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Abstract  

This paper proposes a multi-step approach to 

optimize the commercial aircraft trajectory in 

the presence of current Air Traffic Management 

system. A set of waypoints are first determined 

by approximated trajectories and a shortest 

path algorithm. Then, a numerical optimal 

control method is used to compute the optimal 

trajectory passing through the waypoints. The 

convergence rate is analyzed to validate the 

approximation.  Numerical results show that a 

sequence of waypoints, and optimized 

trajectories with computational efficiency. 

1 Introduction  

The increasing demand of public consumers for 

air traffic services over the past decades has led 

to the development of Air Traffic Management 

(ATM) system.  To modernize the ATM system, 

the Single European Sky ATM Research and 

abbreviated as SESAR [1], the Next Generation 

Air Transportation System (NextGen) [2], and 

Seamless Asian Sky (SAS) have been initiated 

in Europe, United States, and Asia/Pacific 

region respectively. The aim of these programs 

is to improve the safety, capacity, efficiency and 

cost-effectiveness, and to reduce environmental 

impact of aviation. One of the performances to 

achieve the goal of these programs is the 

Trajectory Based Operation (TBO) concept that 

dynamically, flexibly and efficiently adjusts 

flight paths in 3-dimensional space (longitude, 

latitude and altitude) and the time using known 

positions and intents. Flight plans include 

information related to the intended flight of an 

aircraft filed by airliners with the Air Traffic 

Controller (ATC) authority. In flight planning 

for the current system, it is essential to divide 

aircraft trajectory into several phase decided by 

the optimal sequence of waypoints which is 

called a flight route. The waypoints are stated in 

the Aeronautical Information Regulation and 

Control (AIRAC) cycle [3]. 

This paper deals with trajectory 

optimization which considers both continuous 

(aircraft dynamics, constraints, etc.) and discrete 

(a flight routing) system for flight planning in 

the presence of the current Air Traffic 

Management (ATM) system. 

Numerical trajectory optimization methods 

have been studied for several decades [4]. There 

are many researches for commercial aircraft 

trajectory optimization in order to improve 

ATM system based on the numerical trajectory 

optimization methods formulated as an optimal 

control problem [5]–[17]. In [5]–[13], the 

minimum time and/or fuel consumption 

trajectory optimization problem for commercial 

aircraft is studied by using numerical optimal 

control problem which does not include discrete 

system. In [14]–[17], they include both 

continuous and discrete system for the state of 

aircraft and decision making process of 

sequencing by using mixed-integer 

optimizations. Those approaches have 

disadvantages of absence of decision making 

process for the sequence of waypoints in [5]–

[13] and the high computational load and 

difficulty of formulation in [14]–[17], 

respectively. 

The proposed approach is to flight 

planning in the presence of current ATM system 

based on both the numerical optimal control 

method and the shortest path algorithm. The 

approach can consider both the continuous 

aircraft dynamics constraints and the discrete 

sequence of waypoints. The advantages of this 

approach are reducing the computational load 
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and the complexity of formulation compared 

with the mixed-integer optimization. In 

addition, the approach has a potential possibility 

of online modifications of the flight routes to be 

described in Sec.4.2. 

Flight planning problems can be dealt with 

a multi-step optimization based on both the 

numerical optimal control method and the 

shortest path algorithm. In this study, the multi-

step optimization is performed as following 

steps: 1) calculate coarsely optimized weights 

by using a global pseudospectral method 

between each vertex used in the shortest path 

algorithm; 2) find shortest path based on the 

weights; 3) refine the flight trajectory based on 

the sequence of waypoints decided by 2).  

This paper is composed as follows. 

Problem modeling for flight planning is the 

content of Sec.2. The multi-step optimization 

for flight planning including the numerical 

optimal control method and the shortest path 

algorithm is described. This context is provided 

in Sec.3. In Sec.4, an application of the multi-

step optimization to an en route trajectory and 

results of the application are discussed. Sec.5, 

finally, contains the conclusions and future 

works. 

2 Problem Modeling 

In this section, we present the flight planning 

problem. This section involves the horizontal 

aircraft dynamics, path constraints of the 

dynamics, the meteorological model, the 

airspace structure and the performance index of 

the problem. 

2.1 Dynamic Constraints 

We consider horizontal motion of the aircraft 

over a spherical Earth, the differential-algebraic 

equations of motion are as follows [18]: 
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In the set of Eq.(1), the state vector is 

( ) ( ( ), ( ), ( ), ( ), ( ))x t t t V t t m t   , where 

, , ,V   , and m  denote longitude, latitude, the 

true air speed, the heading angle, and the 

aircraft mass, respectively. The control vector is 

( ) ( ( ), ( ))u t T t t , where T  and   are the 

engine thrust and bank angle, respectively. W  

and W  denote the components of the wind 

vector. The specific fuel consumption 

corresponds to  . D  and L  are aerodynamic 

drag and lift, respectively. The aerodynamic lift 

and drag are driven by dimensionless coefficient 

of lift LC  and drag DC . Lift ˆLL C Sq  and drag 

ˆDD C Sq , where S  is the reference wing 

surface area, and 2ˆ 1 2q V  is the dynamic 

pressure. g  and r  are the acceleration of 

gravity and Earth radius, which is assumed as 

constant, respectively.  

2.2 Path Constraints 

We use the Base of Aircraft Data (BADA) 3.12, 

which provides models for fuel consumption, 

thrust, aerodynamic force, performance 

limitations, etc. The aircraft motions are 

constrained by performance limits. Performance 

constraints are considered to define the domain 

of state and control variables. 

    min max
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More details can be found in the BADA 

database manual [19]. 

2.3 Meteorological Model 

Wind forecast data are provided by the National 

Oceanic and Atmospheric Administration to 



 

3  

SHORTEST PATH OPTIMIZATION FOR ATM BASED ON 

APPROXIMATED OPTIMAL PATH 

take into account the influence of wind. The 

wind forecast data are fitted into analytic 

functions which are 4rh order multiple linear 

regression [20]. 
2

00 10 01 20 11

3 4
13 04

2
00 10 01 20 11

3 4
13 04

x x x x x
x e e e e y

x x
e e e

y y y y y
y e e e e y

y y
e e e

W x y x x x

x y y

W x y x x x

x y y

    

 

    

 

     

 

     

 

 (3) 

2.4 Airspace Structure 

The trajectory optimization has no meaning 

until specifying a set of waypoints the aircraft is 

going to fly (called briefly routes). Therefore, 

the airspace is structured to ensure the safety 

and the sequence of commercial aircraft 

operations. The waypoints are published in a 

basic manual for called the Aeronautical 

Information Publication (AIP) [3]. AIP is 

updated by regular version on a fixed cycle 

which is known as the Aeronautical Information 

Regulation And Control (AIRAC) cycle [3].  

Flight plans have to include the routes specified 

in the AIRAC. 

We utilize the AIRAC cycle and model 

applied in [14]. In the paper, the airspace is 

modeled as a graph, and it is supposed that the 

aircraft must traverse the route. The graph is a 

complete multipartite graph structure, whose 

vertex set is divided into several independent 

subsets called partite sets. The graph is 

composed of a sequence of the partite sets that 

include the initial waypoint and the final 

waypoint. The aircraft have to pass through one 

of the waypoints in every partite set of the 

graph. For example, there are three partite sets 

except the initial and the final waypoint, and 

each partite set holds seven waypoints, then, 

aircraft have to traverse five waypoints from the 

initial waypoint to the final waypoint as shown 

in Fig. 1. 

2.5 Performance Index 

For flight planning, we utilize the Direct 

Operating Cost (DOC), which is decided by 

airliners and aircraft owners, as an objective 

function. The DOC is composed of the fuel and 

time cost. The performance index can be written 

as follows: 

  
0

(DOC) ( , ) CI
ft

t
J FF x u dt    (4) 

where FF  is fuel flow. 0t  and ft  are the initial 

and terminal time, respectively. The CI , 

abbreviation of Cost Index, is the ratio of time-

related cost and the cost of fuel. When the CI  is 

equal to zero, it generates the fuel optimal 

trajectory, in the contrast, as the CI  is 

increasing, time performance index tends to be 

increasing [21]. 

3 Multi-Step Flight Planning Optimization 

The trajectory optimization involves both 

continuous and discrete system: aircraft 

dynamics and waypoints. Instead of solving 

mixed-integer optimization, we propose a multi-

step optimization approach as follows:  

 

Step1) Calculating coarsely optimized weights 

between each vertex of the graph by using a 

global pseudospectral method. 

Step2) Finding a set of waypoints aircraft must 

traverse by using a shortest path algorithm. 

Step3) Refining the coarsely optimized 

trajectory in step1) and step2) by using a multi-

phase pseudospectral method. 

 

In this section, detailed methods of each step are 

presented. Then, the multi-step approach is 

validated by analyzing convergence rate and 

computational expense. 

3.1 Radau Pseudospectral Method 

We use a Radau Pseudospectral Method (RPM) 

for step 1) and step 3), while each purpose is 

different. For step 1), a global RPM is applied 

with a small number of collocation points for 

computational efficiency. Then the trajectory is 

refined by a multi-phase RPM in step 3).  
 

Fig. 1. A graph example (red line is the specified 

route) 
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The general multi-phase optimal control 

problems are formulated in the Bolza form as 

follows. Given a set of P phase (where 

[1,..., ]p P , if 1p  , the problem is a single 

phase optimal control problem), minimize the 

cost functional [22]. 
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and the linkage constraints which are connectin

g between phase. 
( )

( ) n( )
p

xp t x ,
( )

( ) n( )
p

up t u , 

and t are, respectively, the state, control, an

d time in phase [1,..., ]p P .  

In the RPM, the infinite-dimensional 

optimal control problem is converted into a 

finite-dimensional NLP problem [23] using the 

Lagrange polynomial approximation at a set of 

discrete Legendre Gauss Radau (LGR) 

collocation points. In each phase, the state can 

be approximated by the following polynomial: 

 ( ) ( )( ) ( )
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 x X X L   (7) 

where [ 1, 1]     is the transformed domain via 

the affine transformation, and ( ) ( )p
j L  are 

defined as follows: 
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where ( ) ( )
1 , ,

p

p p
N   are the LGR collocation 

points in the thp  mesh interval and the final 

point ( )

p

p

N  is a non-collocation point. The 

control can be also approximated similarly with 

the state. 

The Lagrange polynomials Eq.(8) have the 

property: 
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Differentiating the expression in Eq.(7) 

with respect to   produces: 
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The dynamic constraints that are 

transcribed into algebraic constraints via the 

differential approximation matrix are as follows: 
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Furthermore, the inequality path 

constraints can be evaluated at the pN  LGR 

points in each mesh interval as follows: 

  ( ) ( ) ( )
1( , , ; , ) 0, 1, ,p p p

k k ki i i t t i N   C X U   (13) 

Finally, the boundary condition can be 

 

Fig. 2. A set of 85 waypoints (blue line is an optimal sequence of waypoints) 
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rewritten at the kN  LGR points in each mesh 

intervals as: 

 (1) ( )
00( , , , ) 0

p

P
PNt t X X   (14) 

The continuous-time cost functional can be 

constituted by the multi-interval at LGR points, 

resulting in: 
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where ( )p
j  represent the LGR weights. The 

NLP problem that arises from the RPM is then 

used to minimize the objective functional of 

Eq.(15) subject to the algebraic constraints of 

Eqs.(10)-(14). Then the existing nonlinear 

programming solvers can be applied to the NLP 

problem. More details are in [23]. 

3.2 Dijkstra Algorithm 

Dijkstra algorithm is used as a shortest path 

algorithm for step 2). The algorithm can solve 

the problem which is a static weighted graph 

 , , given a starts vertex to a final vertex 

in polynomial time. Each waypoint is 

considered as vertices (or nodes) and edges (or 

arcs) represent possible transitions between the 

vertices [24].  

Most of the shortest path algorithms adopt 

distance based weights, therefore, using the 

weights are highly limited and difficult to 

handle complex and nonlinear system. In the 

contrast, as aforementioned in Sec.3.1, using the 

weights calculated by the global RPM have 

advantages of usage of various performance 

indices, although the approach has weakness of 

high computational load compared with distance 

based weights. 

3.3 Analysis 

Compared with using mixed-integer 

optimization, approximation in the multi-step 

approach is expected to reduce the 

computational load. It is shown in Fig. 3 that the 

computational time increases with the number 

of collocation points.  

While having computational efficiency, the 

error between the coarsely optimized and the 

exactly optimal trajectory occurs due to the 

approximation. However, the error is proved to 

be bounded with convergence rate [25]. 

Assuming coercivity and smoothness condition, 

a convergence rate for the global RPM 

exponentially increases as the number of 

collocation points increases as follows: 

 2R cN    (16) 

where R  is the maximum error between the 

approximated and the exact trajectory, c  is a 

constant independent of N , and   ( 3 )is the 

degree of differentiability. More details about 

the convergence rate is in [25].  

The computational time and the 

convergence rate conflict each other. 

Considering their trade-off, we can decide the 

number of collocation points. 

 

Fig. 3. Computational time comparison as the number of 

collocation points 

,WPn m  1m   2m   3m   4m   5m   

1n   
(44.11°, 

-67.00°) 

(40.11°, 

-67.00°) 

(41.78°, 

-67.00°) 

(42.63°, 

-67.00°) 

(43.56°, 

-67.00°) 

2n   
(44.93°, 
51.00°) 

(45.83°, 
-51.00°) 

(46.87°, 
-51.00°) 

(47.82°, 
-51.00°) 

(48.76°, 
-51.00°) 

3n   
(45.00°, 

-8.00°) 

(46.00°, 

-8.00°) 

(47.00°, 

-8.00°) 

(48.00°, 

-8.00°) 

(49.50°, 

-8.00°) 

4n   
(44.50°, 

-4.94°) 

(44.61°, 

-5.40°) 

(45.08°, 

-3.86°) 

(45.93°, 

-5.22°) 

(46.32°, 

-3.69°) 

5n   
(43.69°, 
-1.41°) 

(44.55°, 
-1.12°) 

(45.01°, 
-0.78°) 

(45.73°, 
-1.06°) 

(46.05°, 
-2.25°) 

6n   
(43.54°, 

1.36°) 

(44.12°, 

2.16°) 

(44.78°, 

1.47°) 

(44.95°, 

2.36°) 

(45.33°, 

1.23°) 

7n   
(43.38°, 

4.84°) 

(44.37°, 

5.26°) 

(45.10°, 

5.16°) 

(45.66°, 

4.89°) 

(46.50°, 

4.95°) 

8n   
(42.89°, 
8.67°) 

(43.45°, 
7.59°) 

(44.03°, 
8.03°) 

(44.59°, 
8.66°) 

(45.15°, 
7.99°) 

- initialWP = (41.69°, -69.74°), finalWP = (43.21°, 11.60°) 

Table 1 A set of 8 5  waypoints 
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4 Case Study 

In this section, we apply the multi-step 

optimization approach into a realistic scenario 

from [14]. The problem of an A320 aircraft 

flying the en route phase from New York to 

Rome with fixed altitude is presented. A set of 

8  5 waypoints is selected from the AIRAC 

cycle published in June 2012. The wind forecast 

of 21 May 2016 has been used. The en route 

phase is divided into nine phases including the 

initial and final waypoint based on AIP, and 

each partite set includes five waypoints as 

shown in Fig. 2 and each waypoint position is 

given in Table 1. 

4.1 Flight Planning 

Given the scenario, we describe the flight 

planning optimization according to the multi-

step optimization described in Sec.3. 

Step1) The weights between each vertex of 

the graph are calculated by using the global 

RPM. In Table 2, the initial and terminal 

conditions of each edge between ,WPn m  and 

', 'WPn m  are described, and the performance 

index is the terminal time. The number of 

collocation points is 40 for calculating weights 

on each edge. The computation time for 

calculating all the weights is 465.7052 seconds 

on a Windows 7 OS 3.40 GHz desktop 

computer with 16 GB RAM. 

Step2) Dijkstra algorithm is applied based 

on the weights calculated in step1). The shortest 

path result is blue line in Fig. 2 and the optimal 

sequence of waypoints are indicated in Table 4. 

The performance index is 20,815 seconds which 

is the total flight time from the initial waypoint 

to the terminal waypoint. The computation time 

for finding the shortest path is less than 0.1 

seconds on the same environment. 

Step3) Now we have the set of waypoints 

the aircraft must traverse. Using the set of 

waypoints, multi-phase hp-adaptive RPM is 

used to refine the coarsely optimized trajectory. 

The performance index is same with step1).  In 

Table 4, equality constraints of each waypoint 

are described. The result is depicted in Fig. 2. 

The computation time to optimize the multi-

phase trajectory optimization is 210.3992 

seconds on the same environment. The total 

computational time is 676.2044 seconds to 

optimize the flight planning for the case. 

4.2 Result and Discussion 

The optimal sequence of waypoints is depicted 

Fig. 2 and corresponding states and controls are 

 Initial condition Terminal condition 

(m)r  11582.4 11582.4 

(deg)  
,WPn m  ', 'WPn m  

(deg)  

(m/s)V  Free Free 

(deg)  - - 

(deg)  Free Free 

(kg)m  77,000 Free 

( )LC   Free Free 

(deg)  Free Free 

(N)T  Free Free 

Table 2 Initial and terminal conditions of each edge 

between ,WPn m  and ', 'WPn m  for calculating weights 

 

,WPn m  1m   2m   3m   4m   5m   

1n     ●   

2n   ●     

3n    ●    

4n      ●  

5n     ●   

6n     ●   

7n    ●    

8n     ●   

Table 4 Optimal sequence of waypoints 

 

 
Initial 

condition 

Middle waypoints 

conditions 

Terminal 

condition 

(m)r  11582.4 11582.4 11582.4 

(deg)  
InitialWP  1, 1 8, 8WP , ,WPm m  TerminalWP  

(deg)  

(m/s)V  Free Free Free 

(deg)  - - - 

(deg)  Free Free Free 

(kg)m  77,000 Free Free 

( )LC   Free Free Free 

(deg)  Free Free Free 

(N)T  Free Free Free 

Table 3 Initial and terminal conditions for refining the 

trajectory 
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in Fig. 4. In Fig.1, ○, △, and   are the initial 

waypoint, the terminal waypoint, and 8 partite 

sets of waypoints, respectively. In Fig. 4, the 

vertical dash-dotted lines are waypoint transit 

time. 

The altitude of the aircraft is constant, as 

we consider horizontal model of the en route 

phase in the scenario. The speed trajectory is 

constant during the whole phase due to the 

performance index of the scenario. The heading 

angle and bank angle are maneuvering when 

passing through the waypoints. 

Flight planning is done in offline as a part 

of strategic and/or tactical planning. Once the 

flight plan is submitted, the plan will not change 

during the flight. However, there are 

possibilities that the aircraft cannot traverse the 

routes, such as, sudden deteriorating weather 

conditions. In such a case, flight route 

modifications are carried out by negotiation 

between ATCs and pilots without mathematical 

optimization. Thus, reducing the computational 

load is a key factor of a mathematical based 

flight planning to modify the routing during the 

flight. This is corresponding to the proposed 

approach. The computational efficiency of the 

multi-step approach is better than mixed-integer 

optimization. In addition, the approach can be 

adopted to modify the routes in case of 

unexpected situations including adverse 

weather. The problem formulation to modify the 

 

Fig. 4. State and control variables of the refined trajectory 
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routes will be easier and faster than the initial 

flight planning due to the reduced waypoints.  

5 Conclusion and Future Work 

In this paper, we propose a multi-step approach 

to optimize the flight planning problem using 

both the RPMs and Dijkstra algorithm. The 

efficiency and the validation of the approach are 

shown in this paper by planning the realistic 

flight scenario and by analyzing the 

convergence rate of the RPM. In addition, the 

approach has a great potentiality in flight 

planning modifications during the flight. 

As a future work, it is recommended to 

consider emission models, and a 3-dimensional 

model instead of the horizontal model. An 

online flight planning modification framework 

will be considered. Finally, to the best of our 

belief, there is no practical approach to find an 

optimal trajectory for flight planning due to the 

complexity and nonlinearity of the problem. 

Therefore, we need to find methods for 

assessment of the proposed approach. 
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