
                      
 

 

 
Abstract  
In this research, the high-order and high-
resolution scheme was developed on the basis of 
conservative compact reconstruction method. 
The monotonicity preserving (MP) conditions 
which are known as shock capturing method 
were combined with the compact reconstruction. 
Furthermore, an optimization was adopted for 
achieving higher-resolution characteristics. In 
the scalar and Euler numerical tests, result in 
wave propagation and highly-oscillation 
problems were well-predicted by the optimized 
compact monotonicity preserving (OCMP) 
scheme which is developed in this paper6. In 
addition, discontinuities were captured well by 
using the MP conditions. Therefore, on the 
aspect of these advantages, the OCMP can be 
valuable scheme for the high-speed flows and 
aeroacoustics simulation. 

1.  Introduction  
As the computer power have been grown up, 

computational fluid dynamics (CFD) become a 
very strong tool for investigating various flow 
physics without experiments which take much 
time and cost. In particular, the high-order 
method, which has low truncation error, have 
been developed to analyze complex fluid 
phenomena, such as shock, vortex and turbulent 
flow. However, for an aeroacoustics simulation, 
the numerical scheme that has not only high-
order but also high- resolution characteristics is 
necessary. The high-resolution scheme enables 
to capture small acoustic pressure even in large 
size of grid region. The one of improving 

resolution methods is the compact scheme. For 
applications of aeroacoustics, various ‘compact 
schemes’ have been studied. The compact 
scheme uses an implicit form of flux derivative 
formula to get the high-order and high-
resolution results.  
Lele[1] introduced the spectral-like compact 

scheme. This scheme uses the compact formula 
with modified coefficients to improve the 
resolution. Kim and Lee[2] suggested an 
optimized high-order compact scheme (OHOC) 
by applying an optimization method which is 
similar with the dispersion-relation-preserving 
scheme[3]. These kinds of schemes are the 
finite difference methods (FDM). To prevent an 
oscillation across a discontinuity, the FDM 
mostly use artificial dissipation in the source 
term. However, the artificial dissipation makes 
the governing equation non-conservative form. 
Therefore, to get a robustness without 
introducing new term, the essentially non-
oscillatory (ENO) [4] or weighted essentially 
non-oscillatory (WENO) method[5] have been 
coupled with the compact schemes. Deng and 
Maekawa [6] suggested the nonlinear compact 
scheme based on the FDM. This scheme uses 
numerical fluxes at the center of two node 
points. The ENO or WENO method is used 
when numerical fluxes are calculated. Zhang et 
al. [7] expanded the nonlinear compact schemes 
to higher orders to get more accurate results. 
Meanwhile, the hybrid scheme which couples 
the compact scheme and the essentially non-
oscillatory method have been developed. The 
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‘couple’ means the compact form of equation 
works in a smooth region; but, the ENO or 
WENO serves in a discontinuity region. 
Pirozzoli [8] suggested the conservative-hybrid 
compact WENO scheme by applying the 
concept of compact scheme to the 
reconstruction process. Ren et al. [9] expanded 
it to characteristic domain. The hybrid schemes 
have been developed focusing on stability in the 
high-speed flow conditions which contain the 
shock. However, in a discontinuity region, high 
resolution characteristic cannot be maintained 
because of switching to the WENO. In order to 
solve this problem, the compact-reconstruction 
WENO (CRWENO) scheme was proposed by 
Ghosh and Baeder[10]. Because the compact 
reconstruction contains all weighting 
coefficients, a solution can keep high-resolution 
characteristic even across a discontinuity. 

On the other hand, the monotonicity 
preserving (MP) scheme[11] also was suggested 
for the compact schemes instead of the WENO. 
The WENO controls a discontinuity with only 
interpolation and weighting; but, it attenuates 
solutions even in a smooth region.  However, 
the MP conditions do not dissipate solution and 
capture shock clearly. Huynh who developed 
the MP scheme suggested an implicit 
reconstruction with MP conditions and verified 
numerically in the scalar equation [12] (not up 
to the Euler).  

In this paper, based on the compact 
improved-wave-resolution method, we extend 
this idea to the Euler equation, and developed 
optimized compact reconstructions with MP 
conditions also. The usage of the MP was 
expected to makes result more accurate at the 
extrema and discontinuity. Moreover, by using 
optimized coefficients, the compact 
reconstructions achieve a high-resolution 
characteristics in comparison with other 
methods. 

2. Numerical method 
 
2.1 Governing equation and discretization 

In order to simulate the compressible flow, 
the continuity, momentum and energy equations 
are should be solved numerically. The 
governing equation  is given by, 

div 0
U

F
∂

+ =
∂t

 (1) 

Each vector of U and div F  means the 
conservative variable and flux derivative terms, 
respectively. When the dimension of system is 
N; then, div F can be expressed as follows : 

1 2div ...
1 2

F
∂ ∂ ∂

= + + +
∂ ∂ ∂

F F FN
x x xN

 (2) 

The div F  can be changed to the jacobian and 
divU . When the transformed term is 
digonalized, a numerical scheme can deal with 
the governing equation robustly: This form of 
equation is expressed with characteristic 
variables. We discuss about it in the section 2.5. 
To solve the governing equation (1) in space, it 

should be expressed in the semi-discretized 
form. The equation is obtained by integrating 
for an arbitrary cell :  
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The averaged value is given by, 

1/2

1/2

( , )

( , )

u

u

+

−=
∆

∫
j

j
j

x t

x t
x

 (5) 

The order of numerical flux f  in equation (4) 
determine the spatial order of scheme.  
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Fig. 1. Schematic for fifth-order explicit 

reconstruction (explicit form) 

 
Fig. 2. Schematic for fifth-order compact 

reconstruction (implicit form) 

2.2  High-order and high-resolution method 
We started from simple wave equation to 

understanding a reconstruction because the 
hyperbolic system of governing equation is 
based on the propagation of characteristic 
values. In this section, all reconstructions are 
derived in right-going wave situation. 
How well define the numerical flux terms is 

important. The simplest way to get flux values 
is only j and j-1 cells participate in the 
reconstruction step. If more than one cell are 
used, the spatial-order can be increased. For 
example, using five cells makes fifth-spatial 
order.  

1/2 2 1 1 2

1 13 47 27 1

30 60 60 60 20
+ − − + +−= − + +

j j j j j jf f f f f f  (6) 

 The WENO5 and MP5 are based on the 
formula (6). This reconstruction decides one 
numerical flux directly from five cell average 
values explicitly (Figure 1). Each coefficients 
can be derived from the Taylor series expansion. 
 Meanwhile, S. Pirozzoli [8] suggested the 

implicit form of reconstruction from the concept 
of the compact scheme (Figure 2). This 
reconstruction also has fifth-spatial order 
accuracy, but it has higher resolution than the 
explicit reconstruction (6).  

  

1/2 3 2

1 1

3 3 1

10 5 10
1 19 1

30 30 3

− − −

− +

+ +

= + +

j j j

j j j

f f f

f f f

 (7) 

The compact reconstruction improves both 
dispersion and dissipation errors. For 
calculating fluxes using reconstruction (7), a tri-
diagonal solver must be used such as Thomas 
algorithm. 

2.3  Optimization 
In terms of continual study for the high-

resolution method, new forms of reconstruction 
which have higher resolution than the fifth- 
order compact reconstruction (7) were derived. 
First of all, we added another stencils to the 
compact reconstruction (7) as below,  

  

1/2 1/2 3/2

2 1 1 2

− + +

− − + +

⋅ + ⋅ + ⋅
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f f fa b c
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(8) 
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f f f f fa b c d e
g f h f k f l f m f

 

(9) 

In order to get unknowns, the optimization 
suggested by Kim and Lee [2] was applied. 
Reconstructions (8) and (9) should be moved to 
the frequency domain by using the Fourier 
transform to be optimized. After  transformation, 
compact reconstructions were converted into the 
modified wavenumber. 

2 2

2 2

( ) ( ) ( ) ( )( )
[ ( )] [ ( )]

( ) ( ) ( ) ( )
[ ( )] [ ( )]

+
=

+
−

+
+
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A B
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κ κ κ κκ κ
κ κ

κ κ κ κ
κ κ

 (10) 

there are four functions in the modified 
wavenumber as, 

( cos(2 ) cos( )
cos( ) cos(2 )

) + +
+

=
+
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d e

κ κ
κ κ

κ  (11) 
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There are real and imaginary parts in the 
modified wavenumber. Each part showes the 
dispersion and dissipation error, respectively. 
High-resolution means that a real part is closed 
to the wavenumber, and an imaginary part is 
reduced to zero. Kim and Lee [2] suggested the 
integrated error to define the discrepancy 
between the exact and numerical value, 

{ }
2

0

2 2

0

( )

Re( ) Im( ) ( )

≡ −

= − +      

∫

∫

r

r

E W d

W d

π

π

κ κ κ κ

κ κ κ κ κ

 (15) 

Where r is an integration range. The weighting 
function was given as, 

{ }2
2 2( ) [ ( )] [ ( )]= +W A B eκκ κ κ  (16) 

The weighting function enables an error value is 
weighted on the high-wavenumber part. Finally, 
the error was differentiated to minimize the 
integrated error (15).  

E 0 ( can be , , , , , , , )∂
= Ω

∂Ω
a b c d e g h k  (17) 

To get unknowns, we needed the same 
number of conditions as that of coefficients; 
thus, eight equations were used for equation (8), 
and ten equations were used for equation (9). 
We derived fifth-order schemes. That means, 
the conditions from the Taylor series expansion 
were used up to fifth-order. The other equations 
came from minimized error conditions (17). As 

a result of solving equation, coefficients in 
equation (8) were,  

0.2857429393 0.5692958015
0.1449612591 0.0025586832
0.0463092557 0.5658914446
0.3803057563 0.0100522263

=
=

= =
=

−

=

a = b
c = d
e g
h k

 (18) 

 
And those in equation (9) were,  

0.0423271107 0.3166585964
0.4689952087 0.1630509037
0.0089681802 0.0019067568
0.1319816987 0.4887185819

0.3393162663 0.0380766961

=
=

= =
= =

a = b
c = d
e g

l = m =
h k

 (19) 

2.4  Monotonicity preserving (MP) conditions 
After the numerical fluxes are determined by 

the compact reconstruction, the Gibb’s 
phenomena can occur across a discontinuity. 

In this study, the monotonicity preserving 
(MP) conditions known as producing more 
accurate solution than the WENO were used for 
resolving the Gibb’b phenomena. Suresh and 
Huynh [11] suggested the conditions as follow,   



1/2

1 1/2

1
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−
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 (20) 
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Fig. 3. Conservative and characteristic 

variables 
 
Where 4α = . The MPv  is the final numerical 

flux controlled by the MP conditions. 

2.5  Extension to Euler equation  
All reconstructions in section 3 were derived 

on the scalar equation. Now, we extend the 
compact and optimized compact reconstructions 
to the Euler equation. The one-dimensional 
Euler equation is given by, 

0U F∂ ∂
+ =

∂ ∂t x
 (23) 

Here, U  and F  vectors contain conservation, 
momentum, and energy equations. 

2;
( )

U F
   
   = +   
   +   

u
u u= p

e e p u

ρ ρ
ρ ρ  (24) 

As can be seen in Figure 3, the decoupled 
system of equation can be derived after 
multiplying left-eigenvector to the Euler 
equation. 
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(24) 

0α α∂ ∂
+ =

∂ ∂t x
Λ  (25) 

1Xα −= u  (26) 

Variables in the left eigenvector (24) were  

calculated from the roe average value. The 
equation (25) is the characteristic form of the 1-
D Euler equation, and α  is the characteristic 
vector. This equation can be separated into three 
decoupled equations; therefore, the 
reconstruction step can be adapted to the Euler 
equation with more physical sense.  
Finally, after characteristic values had been 

reconstructed in each direction, the Roe scheme 
[13] was used to get final fluxes. 

( )
  ( ) ( )

1/2 1/2 1/2

1/2 1/21/2 1/2
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2
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2

+ + +

+ ++ +

= +

− +
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u u f f

  

 

L R
j j j

L R L R
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 (27) 

Where L  and R means left- and right-biased 
reconstructed value, respectively. 
 
2.6  Time integration 
A time step integration was conducted after the 

spatial step was finished. In this research, the 
3rd order total variation diminishing Runge-
Kutta method (TVDRK3) was used. This 
method is more stable than classical Runge-
Kutta method, especially in the hyperbolic type 
of equation. Three stages of integration are 
expressed as, 
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(1) (0)

(2) (1)
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(0)

(0) (1)

(0) (2 () 2

(3)1

)

( )
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4 4
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+

=

= + ∆

 = + + ∆ 

 = + + ∆ 

=

n

n

v u
v v t L v

v v v t L v

v v v t L v

u v

 
(28) 

3. Results 
 
3.1 Fourier analysis  

The resolution of reconstruction can be 
checked analytically by using the Fourier 
analysis. We already derived the modified 
wavenumber (10) in section 2. Each real and  
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Fig. 4. Modified wavenumber : Real part 

 

 
Fig. 5. Modified wavenumber : Imaginary 

part 
 

imaginary part in the modified wavenumber can 
be plotted as the wavenumber to figure out the 
resolution characteristics of scheme.  

Prior to comparisons, terminologies for 
present schemes need to be explain. The CMP5 
means the fifth-order compact reconstruction (7) 
coupled with the MP conditions. For optimized 
schemes, ‘O’ is placed in front of the name of 
scheme. ‘Tri’ is the tridiagonal form of 
reconstruction (8), and ‘Penta’ means the 
pentadiagonal form of construction (9). The 
resolutions of the WENO, CRWENO, and 
CRWENO-LD [10] are presented as references. 

Fig. 6. The results of sine wave propagation 
(N=8, after 10 period) 

 

 
Fig. 7. The results of sine wave propagation 

(N=6, after 100 period) 

 
Figure 4 shows the real part of resolution, and 

Figure 5 presents the imaginary part of 
resolution. As can be seen in Figures, the 
compact reconstruction can increase the 
resolution significantly. Furthermore, the usage 
of 5th order optimized compact reconstruction 
(8) and (9) much improve the resolution than 
fifth-order  compact reconstruction. 
Above comparisons are conducted by using 

analytical way. Numerical verifications are 
presented in the next section. 
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3.2 Sine wave propagation problem  
The scheme which can capture far propagating 

acoustic wave with fewer cells has higher 
resolution characteristics. In this section, the 
sine wave propagation problem was solved with 
periodic boundary condition. 
Equation (1) was set up as one-dimension and 

expressed in the scalar form as below, 

0 ; ( , )∂ ∂
+ = =

∂ ∂
u f f u x t
t x

 (29) 

0 ( ) ( ). ( 1 1)= − ≤ ≤u x Sin x xπ  (30) 

The governing equation (29) indicates the 
wave equation. The speed of sound is one. 
Simulation conditions were : a CFL number was 
0.1, and initial condition was sine shape wave 
(30). 
 Figure 6 shows the result of  the WENO5 and 
MP5 schemes with eight cells. As the MP 
conditions do not distort a reconstruction in a 
smooth region, the MP5 has more accurate 
result than the WENO5 even though they use 
same explicit reconstruction. This merit is also 
effective on the compact reconstruction. Figure 
7 displays the result of various schemes with six 
cells. For a clear comparison, long propagating 
condition (100 period) was chosen. In this tough 
condition, we did not get meaningful data using 
the WENO5 and MP5 because truncation error 
was so large. Note that even though the compact 
reconstruction was used, the solution of the 
CRWENO5 is almost dissipated because of 
weightings, whereas the CMP5 still has the sine 
shape. The weighting dissipation of CRWENO5 
can be improved by the energy stable WENO 
method[14] (CRWENO5-YC); but, it has large 
dispersive error. However, with the optimized 
compact reconstruction, the OCMP5 (Tri) and 
OCMP5 (Penta) have very accurate result. 
The result tendency of the numerical test 

 
(a) 

 
(b) 

 
(c) 

Fig. 8. The results of the propagation of 
various shape waves 

(N=160) 
 
correspond with the analytical results in the 

previous section. 
 
3.3 The propagation of various shape waves 

In this section, waves propagation problem 
including discontinuities is presented. To 
simulate this case, a limiting process such as the 
WENO or MP conditions must be included in 
the numerical scheme to prevent oscillation near 
a discontinuity. 
A CFL number was chosen as 0.1. Total cell 

number was 160, and the initial condition were 
composed of four kinds of wave: an exponential, 
square, triangular and parabola shapes. Detail 
informations as follow, 
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+
−

= − ≤ ≤ −

= − ≤ ≤ −

= − − ≤ ≤

= − − ≤ ≤

=

  

x

u x e

x

x x

x x

x

 

(31) 

Figure 8(a) demonstrates the solution of non-
compact methods: the WENO5 and MP5. As we 
expected, the MP5 shows good performance on 
all wave shapes. Across  discontinuities, the MP 
conditions captured them well. The reason for 
better accuracy in smooth regions follows the 
same manner as the sine wave propagation. 
Figure 8(b) shows compact reconstruction 
schemes combined with the WENO or MP 
method. All schemes give an improved solution 
compared with the non-compact method. By 
adapting the energy stable WENO method, the 
CRWENO5-YC has similar result with the 
CMP5. Note that the MP conditions still 
activate well with the compact reconstruction. 
The performance of the optimized schemes 
developed in this paper are presented in Figure 
8(c). Both optimized tri- and penta-diagonal 
schemes almost coincident with the exact 
solution, particularly in peak region. 

3.4 Shock-entropy wave interaction problem 
An interaction between Mach 3 shock and 

continual entropy wave was discussed using 
different schemes. From this problem, we can 
investigate how accurately numerical methods 
simulate the compressible-turbulence flows. The 
initial condition was as below, 

27 4 35 31
, , ( 4.0)

7 9 3, ,
1

1 sin 5 , 0, 1 ( 4.0)
5

< −
=

+ ≥ −







x
u p

x x
ρ  (31) 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 9. The results of the shock-entropy wave 
interaction 

(N=175) 
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A CFL number was same as in the previous 
condition was imposed at both ends. Then, 
results after 1.8 second were collected. We set 
up the number of cells as 175 for comparison 
(for 6cells on a wave in high-frequency region).  
 As there is no exact solution in the shock-

entropy wave interaction problem, reference 
data from fine grid simulation is necessary. In 
order to get a reference, the result calculated by 
the CRWENO5 with 2000 cells was chosen.  
In a high-frequency dominant region, the 

advantage of the MP5 comes out more clearly. 
As can be seen in Figure 9(a), the WENO5 has 
large dissipation error, whereas the MP5 follows 
the oscillation behavior. When both methods 
were combined with the compact reconstruction, 
in Figure 9(b),  there is also large discrepancy 
between the CRWENO5-YC and CMP5, unlike 
previous tests. It means that reconstruction is 
sensitively affected by limiting process 
especially in a high-frequency region.  In Figure 
9(c) as the final comparison, the OCMP5(Tri) 
and OCMP5 (Penta) which use more stencil and 
optimized coefficients have more accurate result 
than the CMP5 . 
 
4. Conclusion 
In this paper, the optimized compact 

monotonicity preserving (OCMP) scheme was 
developed by adapting the optimization to the 
compact scheme, and by combining 
reconstruction with the MP conditions. The 
development procedure was focused on not only 
a high-accurate shock capturing ability but also 
high-resolution characteristic to calculate strong 
non-linear acoustics. 
 1. The advantage of the MP conditions is 

capturing shock well, and enables maintaining 
the order of accuracy when the MP conditions 
does not activate. This merit was effective when 
the MP conditions were combined with the 
compact reconstruction. In numerical 
comparisons, the CMP5 had better accuracy 

than the other WENO-series schemes on scalar 
and Euler equation. 
 2. The numerical tests on scalar equation 

showed that optimized schemes had better 
accuracy than other methods because of the 
highest-resolution. The result of the Euler 
equation also presented that the OCRMP5 
schemes (tri- and penta-diagonal forms) 
coincided well with both the shock and  highly-
oscillatory region. These characteristics of 
present scheme enable that a generated sound 
from shock and vortex flow propagated to a far-
field accurately  
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