: Search and rescue model mission 

parameter definitions 

 

Figure 6: Overview of how the UAVs were 

modeled. Note the step outlined in green is 

where the coordination came into play 

 

Figure 7: Screen shot of the finished 

maritime search and rescue model. 

 

4.2 Design of Experiments 

 

The modeling and simulation environment can 

easily be exploited for analysis of the mission 

space in its entirety and not just for analysis of a 

single simulation run. To perform this kind of 

analysis, many possible combinations of the 
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mission parameters must be queried. The upper 

and lower bounds considered in this study are 

shown below in Table 2. Even with a resolution 

of one unit on every parameter (0.1 units in the 

case of the sweep radius), the required number 

of runs would be 6.9984e11 cases. At one 

minute of computation time per case, this would 

take about 1.3 million years to run! An 

appropriate design of experiments (DoE) was 

therefore needed to extract the most information 

from the least possible computation time. Even 

with a design of experiments to reduce the 

required number of runs, the probabilities of 

false negatives introduces stochasticity into the 

simulation and necessitates repetition of 

individual runs until the moving average 

remains within some tolerance. For the sake of 

computational time, this was estimated to be ten 

repetitions per case. 

 

The DoE selected was a Latin hypercube with 

additional corner points to reduce error at the 

extremes of the mission space. The resulting 

hybrid DoE consisted of 880 cases plus 70 

corner point cases Each case was repeated ten 

times. 

Table 2: DoE Ranges 

Mission 

Inputs 
Parameter 

Lower 

Bound 

Upper 
Bound 

Search 

Space 

Response time 

(min) 
0 30 

Initial radius of 

uncertainty (nmi) 
5 30 

Wind velocity 

(kts) 
0 20 

Ocean current 

velocity (kts) 
0 3 

Offset factor (0-

50% of uncertainty 

rad.)  

0 1 

Offset angle (dew) 0 360 

Drift angle relative 

to base (deg) 
0 360 

Vehicle 

Type of UAVs 

MQ-1 Predator 

(test case) 

Number of UAVs 0 10 

Sensor effective 

sweep radius (nmi) 
0.3 1.5 

Probability of 

missed detection 

(UAV) 

30% 

Probability of 

missed detection 

(manned) 

20% 

 

4.3 Creation of Surrogate Model 

The results from the cases run in the DoE were 

used to create a surrogate model. This was done 

in order to enable a sensitivity analysis of the 

mission parameters without excessively large 

computational requirements.  Secondly, the 

surrogate models are able to provide a 

continuous representation of the design space, 

which can then be used to visualize the actual 

shape of the space and identify key critical 

points where a particular architecture (i.e. 

collaborative or non-collaborative) becomes the 

preferable concept of operations.   

 

The surrogate model selected for this problem 

was a neural network. The neural network was 

selected because the problem is highly non-

linear, has continuous and discrete inputs, and 

has a large number of input variables with large 

ranges. A software tool developed the Georgia 

Tech Aerospace System Design Lab (ASDL) 

called BRAINN 2.4 was used to generate the 

model. The neural network architecture had a 

single layer with eight hidden nodes with a 

logistic sigmoid activation function.  

 

Initial attempts to create the neural network 

resulted in overfitting, so subsequent runs 

employed early stopping during the training 

process. 220 random points were then used to 

validate the model, and the resulting validation 

report is shown in Figure 8.  
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Figure 8: Goodness of Fit Measures for 

Surrogate Model 

 

5 Case Study Results 

From the surrogate model, a deterministic 

equation was obtained from which an eleven 

dimensional response surface could be 

generated. This equation was exported to the 

statistical analysis software JMP to be analyzed. 

The goal was to identify critical points in the 

large mission space where coordinated 

operations added no benefit to the success of the 

mission compared to the conventional 

operations. Additionally, it was sought to find 

areas of the mission space where the 

coordinated group of UAVs brought substantial 

benefit. 

 

This discussion will center on the primary 

metric of success for this mission: time to locate 

the target.  JMP was used to create a set of 

prediction profilers to visually represent the 

sensitivity of the response to each of the inputs.  

A screenshot of the JMP profiler is shown 

below in Figure 9, and can be used to assist in 

sensitivity analysis. The inputs of the model are 

shown on the x-axis with the outputs on the y-

axis. The lines in each box represent the trace of 

the function (i.e. the trend line of that output 

against the given parameter when all other 

parameters are held constant at their displayed 

value).  The values for the inputs shown in red 

are a critical point identified in the mission 

space where the metrics of success are 

insensitive to the addition of coordinated UAVs. 

A search and rescue dispatcher would have 

control over only three inputs: the sensor radius, 

the response time, and the number of agents sent 

out. All others are either unknown to the 

dispatcher or uncontrollable. From the profiler 

below, it can be seen that for this level of 

uncertainty about the initial position and 

weather conditions, a single search helicopter 

could perform equally as well as a coordinated 

group of UAVs. However, the time to recover 

the missing person could be substantially 

reduced by investing in better sensor. An 

interesting tradeoff can be seen here between 

the number of agents and the strength of the 

sensors being used. There is a tension between 

having one vehicle with very advanced sensors 

and having many vehicles with cheaper sensors. 

Selecting the right choice not only could save 

more lives, but could save money. This 

framework can allow for such a tradeoff 

analysis to be performed before investing 

valuable resources into what may be a less 

effective platform. 

 

The framework was also used to discover 

regions of the mission space where it is 

beneficial to dispatch a group of coordinated 

UAVs. Figure 10 shows the prediction profiler 

at one of these regions. To clearly show the 

impact on the time metric, the profiler is shown 

twice: once with one agent (the search 

helicopter) and again with eleven agents (the 

search helicopter plus ten coordinated UAVs.) 

The profilers indicate the target was found more 

than one hour sooner with a coordinated group. 

This is not an insignificant amount of time and 

could be the difference between life and death.  

 

Even in this region of the mission space, it is 

again noted that the largest gains still come 

from investing in sensor technology. Also, an 

unintuitive result is visible at this point. Notice 

that increasing the response time actually 

decreases the time required to find the target. 

This is due to the drift angle relative to base 

(which is 175 degrees for this case). Referring 

back to Figure 5, one can see that such an angle 

implies that the person is drifting towards the 

base.  It would be nonsense to advocate waiting 

longer to respond when the target is drifting 
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towards the base, but this result does give 

insight on how the scenario itself can have a 

significant impact on the overall mission 

outcomes, as well as an example of the care 

which must be taken when interpreting the 

results of a framework such as the one presented 

here.      

 

From these results, it has been demonstrated 

that the framework is capable of answering the 

questions which motivated the development of 

the problem.  Based on the available technology 

and characteristics of the mission space, a user 

of this framework can clearly identify under 

what conditions the application of a coordinated 

group of UAVs can provide a quantifiable 

benefit in mission success over a conventional 

concept of operations. 

 

A final demonstration of the utility of our 

modeling and simulation environment is its 

ability to support decision making. The 

decisions discussed here are representative of 

what may be encountered in the requirements 

definition phase of a new design, in selection of 

sensor packages for an existing vehicle, and in 

assembly of a rescue team during mission 

planning. 

 

Constraint analysis may be performed during 

requirements definition by plotting contours of 

mission input parameters. For example, plotting 

the radius of uncertainty versus the sensor 

radius allows designers to set requirements for 

sensor packages if a fixed cost or time is allotted 

for the design mission. Figure 11 shows such a 

contour plot for a coordinated group of six 

UAVs and a maximum of 60 minutes allowed to 

locate the target. Varying the other mission 

parameters constitutes a different design point 

and allows rapid tradeoff studies to be 

performed. 

 

Two decisions, selection of sensor packages and 

mission planning, can be performed with a 

contour plot similar to Figure 12. Here, the plot 

can be used in one of at least two ways. Given a 

maximum mission time and a number of UAVs, 

requirements for sensor packages can be set 

during the design phase of a new vehicle or 

system of vehicles. Conversely, the required 

number of UAVs can be determined in mission 

planning if the sensor radius is a given. Similar 

constraint analyses may be performed on the 

other mission parameters. 

 

Figure 9: Prediction profiler at point which is insensitive to changes in the number of UAVs. The 

arrows indicate the magnitude and direction of the partial derivative at this point in the mission 

space.
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Figure 10: Point in mission space where the number of agents significantly impact the time to 

find the target (note the times in red to the right of the vertical axis).

 

Figure 11: Contour plot of uncertainty radius 

versus sensor radius with cost and time 

constraints 

 

 

Figure 12: Contour plot of number of agents 

versus sensor radius with a requirement of 60 

minutes allowable to complete the mission 

6 Concluding Remarks 

This paper has described and demonstrated an 

approach for understanding the types of mission 

scenarios for which coordinated UAV 

operations can be beneficial.  The framework 

created for evaluating the effectiveness of 

coordinated operations on a large mission space 

has potential for assisting decision makers with 
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understanding when and where their SoS will be 

effective. For the first implementation of the 

framework, a maritime search and rescue 

mission was modeled, and the case study has 

been presented here. From the results, critical 

points within the mission space where 

coordinated operations brought no additional 

benefit to the mission were able to be found, as 

well as critical points where coordination 

provided clear benefit to the mission. 

Additionally, the framework can allow for other 

tradeoff analysis such as examining trades 

between sensor performance and the benefits of 

coordinated operations. Future work include the 

inclusion of additional missions and 

collaboration schemes into the framework, and 

will consider approaches for improved cost 

modeling.  The eventual goal will be to have a 

robust framework to perform virtual 

experiments on the operations of coordinated 

UAVs across a broad range of missions.   
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