
                      
 
 

1 

 
 
Abstract  
It is shown how weight reduction of cylindrical 
grid structures can be achieved by using axial-
helical instead of helical-circumferential 
orientation of ribs. The optimization process 
mainly relies on an analytical model. A finite 
element model is used for validation and fine-
tuning. Constraints are stability and material 
failure. Studies on the influence of rib heights 
and Young’s modulus reveal potential to create 
lighter grids in axial helical design. Also, the 
main mechanical differences of both grid types 
and their influence on structural weight are 
elaborated.  

1  Introduction  
Cylindrical grid structures with helical and 

circumferential (HC) ribs are used in space 
engineering since several decades ([1], [2]). 
Mostly, their benefits regarding weight and cost 
were compared to the aluminum structures 
which they replaced. In this paper the weight 
optimization of axial helical (AH) grids is 
discussed. The general design of both grid types 
is shown in Fig. 1. 

 Closed-form analytical expressions for 
analysis and minimum weight of HC grids are 
given in [1]. A so called ‘smeared stiffener’ 

approach is used to calculate membrane and 
bending stiffnesses of the structures by the 
classical laminate theory (CLT). Good 
agreement between analytical model and finite 
element (FE) model is reported in [2] and [3]. 

In [4] a FE parameter study comparing AH 
and HC grids with a fixed helical angle of 45° is 
performed. It is stated that under stability and 
axial stiffness constraints a considerably lighter 
design is obtained for AH grids. Another FE 
parameter study on hexagonal HC grids under 
different loading conditions can be found in [5]. 
Similar work but considering different grid 
types was undertaken by [6]. 

Parameter studies can give an insight into 
the influence of the design variables. However, 
the true potential of structures can only be 
evaluated by considering optimum designs. The 
restriction of design variables must also be 
handled with care. For example, the last two 
mentioned papers assume the same quadratic 
cross sections for all rib types. The resulting 
designs are heavier than optimized designs with 
independent cross section dimensions. 

The content of this paper is structured as 
followed: First, an analytical model of the AH 
grid is developed. For comparison, the 
analytical model of the HC grid is also shown. 
A short description of the FE model for 
validation and fine-tuning follows. After 
describing the optimization task in general, the 
weight saving potential of optimum designs is 
discussed for different rib heights and Young’s 
moduli. 

 
Fig. 1. Isometric view of AH (left) and HC (right) grid 
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2  Analytical model 
The spacing of ribs is assumed to be dense 

enough to ‘smear’ the ribs to form a continuous 
pseudo layer. Because the rib only has axial 
stiffness the reduced stiffness matrix in the local 
coordinate system is given by 
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Herein t denotes the rib type (a: axial, c: 
circumferential, h: helical) and E the Young’s 
modulus in longitudinal direction. The ratios of 
rib widths to spacings are 

 / ,
t t t

b ad =   (2.2) 
and the relations of rib heights are 

 / .
t t h

h hb =   (2.3) 
Furthermore, the mass densities are related as 
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Processing of the pseudo layers is done 
according to CLT. The material law of a grid 
which is symmetric to the mid-surface reads 
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The inverse of the membrane stiffness matrix is 
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In accordance with [7] the following non-
dimensional stiffness parameters are used:  
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Fig. 2. Cylinder geometry and coordinate system 

 

 
Fig. 3. Grid geometries and corresponding variables 
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The cylinder geometry and coordinate system 
are given in Fig. 2. Fig. 3 shows grid geometries 
and corresponding variables.  

The compressive line load times the 
circumference yields the total force   
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For an AH grid the stresses in the ribs are 
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In case of an HC grid they become 
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For brevity, the trigonometric functions are 
written as: s = sin(a), c = cos(a). 

2.1 Failure modes 
This section presents the cases of structural 

failure which constrain the feasible design 
space. Material failure of ribs occurs when  

 .
rib

s s=   (2.13) 
Herein s is the stress limit and srib is sa in 

case of an AH grid and sh in case of an HG grid. 
Due to the high allowable tensile stress, failure 
of the circumferential ribs is not considered ([1], 
[8]). 
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Failure of the ribs by local buckling is 
taken into account by modeling them as Euler-
Bernoulli beams: 
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The factor of restraint, k, describes the 
boundary conditions from both ends simply 
supported (k = 1) to both ends fully clamped 
(k = 4). The bending stiffness of the rib is EI, its 
cross section A and the length between two rib 
intersections l. 

It is assumed that all ribs have the same 
height. So the cylinder is homogeneous over the 
thickness. Two global buckling modes are 
considered: checkerboard buckling and ring 
buckling [7]. They are depicted in Fig. 4. In 
case of checkerboard buckling the buckling load 
is 

 

2 2 2
, 4

2 1 1
4 1 1

3 2
c c

BC HC h h
h h

E
P h E c s

E s

d
p d

d
= , ,

 (2.15) 
for a HC grid and 
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for an AH grid. Ring buckling occurs at 
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respectively. 

 
Fig. 4. Global buckling modes of cylinder: checkerboard 
buckling (left) and ring buckling (right) 

 

In engineering it is common to calculate a factor 
of safety (FoS) by relating the allowable load or 
stress to the actual one: 
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In the field of optimization it is more common 
to demand that for a valid design, constraint 
values are less than or equal zero: 

 1 0.g n= . £   (2.20) 

2.2 Objective function 
The structural mass of an AH grid 

 2 (2 ), aAH h h h a a
m RH hp r d r b d= ,  (2.21) 

or a HC grid 
 2 (2  )cHC h h h c c

m RH hp r d r c d= +   (2.22) 
is the objective function to be minimized. While 
for the cases considered there does exist an 
optimum rib height for the HC grid, for the AH 
it would tend to infinity. Of course, this is 
practically only true if the assumptions of the 
analytical model are still valid. To generate a 
reasonably upper bound the height of axial ribs 
is expressed relatively to the optimum rib height 
of the HC grid by 
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For all structural configurations of HC 
grids in this study the failure modes of local rib 
buckling and global ring buckling were critical. 
In this case the related mass is [9] 
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It is obtained by dividing the mass of the 
cylinder by its volume: 
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3  Finite element model 
To validate the results of the analytical 

model a finite element model was set up. It was 
also used to modify the optimum result in a 
second stage of optimization if the validation 
analysis showed FoS < 1. The ribs were 
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modeled using  two-noded quadratic beam 
elements (BEAM188, [10]). To accurately 
describe local buckling of the ribs, six elements 
were used between each rib intersection. Both 
ends of the cylinder are modeled as simply 
supported. All displacements at the lower end 
are set to zero: ur = uj = ux = 0. At the upper 
end ur and uj are zero as well and the load is 
applied by a constant displacement ux. 

Widening of the ends in radial direction is 
normally restricted by stiff end rings. Since 
sizing of the end rings is also highly influenced 
by the type of attachment to adjacent structures 
it is outside the scope of this study. They are 
modeled as very thin beams (0.1 mm) and thus 
do not contribute to mass and stiffness. Because 
the position of circumferential ribs in a HC grid 
at the end of the cylinder coincides with the 
position of end rings, they are not included in 
the model. Thus the HC model has one 
circumferential rib less than would be obtained 
by a pure repetition of unit cells, making the FE 
model lighter by the mass of one circumferential 
rib compared to the analytical model. This 
effect is compensated when comparing masses 
of both models. 

The analysis starts with a linear static 
analysis to calculate the element stresses and is 
followed by an eigenvalue analysis to obtain 
buckling loads and modes. In contrast to the 
analytical model which assumes constant 
stresses across the rib cross section the stresses 
can vary linearly in the FE model. This is due to 
the quadratic shape function of the beam 
elements which can capture combined axial and 
bending load. As a result the absolute values of 
the FE stresses are generally higher than the 
analytically determined ones. 

4  Optimization process 
 

As it was mentioned before, analytical 
solutions for optimum HC grid designs readily 
exist. Here they were adapted from [2] and [9]. 
The first step of optimization of AH grids was 
performed using the analytical model given in 
section 2. Design variables were rib angle α, rib 
height h and related widths δa and δh. To be able 
to construct a FE model the non-dimensional 

related rib widths had to be transformed into 
discrete ribs. 

First, the distances of ribs were set to 
values, where the rib angle was very close to the 
optimum angle. While keeping the rib height of 
the first optimization, the rib widths were 
optimized using the analytical model. Since 
there always exist several geometric 
configurations with a rib angle very close to the 
optimum angle the changes are very small. Thus 
from a practical point of view this step can be 
omitted. 

The resulting geometry values were then 
used for the FE validation analysis. In all cases, 
at least one of the FoS was below one. So the 
rib widths of the FE model were optimized to 
achieve a feasible minimum mass design. The 
range of the rib widths was from 80 to 130% of 
the initial geometry ensuring that the final 
design was not lying on a bound. 

The open-source optimization package 
pyOpt was used to automatize the optimization 
process. Since objective function and gradients 
are smooth the NLPQLP algorithm [12] for 
smooth nonlinear programming problems was 
chosen. For comparison a derivative-free global 
constrained Augmented Lagrangian Particle 
Swarm Optimizer ALPSO [15] was used. This 
type of algorithm simultaneously searches in 
different areas of the design space and thus 
increases the chance to find the global minimum 
in case several minima exist. In all cases both 
algorithms converged to the same optimum 
results. 

5  Influence of rib height and Young’s 
modulus 

The cylinder in the following study has a 
height of H = 1700 mm and a radius of 
R = 2000 mm. Two different sets of material 
properties are considered. Assuming common 
properties of HT fibers and a fiber volume 
fraction (FVF) of about 33% yields a Young’s 
modulus of E = 80 GPa and a mass density of 
ρ = 1400 kg/m3. 

To investigate the influence of a 
considerable higher Young’s modulus, typical 
IM fiber composite values and a FVF of 55 % 
are chosen. These lead to a Young’s modulus of 
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150 GPa and a mass density of ρ = 1600 kg/m3. 
The configurations are denoted by E08 and E15, 
respectively. 

A conservative restraint factor of k = 1 is 
chosen for local rib buckling (16). Material 
failure is assumed at compressive stresses above 
s = 450 MPa. To establish a comparison for a 
wide range of load intensities the load parameter 
Nx/R ranges from 0.1 to 1.0 MPa with 
increments of 0.1 MPa. Typical values for 
rockets like Ariane 6 and Proton-M lie between 
0.28 and 0.45 MPa. 

Optimum geometries and masses of a HC 
grid with E08 properties are listed in Tab. 1. For 
all load levels global ring buckling and local rib 
buckling are critical. In this case the grid angle 
is constant at α = 26.6°. Since all ribs have same 
mass densities their relative thicknesses are 
related by δh = 2 δc ([9]). 
Tab. 1. Optimum values of HC-E08 grid 

 
The values of related masses from Tab. 1 

are taken as reference to investigate the weight 
saving potential of different AH grid 
configurations. Besides the two Young’s moduli 
mentioned earlier, different rib heights are 
considered. The optimum rib height of the AH 
grid is limited by a given upper bound. This is 
set to multitudes b of 1.0, 1.1 and 1.2 of the 
optimum rib height hHCOpt of the HC-E08 grid. 

Fig. 5 shows the resulting mass ratios over 
the load parameter. For AH grids with E08 
properties the mass ratio stays nearly constant 
up to Nx/R = 0.7 and increases afterwards. In the 
constant region mass ratios are approximately 
1.00, 0.96, and 0.93 for b = 1.0, 1.1, and 1.2. 
For selected configurations in the practically 
most relevant range of load parameter Nx/R, FE 
validation and optimization analyses were 
performed. Minimum FoS from FE validation  

 

Fig. 5. Ratio of AH grid masses with E08 or E15 
properties to HC-E08 grid masses. Results of optimum 
designs from analytical (lines) and FE model (markers). 

analyses are given in Tab. 2. FoS for stability 
are slightly below unity in all cases and in one 
case also FoS for stress. Thus the agreement 
between the two models is very good. 

 In case of E15 properties the behavior of 
mass ratios of analytical results is similar as for 
E08 but the constant region ends at Nx/R = 0.3. 
Afterwards the increase is nearly linear. Mass 
ratios in the constant region for b = [1.0, 1.1, 
1.2] are [0.72, 0.70, 0.68] and increase up to 
[0.89, 0.86, 0.83] at Nx/R = 1. The deviation of 
the FE to analytical results, for example 0.68 to 
0.74 for Nx/R = 0.3, is higher than in case of 
E08 properties. The mass increase is necessary 
because for E15 properties the FoS from the 
validation analysis are lower than for E08 
properties (see Tab. 3). 
Tab. 2. Minimum FoS from finite element analyses using 
E08 material properties 
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Tab. 3. Minimum FoS from finite element analyses using 
E15 material properties 

 
Reasons for the deviations lie in the 

different degree of detail of the models. In 
contrast to the assumptions of the analytical 
model, the ribs are not only loaded in constant 
compression but also bending. Thus the overall 
stresses are higher. This effect is visualized in 
Fig. 6. Another difference between the models 
is the different end support of the axial ribs. As 
it is shown in Fig. 6b every second rib ends in a 
rib intersection point. In FE analysis these ribs 
tend to buckle at a lower load than their 
neighbors whose last rib segment is shorter. The 
complex interaction between the ribs is also 
neglected by using an Euler beam in the 
analytical model. 

These effects have a greater influence in 
case of E15 properties since the ribs are 
considerably thinner than in case of E08 
properties. 

6  Conclusion 
The homogenized analytical modelling of 

cylindrical grid structures is very suitable for 
highly efficient structural optimization. In case 
of medium axial stiffness of ribs (E08) they 
showed very good agreement with detailed FE 
analyses. For axial ribs of high stiffness (E15) 
deviations between both analyses types increase 
but the influence of design variables is still 
described well by the analytical model. The 
accuracy is high enough for estimating the 
structural performance in the predesign phase. 
Also, they represent a good starting point for a 
second stage of optimization using more 
detailed FE models. 

AH and HC grids have nearly same weight, 
when both have the optimum rib height of the  

 
Fig. 6. Magnified deformations (a) and stresses (b) 

HC grid, hHCOpt. Increasing the rib height of the 
AH grid above hHCOpt reduces weight. 
Increasing the Young’s modulus of ribs is even 
more effective for reduction of mass. 
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