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Abstract

An implicit mesh-less method is developed for
solution of the compressible flows around 2D
and 3D geometries. The algorithm is applied
directly to the differential form of the governing
equations by using least-square formulation. A
dual-time implicit time discretization scheme is
developed and the computational efficiency is
enhanced by adopting accelerating techniques
such as local time stepping, residual smoothing
and enthalpy damping. The capabilities of the
method are demonstrated by flow computations
at subsonic, transonic and supersonic flow
conditions around different geometries.

1. Introduction

Increasing the power of computers during last
few years, the flow simulations over complex
geometries has become more viable. One of the
major problems is the ability to generate high
quality meshes. This is really important
particularly when more sophisticated geometrics
are concerned. Mesh-less methods are proposed
that use point clouds instead of rigid domain
discretization [1]. Finite point method (FPM) is
developed by Onate et al. [2] using a
polynomial basis. Katz and Jameson presented a
mesh-less method based on CUSP (Convective
Upwind and Split Pressure) scheme to compute
inviscid flows in two dimensions in subsonic
and transonic regimes [3]. The problem with
mesh-less methods is the computational cost. At
any iteration the computational cost of mesh-
less methods is higher than mesh based ones [4].
However it is shown that the convergence

history of most of mesh-less methods is better
than mesh-base ones [4]. It is notable to mention
that compared with mesh based algorithms;
mesh-less methods have more applications,
especially in the large deformations since it
argues that moving points are easier than
replacing the edges.
The main objective of the present study is to
develop an efficient mesh-less method to solve
the Euler (inviscid) equations at all speed
conditions (subsonic, transonic, supersonic
speed). The accuracy and the computational
efficiency of the method in different flow
condition is investigated, in this paper.

2. Numerical Method

Three-dimensional Euler equations consisting
the mass, momentum, and energy conservation
laws can be written in the differential form as
[5]:
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Here , , , ,P u v w and E are the pressure, density,
Cartesian velocity components and total energy.
In this work the flow equations are solved in the
conservation form. A least-square formulation is
used for calculating the derivatives [3]. Assume

ij
is the value of any function  at the mid-

point of the edge ij, where j is in cloud of point
i. Assuming this function varies linearly along
the edge ij and using Taylor’s formula about i to
any of its cloud points:
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Similar equations could be written for all cloud
points associated with point i subject to an

arbitrary weighting factor i . This yields the
following non-square matrix:
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Where ijd
is the distance between point i and its

neighbors. In this work q is equal one. The
spatial derivatives of the function  can then be
obtained by solving Eq. 3 using the least-
squares method [4]:
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The coefficients in Eq. 5 can be calculated using
inverse distance weighting function as:
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Where the parameters are equal to:
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Applying the least-square approximations given
by Eq. 5 to each component of flux functions in
Eq. 1, a semi-discrete form of the Euler
Equations at point i is obtained:
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Then we define a Flux H aF bG cK   in
the direction of the least-square coefficient
vector for an edge ij. The approximation of Eq.
8 with the directed flux becomes:
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It leads to the central differencing method which
is unstable schemes, and must be stabled by
stabilizing terms. This can be achieved by
adding directly second and fourth order
damping terms. In this dissipation model an
aggregation of the second and fourth differences
of conserved variables (W) is added in order to
prevent the oscillations especially in the critical
zones.
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These dissipation terms are defined by:
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Where
 2

and
 4

are local adaptive
coefficients which use the pressure as a sensor
to explore sharp gradients. They are formulated
as:
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The 2k parameter is introduced to prevent the

oscillations near shock waves while 4k is added
to suppress the oscillations in the remaining part

of the domain. The values of the constant 2k

and 4k are in the range 10 2  k and
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[1] and ij
is a pressure sensor for

shocks at any ij edges. ij
is defined as the

largest eigenvalue equals the flux Jacobian

matrix ( W
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) which are relevant
to the Euler equations [4]. Applying Eq. 10 to
each node in the computational domain, the
result will be a set of ordinary differential
equations in an implicit form in the following
form:
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The explicit four-stage Runge–Kutta method is
used for time discretisation in this study. In the
present work a second order accurate time
discretization is used. At this stage it is

beneficial to redefine a new residual
*R ,

referred to as unsteady residual.
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The new equation can be considered as the
solution of a steady-state problem which can
then be solved with a time marching method by
introducing a derivative with respect to a
fictitious pseudo-time .
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Where i is the time step for any inner explicit

iteration and wvu ,, and c are the velocity
components and speed of sound at mid-point,

respectively. expCFL
is the courant number for

inner explicit iterations. For calculations in this
work implicit and explicit CFL numbers of
100000 and 5 are used. For all test cases, the
inner explicit solution iterates until the average
of density residuals reaches to the level of 0.01.
To accelerate the convergence residual
smoothing and enthalpy damping are also used
in the present work. To solve Euler equations at
a solid boundary, no mass or other convective
fluxes can penetrate the solid body. In the far
field, characteristic analysis is used based on
Riemann invariants to determine the values of
the flow variables on the outer nodes [4].

3. Results

The capabilities of the method are demonstrated
by flow computations around different 2D and
3D geometries.
A subsonic flow around NACA0012 airfoil is
considered at Mach number 0.5 and angle of
attack zero degree. In this case the values of
0.45 and 0.02 are used for scalar dissipation

coefficients 2k and 4k , respectively. It is noted
that in all test cases CFL number, Runge-Kutta
and residual smoothing coefficients are fixed
[4]. The point distribution is shown in Fig. 1.
The domain includes 6509 points in which 280
points are on the solid boundary and 60 points
are on the outer boundary. In this test, explicit
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CFL number of 5 and implicit CFL number of
100000 are used. The surface pressure
coefficient distributions are shown in Fig. 2. As
it is seen, the results are in good agreements
with the finite volume method [5] confirming
the acceptable accuracy of the presented mesh-
less method. Convergence history for this case
is shown in Fig.3, demonstrating that the
computational efficiency of the implicit mesh-
less method is much better than the explicit
approach as expected. The computations are
done on a Pentium PC Dual core with 2.00 GHz
speed.

Fig. 1. Point distribution over NACA0012

Fig.2. Surface pressure coefficients at M= 0.5 and

AOA= 0.

Fig.3. Convergence history for NACA 0012 airfoil at
M =0.5 and AOA= 0.

The next case is an inviscid flow at transonic
flow conditions of M=0.8, AOA=1.25. The
point distribution is the same as the previous
case. The pressure contour is shown in figures
4. As illustrated in this figure the shock wave is
well resolved.

Fig. 4. The pressure contour over NACA0012 airfoil at
M =0.5 and AOA= 0.

The surface pressure coefficient distributions
are shown in figure 5 (a). As illustrated the
results are in good agreement with the
referenced finite volume data [5] specially, in
capturing the shock wave. In figure 5 (b) the
convergence history is shown. As illustrated
implicit method has better convergence in
comparison with explicit method.
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(a)

(b)

Fig.5. (a) Surface pressure coefficients (b) Convergence

history at M= 0.8 and AOA= 1.25

The third case is a supersonic flow one that is
defined to show the potential of the presented
method to simulate the flows at higher speed
conditions. The flow conditions are

1.2 , 10.00oM    over NACA 0012 airfoil.
The point distribution is the same as the first
case. The surface pressure coefficient
distributions are compared with other numerical
results of reference [5] in Fig. 6. As illustrated,
good agreements are obtained.

Fig.6. Surface pressure coefficient and at 1.20 , 10oM   

The next case is the subsonic flow around a
typical helicopter with the Mach number 0.3.
There are 121752 points in the domain in which
12925 points are in the surface of the helicopter.
The point distribution in the middle section is
shown in Fig. 7.a. The pressure contours in the
middle section is shown in Fig. 7.b. As it is
shown, smooth results in different sections are
achieved.

(a)
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(b)

Fig 7.a) Point distribution b) Pressure contours in the

middle section

The last test case is defined to show the ability
of the mesh-less method to simulate the
transonic flow over ONERA M6 wing. The

flow conditions are
oM 06.3,8395.0   . The

surface point distribution is shown in Fig. 8.
There are 145496 points in the domain from
those 22958 points are on the solid boundary.

(a)

(b)

Fig 8. Point distribution over ONERA M6 wing.

The surface pressure distribution at section
z/b=0.9 is compared with the experimental data
[6] in Fig. 9.a. The surface pressure contours are
demonstrated in Fig. 9.b.which the shock wave
moving from the backward of the wing at the
root sections to the forward locations at the tip
sections.

a) Pressure coefficient (ONERA M6 z/b=0.9)
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b) Pressure contours

Fig. 9 results at 0.8395 , 3.06oM    .

3. Summery

An implicit mesh-less method was developed to
calculate the compressible flows around 3D
geometries. The capabilities of the method were
shown by flow computations at all speed
conditions around 3D geometries. Results were
presented which had good agreements with
experimental and other reliable numerical data.
The method was shown to reduce the
computational time by about 50% compared
with the alternative explicit method.
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