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Abstract 
The purpose of the current study is to 

develop an efficient yet accurate two-way 
coupling method integrating Euler and potential 
flow solvers for transonic flow simulations. An 
artificial boundary condition is introduced 
which reduce a CFD domain size, and the 
disturbed flow properties near a body is 
represented by the potential flow solver. On the 
other hand, the linear potential flow solution is 
updated by the Euler solver to incorporate the 
nonlinear shock phenomena into the solution. 
The tightly coupled solver is validated in 
various flow conditions as subsonic and 
transonic flows around two-dimensional airfoil 
and three-dimensional wings. The validation 
results showed that the tightly coupled solver 
can improve the efficiency with good accuracy 
compared to a conventional Euler solver. 

1 Introduction 
A linear potential flow solver has been 

widely used in industries in several decades 
because it is a fast method to compute both 
incompressible and compressible flows with 
little nonlinear flow phenomena reasonably well. 
However, it may inaccurate when the flow 
viscosity cannot be negligible, or the nonlinearity 
of the flow is dominant. In that case, more 
complex computation methods such as the Euler 
or Navier-Stokes (N-S) equations are needed, but 
they require much computation time. Thus, the 
computation accuracy and the time are always 
traded off. 

There have been attempts to adopt the 
advantages of the various computation methods. 

Sankar et al.[1] developed a hybrid solver by 
coupling the N-S solver with the full potential 
solver for a viscous flow solution. They divided 
a flow domain into inner viscous flow region for 
the N-S solver and outer irrotational flow region 
for the potential flow solver to reduce the 
computation time. Srinivasan et al.[2] and 
Khanna et al.[3] coupled a free-wake model to 
the Euler and N-S solvers to accurately 
modelling vortices leaving the viscous flow 
region without numerical dissipation. Wie et 
al.[4] developed a hybrid solver for helicopter 
rotor flows by coupling the potential flow solver, 
the N-S solver, and the free-wake model.  

In a typical CFD computation for external 
flows, a far-field boundary condition is widely 
used. It is based on a physical nature that 
disturbed (perturbed) flows after flowing objects 
diminish and it return to the freestream condition 
on the CFD domain boundary. Correspondingly, 
the domain boundary size has to be large enough, 
which makes the CFD computation being 
inefficient. 

In the current study, we develop a two-way 
tightly coupled Euler and linear potential flow 
solver for transonic flows to improve the 
efficiency with good accuracy compared to a 
conventional Euler solver. For that coupling, a 
small CFD domain boundary as an artificial 
boundary is defined, which its size is as small as 
that the flow disturbances need to be considered. 
The disturbances are numerically calculated by 
the linear potential flow solver and with other 
equations of the flow physics. However, the 
linear potential flow solver cannot solve the 
transonic flows with nonlinear shock waves. To 
overcome that point, the Euler solver serves 
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discontinuous solutions to the potential solver, 
the potential solver can consider the nonlinear 
flows. Thus, the two solvers in a complementary 
relation. 

This paper is organized as follow. First, the 
governing equations of the Euler and potential 
flow solutions are described, mathematical 
formulations for the coupling process are derived, 
and the coupling process is explained in Sec. 2. 
After that, the efficiency of the tightly coupled 
solver is validated in various flow cases as the 
subsonic and transonic flows around two-
dimensional airfoil and three-dimension wings in 
Sec. 3. Finally, this paper is concluded with the 
conclusions and future work in Sec. 4. 

2 Coupling Methodology  
In this section, the governing equations of 

the Euler and potential flow are explained. Based 
on the equations, an update method of the flow 
properties for both solvers is introduced. 

2.1 Euler Solver  
Semi-discretized, integral form of three-

dimensional Euler equations are described in Eq. 
1. 
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where 𝑼𝑼 is the vector of state variables, 𝐹𝐹𝑖𝑖𝑖𝑖𝑐𝑐  is a 
convective flux term, 𝑸𝑸 is a source term. ∆𝑆𝑆𝑖𝑖𝑖𝑖 is 
the area of the face edge between ith and jth 
control volumes when 𝛺𝛺𝑖𝑖  is the ith control volume, 
and 𝑁𝑁𝑖𝑖  is defines the set of neighboring nodes for 
ith node. For the Euler computation, the CFD 
solver of SU2_CFD [5] code is used. This solver 
is a programming software to solve finite volume 
based flow governing equations of Euler, Navier-
Stokes, Reynolds averaged Navier-Stokes 
(RANS), Poisson, heat, wave, etc. In addition, it 
can also simulate high-fidelity multi-physics 
such as fluid-structure interaction, non-
equilibrium flow, etc. Furthermore, it solves 
continuous and discrete adjoint solutions for 
efficient gradient evaluations. In the current 
study, Jameson-Schmidt-Turkel (JST) scheme 

and Euler implicit scheme with lower-upper 
symmetric gauss-seidel method (LU-SGS) are 
used for the spatial discretization and the time 
integration. SU2_CFD serves agglomeration 
multi-grid method for fast convergence, but it is 
not used for the fair comparison of the 
computation time. 

2.2 Linear Potential Flow Solver  
Three-dimensional linearized compressible 

potential flow equation is described in Eq. 2. 

𝛽𝛽𝜙𝜙𝑥𝑥𝑥𝑥 + 𝜙𝜙𝑦𝑦𝑦𝑦 + 𝜙𝜙𝑧𝑧𝑧𝑧 = 0 (2) 

where 𝛽𝛽 = 1 −𝑀𝑀∞
2  is a compressibility factor 

and 𝜙𝜙 is a velocity potential. In the current study, 
Vortexje [6] code is used. This is based on low-
order panel method with source and doublet 
elements. Because the code solves 
incompressible flow only, the compressibility 
effect is implemented. A general solution of Eq. 
2 is the Green’s function in Eq. 3. 
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1
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where 𝜙𝜙 , 𝜙𝜙′ , and 𝜙𝜙∞  are the total velocity 
potential, perturbed velocity potential, and the 
freestream velocity potential, respectively. The 
subscript 𝑏𝑏  and 𝑤𝑤  represent the body surface 
panels and wake sheets, and 𝜇𝜇  and 𝜎𝜎  are the 
doublet and source strengths, respectively. 𝑟𝑟  is 
the Euclidean distance with the compressibility 
effect between ith surface panel (of wake sheet) 
and a location in velocity field defined in Eq. 4. 

𝑟𝑟 = �(𝑥𝑥 − 𝑥𝑥𝑖𝑖)2 + 𝛽𝛽[(𝑦𝑦 − 𝑦𝑦𝑖𝑖)2 + (𝑧𝑧 − 𝑧𝑧𝑖𝑖)2] (4) 

Two types of Neumann boundary condition 
are needed to solve Eq. 2. The first is a far-field 
boundary condition describing that the flow 
perturbation diminish at the far field, which is 
described in Eq. 5. 

𝑙𝑙𝑙𝑙𝑙𝑙
𝑟𝑟→∞

𝛻𝛻𝜙𝜙′ = 0 (5) 

This condition is automatically satisfied as 𝜙𝜙′ 

goes zero exponentially as 𝑟𝑟  increases. The 
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second is solid boundary condition that the 
velocity normal to the surface panel should be 
zero, which is described in Eq. 6. 

∇(𝜙𝜙′ + 𝜙𝜙∞) ∙ 𝑛𝑛�⃑ 𝑖𝑖 = 0 (6) 

where 𝑛𝑛�⃑ 𝑖𝑖  is the normal vector of ith body surface 
panel. This equation is equivalent to Eq. 7. 

𝜎𝜎𝑖𝑖 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛𝑖𝑖

= 𝑣⃑𝑣∞ ∙ 𝑛𝑛�⃑ 𝑖𝑖  (7) 

which means that each source strength can be 
explicitly determined by the normal vector and 
the freestream velocity. 

The doublet strength of each wake sheet is 
determined with a physical flow condition of the 
Kutta condition in Eq. 8. 

𝜇𝜇𝑖𝑖𝑤𝑤 = 𝜇𝜇𝑖𝑖,𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑏𝑏 − 𝜇𝜇𝑖𝑖,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏  (8) 

where 𝜇𝜇𝑖𝑖,𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑏𝑏  and 𝜇𝜇𝑖𝑖,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏  are the doublet 
strengths of adjacent upper and lower body 
surface panels of the ith wake panel. Finally, the 
doublet strengths of the body surface panels are 
determined implicitly by an iterative numerical 
computation, and the velocity induced by the 
potential flow solution at any location (x,y,z) in 
the flow field is calculated by differentiate Eq. 3 
as 𝑣⃑𝑣(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝛻𝛻𝛻𝛻. 

2.3 Updates of Flow Properties 
In order to serve the perturbed flow 

properties at an artificial boundary for the Euler 
solver, we use not only the potential flow 
solution, but also the compressible Bernoulli 
equation and the isentropic relation in Eq. 9 and 
Eq. 10. 
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Thus, the pressure and density are calculated 
simultaneously when the velocity is calculated 
by the potential flow solution. 

In the tightly coupling process, the doublet 
strengths for the potential flow solution are 
updated by the computed Euler solution. As 
opposite direction of the above calculation 

sequence, a representative flow velocity is 
calculated using the pressure and density 
properties from the Euler solution. Because the 
Euler solution assumes there is no flow 
separation, the flow velocity can be 
approximated to the tangential velocity. Then the 
perturbed velocity is calculated by subtracting 
the freestream velocity from the tangential 
velocity as |𝑣⃑𝑣′| = ⌈𝑣𝑣⌉ − |𝑣𝑣∞| . Finally, the 
surface doublet is computed by integrating the 
perturbed velocity along the body surface as Eq. 
11. 

𝜇𝜇(𝑥𝑥) = −� |𝑣⃑𝑣′|𝑑𝑑𝑑𝑑
𝑥𝑥

𝑇𝑇.𝐸𝐸.

 (11) 

where T.E. means the trailing edge, and x is an 
arbitrary location on the body surface, and dl is a 
unit length for the integration. 

The above update method is validated. Fig. 
1 shows the doublet strength on the surface of 
NACA 0012 airfoil calculated by the coupled 
solver (red line) and the conventional potential 
flow solver (blue dots). The flow condition is 
Mach number of 𝐌𝐌 = 𝟎𝟎.𝟐𝟐 at angle of attack of 
𝛂𝛂 = 𝟓𝟓° . As shown in the figure, the update 
method is very accurate compared to the 
potential flow solution. 

 
Fig. 1 Comparison of doublet strength for 

validation (𝐌𝐌 = 𝟎𝟎.𝟐𝟐, 𝛂𝛂 = 𝟓𝟓°) 

2.4 Tightly Coupling Process 
The tightly coupling process starts from 

initial solving the potential solution. Then the 
induced velocity on an artificial boundary is 
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calculated from the solution, and corresponding 
the pressure density are calculated by the 
compressible Bernoulli equation in Eq. 9 and the 
isentropic relation in Eq. 10. Using the perturbed 
flow properties, the Euler solver computes a 
transonic nonlinear flow solution iteratively. 
After obtaining a converged solution, the surface 
doublet is calculated by Eq. 11 with the Euler 
solution, and the initial potential flow solution is 
updated. This process goes iteratively until a 
converged solution is obtained. This process is 
illustrated in Fig. 2. 
 

 
Fig. 2 Schematic of tightly coupling process 

3 Validation  
In this section, the tightly coupled solver is 

validated in various flow cases. First, the 
subsonic and transonic flows around a two-
dimensional NACA 0012 airfoil are computed. 
In three-dimensional flow cases, a NACA 23012 
rectangular wing and ONERA m6 swept wing 
are used for the subsonic and transonic flows, 
respectively. In each case, we focus on to 
compare the computation time of the tightly 

coupled solver with that of the conventional 
Euler solver to investigate how much the tightly 
coupled solver is efficient. 

3.1 Two-Dimensional NACA 0012 Airfoil at 
Subsonic Flow (M = 0.1, α = 3°) 

The first case was the two-dimensional 
NACA 0012 at the subsonic flow. The flow 
condition was Mach number of M = 0.1 at angle 
of attack of α = 3°. For the CFD computation, C-
type of structured grids with different domain 
size were generated. The domain size was 
controlled by a distance parameter defined in unit 
length of the airfoil chord, and the parameter 
defines the distance between the airfoil surface 
and the domain boundary. Fig. 3 shows a 
schematic of the domain size parameterization, 
and examples of the grids with the domain size 
of 50, 1, and 0.1 chord lengths are shown in Fig. 
4. 

 
Fig. 3 Schematic of domain size parameterization 

The computation results of the tightly 
coupled solver and the conventional Euler solver 
were compared in terms of the lift coefficient in 
Fig. 5 and the computation time in Fig. 6. In 
comparison of the lift coefficient, the reference 
was the Euler solver with very large domain size 
of 500 chord length. It is confirmed that, the 
coupled solver with small domain size of 0.1 
chord length shows very accurate results as the 
error was 1.67% less than 2%. 

Fig. 4 Examples of grids with different domain sizes 
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In comparison of the computation time, the 
reference was the Euler solver with domain size 
of 50 chord length. In Fig. 6, it is validated that 
the tightly coupled solver reduced the 
computation time considerably as ratio of the 
computation time between the coupled solver 
and the reference was about 1/7. 

Fig. 7 shows the surface pressure 
distribution between the results of the tightly 
coupled solver with domain size of 0.1 chord 
length (red dots) and that of the Euler solver with 
domain size of 500 chord length (black line). 
This figure demonstrates that how much the 
tightly coupled solver is accurate even with very 
small domain size as the two distributions 
showed excellent agreement with each other. 

 
Fig. 5 Lift coefficient along domain size 

 
Fig. 6 Computation time along domain size 

 

 
Fig. 7 Comparison of surface pressure distribution 

3.2 Two-Dimensional NACA 0012 Airfoil at 
Transonic Flow (M = 0.7, α = 3°) 

The second case was the transonic flow with 
the same airfoil. The flow condition was Mach 
number of M = 0.7 at angle of attack of α = 3° 
which generates nonlinear shock waves on the 
upper surface. The same grids described in the 
previous section were used. For each comparison, 
the references were the same as that in the 
previous section. 

Fig. 8 shows the lift coefficient along the 
domain size. In contrast with the previous case, 
the tightly coupled solver with the small domain 
size became inaccurate, as the error were 10% 
and 3% with the domain sizes of 0.1 and 1 chord 
lengths, respectively. However, the coupled 
solver with the larger domain size as 2.5 chord 
length showed good accuracy with the error of 
1.78%. Correspondingly, the ratio of the 
computation time was about 1/3 in Fig. 9. 

Fig. 10 shows the surface pressure 
distributions. It is confirmed that the shock 
position and the strength were well predicted by 
the tightly coupled solver with the small domain 
size. Correspondingly, Fig. 11 shows the 
pressure fields computed by the tightly coupled 
solver with the domain size and the reference. 
The two fields look very similar with each other, 
even in the strong shock region. 

Returning to the inaccuracy issue with the 
small domain sizes, it can be construed that 
although the surface doublet strengths of the 
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potential flow solver are updated from the 
nonlinear Euler solution, the induced velocities 
on the artificial boundary are propagated by the 
linear governing equation. In addition, the 
propagation will be more inaccurate when the 
velocity propagates across the supersonic region 
which has completely different flow governing 
characteristics. These limitations will be 
investigated in detail and an appropriate method 
will be devised to overcome them. However, the 
tightly coupled solver is still valid even with the 
limitations. 

 
Fig. 8 Lift coefficient along domain size 

 
Fig. 9 Computation time along domain size 

 
Fig. 10 Comparison of surface pressure distribution 

 
Fig. 11 Comparison of pressure field 

3.3 Three-Dimensional NACA 23012 
Rectangular Wing at Subsonic Flow (M = 0.08, 
α = 2, 6, 10°) 

In the third validation case, a rectangular 
wing with NACA 23012 sectional airfoil and 
aspect ratio of 6 [7] illustrated in Fig. 12 was 
considered. The flow condition was Mach 
number of M = 0.08 at various angles of attack 
of α = 2, 6, 10°. For the parameterization of the 
domain size, a uniform distance along upward, 
downward, and sideward was used. Fig. 13 
shows the examples of the grids with different 
domain sizes of 128, 0.5 and 0.125 chord lengths. 
In this validation, the Euler solution with the 
biggest domain size of 128 chord length was used 
as the reference for both accuracy and efficiency. 
In addition, the experimental data [7] was 
additionally used in the comparison. 
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Fig. 12 Schematic of rectangular wing and 

domain size parameterization 
Fig. 14 shows the lift coefficient with 

respect to angle of attack ( 𝐶𝐶𝐿𝐿 − 𝛼𝛼  curve) 
computed by the reference (blue), the tightly 
coupled solutions with domain sizes of 0.5 (green) 
and 0.125 (orange) chord lengths, and the 
experimental data (black). All of the computation 
results showed discrepancy compared to the 
experimental data, and the discrepancy became 
larger with angle of attack increases. That 
situation resulted from the flow physics that the 
flow viscosity cannot be negligible. However, all 
the computation results showed very good 
agreement with each other, even at the high angle 
of attack of α = 10°. At that angle of attack, the 
errors of the coupled solution with domain sizes 
of 0.5 and 0.125 chord lengths were very small 
as 0.48% and 0.69%, respectively. 

The computation times for the reference and 
the coupled solutions were 28.1 min., 12.6 min., 
and 3.0 min., respectively, and that ratio was 
about 1/9 with the smallest domain size. 

Fig. 15 and shows the root sectional surface 
pressure distributions of the reference (black line) 
and the coupled solution with the smallest 
domain size (red dots), and the two pressure 
distributions showed very good agreement with 
each other. In addition, Fig. 16 shows the 
chordwise and spanwise sectional pressure fields 

near the wing, and it is confirmed that the 
coupled solver computed very accurate solution 
even with the small domain size. 

 
Fig. 14 Comparison of lift coefficient with 

respect to angle of attack 

 
Fig. 15 Comparison of root sectional surface 

pressure distribution 

Fig. 13 Examples of grid with different domain sizes 
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Fig. 16 Comparison of chordwise (left) and 

spanwise (right) sectional pressure fields 

3.4 Three-dimensional ONERA M6 Swept 
Wing at Transonic Flow (M = 0.88, α = 3.06°) 

The last validation case was the transonic 
flow around the ONERA M6 swept wing [8], 
which is well known validation case for the 
three-dimensional transonic flow. The flow 
condition was Mach number of M = 0.88  at 
angle of attack of α = 3.06°  which generates 
nonlinear shock waves widely on the upper 
surface. To determine the domain size, three 
independent parameters were used for forward, 
backward, and sideward distances between the 
wing surface and the domain boundary, 
respectively, and it is illustrated in Fig. 17. 
Correspondingly, Fig. 18 shows examples of the 
grids with different domain sizes., The Euler 
solution with the grid with biggest domain size 
of 50x50x50 chord lengths was used as the 
reference, whereas the two smaller grids of 
uniform 5x5x5 and non-uniform 3x1x3 chord 
lengths were used for the tightly coupled 
solutions. 

In order to investigate the accuracy, the lift 
and drag coefficients were compared. As a result, 

the errors of the lift coefficients were 0.67% and 
1.22% for the coupled solution with domain size 
of 5x5x5 and 3x1x3 chord lengths, respectively. 
In case of the drag coefficients, the errors were 
0.89% and 0.01%, respectively. The computation 
times of the reference and the two coupled 
solutions were 220.0 min., 28.8 min., and 19.9 
min., and their ratio were about 1/8 and 1/11, 
respectively. 

Fig. 19, 20, and 21 show the comparisons of 
the root, mid, and tip sectional pressure 
distributions, respectively. In each figure, the 
reference (black line), the coupled solutions with 
domain sizes of 5x5x5 (blue dots) and 3x1x3 (red 
dots) chord lengths showed very good agreement 
with each other.  

In conclusion, the tightly coupled solver 
was well validated in the four cases, and the 
computation efficiency was improved well with 
good accuracy, even there were nonlinear shock 
waves. 

 
Fig. 17 Schematic of wing and domain size 

parameterization 

Fig. 18 Example of grids with different domain sizes 
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Fig. 19 Comparison of root sectional pressure 

distribution 

 
Fig. 20 Comparison of mid sectional pressure 

distribution 

 
Fig. 21 Comparison of tip sectional pressure 

distribution 

4. Conclusion and Future Work 
In the current study, the tightly coupled Euler and 
potential flow solver was developed to simulate 
the transonic flows. The coupled solver was 
validated well in the subsonic and transonic 
flows around the two-dimensional airfoil and the 
three-dimensional wings. In the two-dimensional 
airfoil case, the computation time was reduced to 
1/7 at the subsonic flow and 1/3 at the transonic 
flow, respectively. In case of the three-
dimensional wing, the computation time reduced 
to about 1/10 at both subsonic and transonic 
flows. The validation results showed that the 
coupled solver can accurately simulate the linear 
subsonic and the nonlinear transonic flows 
within much reduced time. 

In the current study, the appropriate domain 
boundary size was obtained by the repetitive 
computations with different sizes. For much 
huger computation efficiency with good 
accuracy, an adaptive boundary determination 
method with a proper error indicator will be 
introduced. Using that method, the boundary size 
can be varied in the iterative coupling process, 
and an optimal domain boundary without 
spoiling the solution will be determined. In 
addition, to overcome the limitation of the linear 
propagation of the flow velocity in the nonlinear 
flow, an appropriate methodology will be 
devised. 
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