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Abstract  
This research presents multi-objective 
optimization for network resilience. The scale 
free core-periphery structure is parameterized 
to formulate the network properties as objective 
functions. Optimizing the conflicting network 
properties, an evolutionary game based 
approach is used to find the weightings of the 
weighted sum method. Numerical results show 
the optimal weightings and network structures 
depending on the size of network. 

1  Introduction 

Modern aerospace technologies often 
incorporate complex structures of networks. The 
more complicated and intensive the dependency 
on network connection is, the more the 
functionality suffers from node failure or 
communication malfunction. Furthermore, 
wireless communication networks are 
vulnerable to the cyber-physical failure. It is an 
important issue to model the failing vertices as a 
percolation process and to design a resilient 
topology in autonomous operations. 

There have been several attempts to find 
robust and efficient networks. Motter et al. [1] 
have addressed the conflict between robustness 
and synchronizability, and other properties 
including global and local efficiency have been 
detailed later [2]. As an option to improve the 
overall network properties, Peixoto et al. [3] 
propose the core-periphery topology, but the 
detailed topology and consideration of 
conflicting network properties remain illusive.  

This research aims to find the resilient 
network topology by formulating the problem 
into multi-objective optimization, where the 
conflicting properties of network are objective 
functions and the topology of network is a 
decision variable. As the full topology is 
determined by a large number of variables, we 
propose a single parameter design method 
assuming scale free core-periphery network. 

Solving the formulated multi-objective 
optimization problem, this paper suggests to use 
the evolutionary game based multi-objective 
optimization method [4]. It is based on the 
weighted-sum method, while the weightings are 
determined by an evolutionary game. The main 
advantage is the consideration of solution’s 
survivability in the other criteria without any 
expert decision or use of aggregation coefficient 
while providing low computational load. 

The main contribution thus lies in 
suggesting a new perspective on formulating the 
resilient network and applying a suitable multi-
objective optimization method, which has not 
been applied comprehensively.  

This paper is composed as follows: the first 
part summarizes the definitions and 
characteristics of scale free core-periphery 
topology. Then finding the optimal network 
structure is formulated into multi-objective 
optimization problem. The evolutionary game 
based method is explained in section 4, and 
examined through numerical simulations in 
section 5. Finally, conclusions and future works 
are addressed. 
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2  Scale Free Core-Periphery Network  

2.1 Definition  

The core-periphery network with  n  nodes is 
defined with core nodes and periphery nodes 
[5]. Defining the fraction of core nodes as  fcore , 
core nodes of the number nfcore  are connected 
with each other, and peripheral nodes of the rest 
are connected randomly either to the core or to 
the periphery. 

The number of edges connected to each 
node is decided by the total degree  k . The scale 
free network follows the power-law distribution, 
defined with the probability and cumulative 
density function,   p(k)  and   P(K ) respectively: 

 

  

p(k) = k −γ

ζ (γ ;kmin )−ζ (γ ;n)

P(K ) = ζ (γ ;kmin )−ζ (γ ; K +1)
ζ (γ ;kmin )−ζ (γ ;n)

  (1) 

 
   
ζ (γ ;a) ! k −γ

k=a

∞

∑ "
a−γ +1

γ −1
  (2) 

where γ is an exponent in the power-law 
distribution, and   ζ (γ ;a)  is the Hurwitz zeta 
function for normalization. The long-tail effect 
of the probability distribution is eliminated by 
constraining the degree   kmin ≤ k ≤ n−1 [6].  

The structure of scale free core-periphery 
network is thus determined by three parameters: 
 fcore ,   kmin  and γ . By the definition of core-
periphery nodes, the probability of   k ≥ nfcore −1  
is  fcore , which means the cumulative density 
function satisfies 

 
  

ζ (γ ;kmin )−ζ (γ ;nfcore )
ζ (γ ;kmin )−ζ (γ ;n)

= 1− fcore   (3) 

Also, the average degree is fixed for that 
the unlimited degree enhances all the theoretical 
properties. The average degree can be computed 
as 

 
  

k = ζ (γ +1;kmin )−ζ (γ +1;n)
ζ (γ ;kmin )−ζ (γ ;n)

  (4) 

where <⋅> denotes the average value. From the 
definition of the Hurwitz zeta function, 
existence of the average degree requires  γ > 2 . 

 
(a) Homogeneous Network  

 
(b) Heterogeneous Network 

Fig. 1. Visualization of Scale Free Networks 
 

Using Eq. (3) and (4),  fcore  and   kmin  are 
computed from γ . Therefore, this paper 
simplifies the design of network into a single-
parameter problem withγ . Increase in γ results 
in large   kmin , and the network has homogeneous 
degree over the nodes. On the contrary, decrease 
in γ yields a heterogeneous network with highly 
concentrated nodes. The number of core nodes 
remains similar, but the number of periphery 
nodes connected directly to the core is larger in 
heterogeneous networks than in the 
homogeneous. Both homogeneous and 
heterogeneous networks are visualized in Fig. 1 
using the Pajek program [7]. While  k  is fixed 
to 3, Fig. 1 (a) is plotted with  γ = 5  and (b) with 
 γ = 3 . Although the size of network is large – a 
hundred – the visualization clearly shows 
homogeneity and heterogeneity respectively. 
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2.2 Properties 

The network properties are classified into three 
main categories – robustness, efficiency and 
synchronizability [1], [2] – which are derived 
from the percolation process.  

The percolation process is crucial in 
understanding the network properties, especially 
robustness. The percolation is a phenomenon 
where some fraction of nodes and edges are 
removed. The analysis on the percolation 
phenomenon in the generated network enables 
to model the cyber-physical failure of the 
autonomous system and to compute the 
remaining network functionality. From this 
analysis, the size of the largest cluster  S  with 
respect to the occupational probability φ  is 
obtained, where the cluster is defined with the 
groups of nodes connected to each other and the 
occupational probability is the portion of 
remaining nodes [6]. 

Robustness is the ability of a network to 
maintain its function under the presence of 
failure by taking a detour or multi-hop 
communication. The value is determined by the 
area of S –φ plot below the critical size of the 
largest cluster,  Sc . 

 
  
J1 = φ dS

0

Sc

∫   (5) 

Efficiency is the measure of how the nodes 
communicate their information each other. The 
global efficiency is proportional to the closeness 
centrality, which is the average length of a 
geodesic path  dij as, 

 
  
J2 = dij( )−1

  (6) 
where  i  and  j  are the indices of nodes. 

Synchronizability depends on the speed of 
diffusion along the connections, which is 
determined by the eigenvalues of the Laplacian 
matrix  L , 

 
  
J3 =

λn

λ2
, dψ

dt
+ cLψ = 0   (7) 

where ψ  is the network state,  c  is the diffusion 
rate constant,  λn  is the maximum eigenvalue, 
and  λ2  is the minimum non-zero eigenvalue. 

3 Multi-Objective Optimization Problem 
Formulations 

To find the optimal network structure, an 
optimization problem is formulated with its 
objective functions set as the network 
properties. As the design of network depends on 
a single parameter, the multi-objective 
optimization problem is formulated as 

 
  

max
γ

J1, J2 , J3

subject to γ > 2
  (8) 

The objective functions may conflict with 
each other; enhancement in one objective 
deteriorates at least one of the rests. The 
weighted sum method aggregates multiple 
weighted objectives into a single cost function 
as 

 
  

max
γ

J = w1J1 + w2J2 + w3J3

subject to γ > 2
  (9) 

This method is the most widely used 
thanks to its simplicity [8], but difficulties arise 
when determining the weightings, which are 
resolved in this paper by using the evolutionary 
game theory. 

4 Evolutionary Game Based Multi-Objective 
Optimization 

4.1 Payoff Matrix  

The core concept of the evolutionary game 
based multi-objective optimization method is 
that the optimization problem is a type of non-
cooperative game. Among the conflicting 
objectives, improving an objective deteriorates 
at least one of the others. One needs to consider 
both gain and loss of choosing which objective 
to be optimized. Optimizing the ratios of gain to 
loss, called tradeoffs, it is expected that more 
weighting is applied to the objectives that are 
sensitive to the choice of which objective to be 
optimized. It is compared to the concept of 
equilibrium in the game theory. 

Finding the equilibrium in a non-
cooperative game requires analyzing the 
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players’ utility to formulate a payoff matrix [9]. 
The decision variables and cost functions act as 
players, and which objectives to be optimized 
are the possible strategies. The weightings of a 
multi-objective optimization problem 
correspond to the Nash equilibrium of the mixed 
strategies. Therefore, the payoff matrix is 
composed such that objective functions 
comprise the rows and optimal decision 
variables with respect to each criterion are 
substituted to the columns. For the problem 
formulation in Eq. (9), the payoff matrix  A  is 
composed as 

 

  

A =

J1(γ 1
*) J1(γ 2

*) J1(γ 3
*)

J2(γ 1
*) J2(γ 2

*) J2(γ 3
*)

J3(γ 1
*) J3(γ 2

*) J3(γ 3
*)

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

  (10) 

where   γ i
*  is the optimal γ  for the i-th objective. 

The normalization method and the form of 
cost function affect the characteristics of the 
payoff matrix. Different scales of each cost 
function have an effect of varying absolute and 
relative importance, and thus the cost functions 
are normalized in each step.  The normalized 
payoff matrix  A  is composed as 

 
  
Aij =

Ji(γ j
*)− Ji

−

Ji
+ − Ji

−   (11) 

where  Ji
+  and  Ji

−  are the maximum and 
minimum value of i-th objective respectively. 

4.2 Replicator Equation  

Using the payoff matrix, the fitness of mixed 
strategies  pi  evolves in each time step through 
the replicator equation, 
    !pi = pi(ei ApT − pApT )   (12) 
where    ei ∈!1×3  is a vector with one at the i-th 
element and zeros at the other. 

The evolutionary stable solution  p  is 
computed with an augmented matrix as 

 
   

pT

a

⎛

⎝
⎜

⎞

⎠
⎟ =

A −13×1

−11×3 0

⎛

⎝
⎜

⎞

⎠
⎟

−1

03×1

1

⎛

⎝⎜
⎞

⎠⎟
  (13) 

where  a  is a constant. 
 

A single solution exists when the 
augmented matrix is invertible. If the problem is 
singular, infinitely many solutions exist and this 
paper uses the average solution. The stability of 
the dynamics is determined by the eigenvalues 
of the payoff matrix, and guarantee of stability 
is easily shown in the multi-objective 
optimization problems [10]. 

5 Numerical Results  

5.1 Simulation Settings  

The algorithm of the proposed approach is 
summarized in Fig. 2. Given the average degree 

 k , objective functions for the optimization 
problem are derived. Then, optimal degree 
exponent γ  is obtained using the evolutionary 
game based multi-objective optimization 
(MOO) method. The optimal γ  leads to the 
optimal structure of the network.  
 

 
Fig. 2. Algorithm of the Proposed Approach 
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Table 1. Simulation Parameter Settings 

Simulation Parameter  Value 

The number of nodes  n   100 

Upper bound of exponent  γ max   5 

Initial average degree   
k

0
  30 

Change in average degree kΔ   3 
 
Numerical simulation is conducted with 

different  ‘s. Physical limit of multi-agent 
network such as transmission power and 
coverage decides ; for instance, given the 
fixed transmission power, spread of the 
networked vehicles reduces . Exploiting the 
advantage of the propose approach that the 
weightings are determined dynamically, the 
simulation is composed with reducing  as  

0
k k k t= −Δ       (14) 

where  t  is the simulation time. The values of 
simulation parameters are specified in Table 1. 

The objective functions are obtained with 
Monte-Carlo simulations with 10 runs 
generating the different networks and same 
degree distribution, and then are fitted into 
second-order polynomial. In the multi-objective 
optimization part, each single objective 
optimization is conducted using fmincon from 
MATLAB. The evolutionary stable solutions 
are evolved 100 times at each run. 

5.2 Simulation Results  

The objective functions with respect to γ  are 
shown in Fig. 3. Three figures show different 
network properties – robustness, efficiency, and 
synchronizability. The brightness of the lines 
indicates the simulation time. Whereas the 
change in robustness stays similar throughout 
the simulation, efficiency and synchronizability 
varies in their minimum and maximum values. 
It can be concluded that efficiency and 
synchronizability are more sensitive to network 
structure when the transmission power is small 
or requires large coverage area. 

 k

 k

 k

 k

     
(a) Robustness                                  (b) Efficiency                       (c) Synchronizability 

Fig. 3. Results of Problem Formulation 

    
(a) EGT based Weightings       (b) Optimal Network Structure      (c) Optimal Weighted Cost 

Fig. 4. Results of Multi-Objective Optimization  
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Using the obtained objective functions, the 
evolutionary game based multi-objective 
optimization method is implemented. The 
resultant optimal weightings, decision variable, 
and cost are shown in Fig. 4. In Fig. 4 (a), the 
weightings on robustness decrease while 
efficiency and synchronizability increases 
almost simultaneously with the decrease of k . 
This corresponds to the fact that efficiency and 
synchronizability are more sensitive in the later 
part of simulations. Increase of weightings on 
sensitive cost functions implies that the 
evolutionary game base approach is successfully 
considering the tradeoffs. In Fig. 4 (b), the 
optimal network structure is implied by optimal 
γ . It is more advantageous to formulate a 
homogenous network when the transmission 
power is not enough or desired coverage is 
broad, while a heterogenous network is better in 
the other case.  

For validating the performance of 
evolutionary game based approach, the 
optimization result using uniform weightings, 
one third on each objective function, is 
compared. Fig. 4 (b) shows that similar optimal 
network structures are obtained in each method, 
but Fig. 4 (c) shows that the evolutionary game 
based approach results in the increase of 
maximum weighted cost.  

6 Conclusions 

In this paper, design of scale free core-periphery 
networks is formulated into a single parameter 
problem, and the network properties are 
optimized using the evolutionary game based 
multi-objective optimization method. Numerical 
simulation is conducted with different average 
degrees, which are relevant to the size of 
network by the transmission power or coverage. 
The results suggest that a homogeneous network 
is advantageous in a concentrated network with 
either sufficient transmission power or narrow 
coverage, whereas a heterogeneous network is 
of more importance in the other case. The 
parameter of the network structure is given by 
the optimal exponent of the degree distribution. 
This research is expected to suggest a guide for 

designing a topology in the various fields 
including multi-agent or sensor network design. 

Further studies are focused on mobile 
network system. Most of the previous works on 
mobile networks [11], [12] have been dedicated 
to maximize connectivity, which is similar to 
synchronizability, not considering the other 
properties. The results often result in a 
rendezvous formation without a constraint on 
coverage. We expect that controlling the 
multiple agents to form an optimal degree 
distribution from this research may suggest 
more robust, efficient and fast synchronizing 
network. 
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