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Abstract  

The present paper proposes a chaos approach 
for the buckling analysis of cylindrical shells 
under axial compression. The approach is 
developed using concepts of chaos theory, and 
is applied to investigate the buckling behavior 
of sandwich composite shells that are 
imperfection-sensitivity structures. Two shell 
configurations are here analyzed, one of them 
with cut-outs. The goal of the approach is to 
obtain an erosion profile as function of the 
increasing axial load, that through a graphical 
visualization allows to illustrating concisely the 
effect of geometric imperfections on the load-
carrying capability of the shells.  
The paper presents an innovative use of the 
concepts of chaos. The approach can be 
adopted when an experimental database of 
imperfections is rarely available to achieve a 
first assessment of the imperfection sensitivity of 
axially-compressed shells. 

1. Introduction  

The buckling response of cylindrical shells 
under axial compression is affected by the 
manufacturing and in-service imperfections, 
which are recognized to be the primary sources 
of the wide discrepancy between theoretical and 
experimental results [1]. Currently, shell design 
relies on NASA SP-8007 guideline [2], which 
recommends the use of an empirical knockdown 
factor to account for the influence of 
imperfections. However, the aerospace industry 
demands for improved shell design criteria that 
enable for a reduction of developing and 

operating costs and, if possible, for lighter 
structures. Several studies were published in the 
last years regarding experimental and numerical 
investigations of the influence of the initial 
imperfections on the buckling of composite 
cylindrical shells [3-7]. 

The use of concepts of the chaos in 
buckling investigation of axially-compressed 
shells has been discussed in literature over the 
last years. The chaos theory [8] concerns non-
linear dynamic systems that exhibit seemingly-
unpredictable behavior. Actually, it is governed 
by an underlying order and by a high sensitivity 
to input conditions. Due to the high 
imperfections-sensitivity, the buckling behavior 
of the cylindrical shells can be considered 
chaotic. Moreover, the transition from pre-
buckling equilibrium state to post-buckling 
equilibrium state is a dynamic process that 
induces nonlinearities. 

El Naschie [9] showed the development of 
the “spatial chaos” in buckled isotropic 
cylindrical shells, referring with this term to the 
development of spatially-chaotic deformation 
patterns, which are independent on the time and 
can be perturbed by geometric imperfections.  

The dynamic buckling, which deals with 
the study of the shells under the action of 
oscillation loads and pulse loads, was studied in 
terms of temporal chaos by few authors [10-11]. 
It was observed that small changes in the initial 
conditions lead to vastly different solutions of 
the system response over the time. Gonҫalves et 
al. [10] proposed to measure the integrity of the 
structural response of axially-compressed shells 
by analyzing the evolution of the basins of 
attraction of the stable operating points as a 
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function of the input parameters. An attractor is 
surrounded in phase space by its own basin of 
attraction, which defines an ensemble of initial 
conditions leading towards a common attracting 
response. The authors investigated both the 
static and dynamic buckling response of shells 
and concluded that the safe basin of attraction 
shrinks as the axial load approaches the 
buckling load and it is also affected by the 
initial conditions.  

The concept of safe basin was first 
introduced by Thompson et al. [12]. They 
argued that the safety of a structure depends not 
only on the stability of the obtained solutions, 
but also on the safe basins of attraction 
surrounding the solutions. The basin can be 
eroded as the system parameters change. To 
evaluate the erosion of the safe basin, Soliman 
and Thompson [13] and Rega and Lenci [14] 
proposed three measures of integrity. The 
erosion profile is traced by plotting the integrity 
measure in function of the varying system 
parameters, and they show how the integrity 
measures enable to study the safety of a 
structure with changing system parameters. 

The present paper addresses the application 
of concepts of the chaos theory to the buckling 
of cylindrical shells under axial compression. A 
chaos approach is developed to investigate the 
influence of geometric imperfections on the safe 
basin which surrounds the equilibrium 
configuration related to the buckling load of 
nominally-perfect shells. In particular, the 
approach aims to illustrate, through the 
definition of an erosion profile, the shrinkage of 
the safe basin in favor of the unsafe basin with 
the increase in axial compression.  

The developed approach is then applied to 
study the buckling of two composite sandwich 
shells, one of them with three circular cut-outs. 

The approach can be applied to study 
laminated composite shells and sandwich 
composite shells in a preliminary design phase 
when a test-originated database of imperfections 
is rarely available, and can help to achieve a 
first assessment of the shell imperfection-
sensitivity. 

2. Description of the Shells 

The two shell configurations here analyzed 
are scaled models of the Dual Launch System 
(SYLDA) of Ariane 5 launcher. The shells were 
previously studied in the European project 
DESICOS [15-16].  

They have an average radius and a free 
length equal to 350 mm and 620 mm, 
respectively. They are made of a sandwich 
consisting of two composite facesheets and a 
core.  

The inner and outer facesheets are three-
ply composite laminates. Each ply is 0.131 mm 
thick and has the material properties listed in 
Table 1.  

 
Property Value 
Longitudinal modulus, E11 150000 MPa
Transverse modulus, E22  9080 MPa
Shear modulus, G12 5290 MPa
Poisson's ratio, ν12 0.32 
Density, ρ 1570 kg/m3

Table 1. Hexcel IM7/8552 UD carbon prepreg [17]. 

The core of the sandwich is foam with 
thickness of 1.5 mm, whose material properties 
are reported in Table 2. 
 

Property Value 
Young  modulus of core, E  350 MPa 
Shear modulus, G 150 MPa 
Poisson's ratio, ν 0.33 
Density, ρ 205 kg/m3

Table 2. EVONIK Rohacell WF200 [18]. 

The layup of the shell is                
[19°/-19°/90°/CORE/90°/-19°/19°], for a total 
thickness equal to 2.286 mm.  

The first configuration (named SYLDA) 
does not have cut-outs, whereas the second one 
(named SYLDA with cut-outs) includes the 
presence of three circular cut-outs. A cut-out of 
diameter equal to 92 mm is located on one side 
of the shell and two smaller cut-outs of diameter 
equal to 46 mm on the other side. The centers of 
the two smaller cut-outs have a distance of 92 
mm. 
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3. Finite Element Model 

The finite element models of the shells are 
realized in ABAQUS v.6.13 [19], using S4R 
shell elements.  

They are shown in Fig. 1, together with the 
details of the mesh around the cut-outs. The 
mesh size is 10 mm x 10 mm, whereas the 
elements around the larger cut-out and around 
the two smaller cut-outs have size equal to 4 mm 
x 4 mm and 3.6 mm x 3.6 mm, respectively. 

The shell model is fixed at the one end, 
while all degrees of freedom except the axial 
translation are constrained at the loaded edge.  

 

   
SYLDA SYLDA with cut-outs 

Fig. 1. Finite element models of sandwich shells. 

4. Chaos Approach 

Concepts of the chaos theory are exploited 
to develop a chaos approach with the aim to 
investigate the robustness of the fundamental 
equilibrium state of the cylindrical shells against 
perturbations given by input imperfections.  

A performance function describing the 
load-carrying capability of shells is assessed 
over a control domain, which is defined in terms 
of perturbations of the control parameters used 
in modeling the input imperfections. For each 
increment in applied axial load, the safe basin 
which surrounds the equilibrium state 
corresponding to the buckling load of 
nominally-perfect shells may be identified over 
the control domain. The extension of the safe 
basin shrinks as axial compression increases. As 
a consequence, the load-carrying capability of 
the shells falls off.  

To estimate the degradation of the safe 
basin, the erosion profile is generated in 
function of the normalized imposed load. Such a 
profile enables to measure the imperfection 
sensitivity of shells and, consequently, to study 
the influence of different types of imperfections. 

4.1. Performance Function 

For the buckling analysis of shells 
subjected to axial compression, a performance 
function pf(X) can be expressed as the difference 
between the buckling load Lc(X) of the shell 
with imperfections and the applied axial load La: 

pf(X) = Lc(X) - La
 (1) 

where X is the vector of varying control 
parameters. 

The performance function enables for 
assessing the load-carrying capability of the 
shell against perturbations, here given by the 
initial imperfections. 

4.2. Control Parameters 

The perturbations to the equilibrium state 
of nominally-perfect shells are taken in the form 
of two types of initial geometric imperfections: 
axisymmetric and asymmetric.  

The axisymmetric geometric imperfections 
are characterized by a sinusoidal shape in the 
axial direction and are modeled by the sine 
function:  

w/t = ξ sin( iπz / lf )
 (2) 

where w is the radial displacement (positive 
outward); ξ is the magnitude of the 
imperfections relative to the total thickness t of 
the shell; lf is the free length of the shell; and i is 
the integer denoting the number of axial half-
waves. 

The asymmetric geometric imperfections 
are assumed sinusoidal in the axial direction and 
cosinusoidal in the circumferential direction. 
They are described using the sine-cosine 
function: 

w/t = ξ sin( iπz / lf ) cos( jy / r ) (3) 

where i and j are integers denoting the number 
of axial half-waves and of circumferential 
waves, respectively. 

The control parameters, used in modeling 
the geometric imperfections, are the 
imperfection amplitude and the number of axial 
half-waves for the axisymmetric imperfections, 
and the number of axial half-waves and of 
circumferential waves for the asymmetric 
imperfections. 
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4.3. Safe Basin 

The Cell-to-Cell Mapping Technique [20] 
is here adapted for the buckling problem of 
axially-compressed shells.  

At first, the control space is delineated in 
terms of the control parameters, which model 
the geometric imperfections. It is then 
discretized in cells of equal size as result of the 
partition of each control parameter into a 
number of intervals of uniform size. The control 
domain is illustrated in Fig. 2 for the two 
sources of imperfections. The dashed black lines 
delimit the cells and the dots stand for the center 
of the corresponding cells. 

 

 
Control domain of axisymmetric imperfections 

 
Control domain of asymmetric imperfections

Fig. 2. Control domains. 

In the case of perturbations in the form of 
axisymmetric imperfections, the control domain 
is delimited by the amplitude to thickness ratio  
ξ ϵ [0%,100%] and by the number of axial half-
waves i ϵ [0,18]. In the case of perturbations in 
the form of asymmetric imperfections, the 
control domain is delimited by the number of 
axial half-waves i ϵ [0,18] and by the number of 

circumferential waves j ϵ [0,18]. The amplitude 
to thickness ratio is set constant and equal to 
30% of the total thickness. 

Next, explicit dynamic analyses of shell 
with imperfections are carried out using the 
finite element code ABAQUS v.6.13 [19] in 
order to obtain the buckling response over the 
domain as function of the control parameters 
and of the axial load. 

Finally, the topology of the control space is 
defined in terms of the performance function for 
each increment in the applied axial load. In 
particular, the topology of the basin is arranged 
in a matrix, which evolves as axial compression 
increases. The elements of the matrix consist 
only of two integers at each load level: zero if 
the shell does not buckle and one if the shell 
buckles. The elements of the matrix equal to 
zero delineate the safe basin. The matrix can be 
graphed as a two-dimensional black and white 
color-map. The safe basin is identified by white 
color, whereas the unsafe basin is represented 
by black color. The unsafe basin expands as the 
axial compression increases. Consequently, a 
different color-map of the basin is associated to 
each load level. 

4.4. Integrity Measures and Erosion Profile  

The erosion profile of the safe basin is here 
obtained by plotting two integrity measures    
[8-9]: the global integrity measure (GIM) and 
the integrity factor (IF), in function of the 
increasing applied load. 

The global integrity measure takes into 
account the robustness of the basin and is 
defined as the hypervolume of the safe basin 
normalized by a reference value. This measure 
is calculated as the ratio between the number of 
pairs of control parameters (ξ, i) or (i, j) for 
which the shell withstands compression without 
undergoing buckling divided by the total 
number of pairs in the control domain. 

The integrity factor is a measure of 
compactness of the basin, and is defined as the 
normalized radius of the largest hypersphere 
that entirely belongs to the safe basin. It is a 
dimensionless measure easy to calculate, like 
the GIM, and besides enables to eliminate 
fractal tongues from integrity evaluation. Since 
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the control space is here two-dimensional, the 
hypersphere is actually a circle.  

To assess the integrity factor, the control 
domain is discretized in cells; the radius rc of 
the largest circle that can be traced into the safe 
basin is identified, where the radius rc is 
expressed in number of consecutive pairs (ξ, i) 
or (i, j). The number of pairs which are in the 
circle is calculated, and the integrity factor is 
assessed as the ratio between this number of 
pairs and the total number of pairs in the control 
domain. Fig. 2 illustrates two examples of 
estimate of the integrity factor. The blue dot 
stands for the center of the circle of radius rc. 
The yellow dots are the pairs inside the circle, 
whereas the gray dots are the pairs outside the 
circle. The integrity factor is the ratio between 
the number of yellow dots and the number of 
total dots. As a consequence, the integrity factor 
is a discrete measure.  

After having generated the basin of 
attraction of the fundamental equilibrium state 
for each increment of the applied axial load, the 
two integrity measures are assessed at each load 
level. They are graphed in function of the 
increasing compressive load, attaining the 
erosion profile, as shown in Fig. 3. The erosion 
profile provides a graphical visualization of the 
reduction, caused by the perturbations, of the 
load-carrying capability of the axially-
compressed shells. The region below the curve 
is divided into two sub-regions. The gray area 
denotes the “uneroded basin” sub-region, where 
the safe basin is not corrupted by perturbations. 
Such a sub-region extends up to the load level 
for which the onset of erosion of the safe basin 
occurs. The blue area identifies the “eroded 
basin” sub-region and, consequently, it provides 
an immediate visualization of the degradation of 
the safe basin.  

The magnitude of integrity measure 
decreases as axial compression increases. The 
threshold, i.e the load level, for which erosion 
takes place, depends on the extension of the safe 
basin. The larger is the safe basin, the larger is 
the sub-region of “uneroded basin”. 
Consequently, the threshold moves towards 
right as the width of safe basin increases, i.e. the 
shell is low sensitive to imperfections. 

 

Fig. 3. Erosion profile. 

5. Results 

The two configurations (SYLDA and 
SYLDA with cut-outs) of the scaled models of 
the Dual Launch System of Ariane 5 launcher 
are studied using the developed approach based 
on the chaos theory. Two types of geometric 
imperfections are incorporated in the buckling 
investigation: axisymmetric and asymmetric. 

5.1. Sensitivity to Axisymmetric Geometric 
Imperfections 

The erosion profile of safe basin which 
surrounds the equilibrium state corresponding to 
the buckling load of nominally-perfect SYLDA 
and SYLDA with cut-outs is calculated. The 
erosion profile measures the sensitive of the two 
shells to perturbations of the equilibrium in the 
form of axisymmetric geometric imperfections. 
Fig. 4 and Fig. 5 show the erosion profile for 
SYLDA and SYLDA with cut-outs, 
respectively. 

 

Fig. 4. Erosion profile of SYLDA considering 
axisymmetric geometric imperfections. 
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Fig. 5. Erosion profile of SYLDA with cut-outs 
considering axisymmetric geometric imperfections. 

For each shell the erosion profile is 
attained by graphing both the global integrity 
measure and the integrity factor as function of 
the normalized axial load. The normalized axial 
load is calculated dividing the imposed axial 
load by the maximum load reached by shell. 
The maximum load achieved by SYLDA and 
SYLDA with cut-outs is equal to 417 kN and 
294 kN, respectively [16].  

For both the investigated shells, the global 
integrity measure versus the normalized applied 
load curve agrees with the integrity factor 
versus the normalized applied load curve. 

Since the erosion of safe basin for SYLDA 
with cut-outs takes place at a load level higher 
than for SYLDA, SYLDA with cut-out turns to 
be less sensitive to axisymmetric geometric 
imperfections. This outcome is likely due to the 
presence of cut-outs, which dominate the 
buckling response of the shell. 

An integrity measure equal to 0.20 is 
assumed to provide an example for the shell 
design [21]. It means that it is not allowed that 
the maximum extension of the safe basin 
decreases below 0.20 of total area. Such a 
requirement results in calculating the threshold 
of axial load beyond which the load-carrying 
capability of the shell is degraded more than 
80%. Table 3 lists the load values o for the two 
shells.  

Despite the low sensitivity to axisymmetric 
geometric imperfections, SYLDA with cut-outs 
reaches load levels lower than the ones reached 
by SYLDA for a required integrity measure of 
0.20, as a consequence of the presence of the 
cut-outs. 

Integrity 
measure 

Load value 
for SYLDA 

Load value
for SYLDA 

with cut-outs
GIM=0.20 284 kN 256 kN

IF=0.20 304 kN 250 kN

Table 3. Load values for axisymmetric imperfections 
corresponding to integrity measure of 0.20. 

The decreasing trend of the two integrity 
measures, evident in Fig. 4 and Fig. 5, indicates 
that the safe basin which surrounds the 
equilibrium configuration corresponding to the 
buckling load of nominally-perfect shells is 
eroded by the geometric imperfections. As an 
example, Fig. 6 shows the topology of the safe 
basin for SYLDA at two different levels of 
applied compressive load. It can be observed 
that the safe basin, represented as white area, 
shrinks as axial compression increases. In the 
figure the largest circle of radius rc, entirely 
belonging to the safe basin, is also illustrated at 
each load level. 
 

 
Load level of axial compression, 200 kN 

 
Load level of axial compression, 250 kN 

Fig. 6. Basin surrounding the equilibrium state related to 
the buckling load of SYLDA. 
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5.2. Sensitivity to Asymmetric Geometric 
Imperfections 

The erosion profiles of SYLDA and 
SYLDA with cut-outs in the analysis case of 
perturbations in the form of asymmetric 
geometric imperfections are reported in Fig. 7 
and Fig. 8, respectively. As in the previous 
analysis case, the curve resulting from the 
global integrity measure agrees with the curve 
resulting from the integrity factor. 

Fig. 7 and Fig. 8 show that SYLDA and 
SYLDA with cut-outs are less sensitive to 
asymmetric geometric imperfections than to 
axisymmetric geometric imperfections. Indeed, 
the onset of the erosion of safe basin occurs for 
both shells at a higher load level in comparison 
to Fig. 4 and Fig. 5. 
 

Fig. 7. Erosion profile of SYLDA considering  
asymmetric geometric imperfections. 

Fig. 8. Erosion profile of SYLDA with cut-outs 
considering asymmetric geometric imperfections. 

In Table 4, the load values related to the 
erosion profiles for the two shells are 
summarized for a requirement of integrity 
measure set to 0.20.  

Integrity 
measure 

Load value 
for SYLDA 

Load value
for SYLDA 

with cut-outs
GIM=0.20 346 kN 276 kN

IF=0.20 338 kN 270 kN

Table 4. Load values for asymmetric imperfections 
corresponding to integrity measure of 0.20. 

The comparison of the results reported in 
Table 4 with those of Table 3 points out again 
that the load-carrying capability of the two 
considered shells is more affected by the 
axisymmetric geometric imperfections than by 
the asymmetric geometric imperfections.  

6. Conclusions 

A chaos approach for the buckling analysis 
of composite cylindrical shells under axial 
compression is developed using the concepts of 
chaos theory. The approach aims to attain an 
erosion profile in function of the increasing 
compressive load. Such a profile is a graphical 
representation that illustrates the imperfection 
sensitivity of the shells showing the erosion of 
the load-carrying capability of the shells due to 
the geometric imperfections as the axial 
compression increases. 

The chaos approach is applied to the 
buckling investigation of two configurations of 
axially-compressed cylindrical shells. The first 
configuration does not have cut-outs, whereas 
the second one includes three circular cut-outs. 
Two types of geometric imperfections are 
incorporated separately into the analysis: 
axisymmetric and asymmetric imperfections. 

The erosion profile is derived for both 
shells, showing that the influence of the 
axisymmetric geometric imperfections is more 
detrimental than the one of the asymmetric 
geometric imperfections.  

The proposed approach is based on an 
innovative use of the concepts of chaos theory. 
The approach can be applied to investigate the 
imperfection-sensitivity of laminated composite 
shells and of sandwich composite shells 
incorporating several types of imperfections.  

The approach can be adopted in a 
preliminary design phase when a test-originated 
database concerning manufacturing and in-
service imperfections is rarely available, in 
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order to achieve a first assessment of the effects 
of imperfections on the load-carrying ability of 
axially-compressed shells.  

However, the paper presents only a 
preliminary study of the chaos theory applied to 
the buckling analysis of cylindrical shells under 
axial compression, and the presented 
methodology needs to be further enhanced. In 
particular, a best comprehension of the integrity 
measures is required. Besides, it is important to 
note that the results are affected by assumed 
perturbations to equilibrium state and by the 
specified control domain. 
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